深层—超深层白云岩储集层: 机遇与挑战*
陈代钊1,2, 钱一雄3
1 中国科学院油气资源研究重点实验室,中国科学院地质与地球物理研究所,北京 100029
2 中国科学院大学,北京 100049.
3 中国石化石油勘探开发研究院无锡石油地质研究所,江苏无锡 214126

第一作者简介 陈代钊,1963年生,博士,研究员,主要从事碳酸盐沉积学(包括白云石化作用)、富有机质沉积与古海洋、沉积地球化学、边界事件与地球系统过程研究。E-mail: dzh-chen@mail.iggcas.ac.cn

摘要

深层—超深层白云岩储集层是未来油气勘探的重要领域和目标,是潜在的优质油气储集体或储集层。查明白云岩的成因、孔隙发育与保存机理以及流体性质与演化路径,建立符合实际地质状况的储集层地质模型,对于预测深层—超深层白云岩储集层的分布规律是非常重要的。疏理了白云岩成因的几个核心问题的现状与发展趋势,指出了白云石化作用模式的演变过程和发展方向,提出了建立深层—超深层白云岩多阶段动态演化模式应考虑的问题。中国三大克拉通盆地(四川盆地、塔里木盆地和鄂尔多斯盆地)深层—超深层赋存丰富的白云岩,并且已经有一些重要的油气发现,为开展深层—超深层白云岩油气勘探提供了好的机遇,但深埋藏、多期构造改造、叠加和复杂的流体演化历史也是此项研究重要的挑战。

关键词: 深层—超深层; 白云岩; 储集层; 机遇与挑战
中图分类号:P588.2 文献标志码:A 文章编号:1671-1505(2017)02-0187-10
Deep or super-deep dolostone reservoirs:Opportunities and challenges
Chen Daizhao1,2, Qian Yixiong3
1 Key Laboratory of Petroleum Resource Research,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029
2 University of Chinese Academy of Sciences,Beijing 100049
3 Wuxi Research Institute of Petroleum Geology,Petroleum Exploration & Production Research Institute, SINOPEC,Wuxi 214126,Jiangsu

About the first author Chen Daizhao,born in 1963,is a doctor and research professor. He is mainly engaged in carbonate rock sedimentary(including dolomitization),organic-rich sediments and palaeo ̄oceanography, sedimentury geochemistry, and boundary event and earth system proccesses. E-mail: dzh-chen@mail.iggcas.ac.cn.

Abstract

Deep or super-deep dolostone reservoirs tend to be the important exploration field and targets in the future. Resulting from dolomite replacement and dissolution,abundant volumes of secondary porosity were commonly produced,which made the dolostones the potential high-quality petroleum reservoirs. In this context,it is imperative to reveal the mechanisms of dolomitization,porosity generation and preservation,as well as to investigate responsible fluid attributes and evolution pathay,then to establish reliable geological reservoir models. Under documenting the core issues related to “dolomite problems”,this review listed the major dolomitization models,present bandawagons,and main concerns in future dolomite studies,particularly for the deeply-buried dolostones experiencing complicated tectonic and fluid modifications. In China,abundant dolostones occur at great depths of >6500,m in the three largest cratonic sedimentary basins(Sichuan Basin,Tarim Basin and Ordos Basin), which have contributed numerical commercial petroleum reserves and provided favourable opportunities for petroleum exploration in deep or super ̄deep formations. However,big challenges would also exist due to the great burial depths,multiple-phase,superimposed tectonic overprinting and complicated history of basin-fluid evolution.

Key words: deep or super-deep; dolostone; reservoir; opportunities and challenges
1 概述

随着浅部油气资源的大量开采和资源量的衰减, 进入地球更深处寻找油气资源, 是未来油气勘探的现实和战略需求及重要趋势之一。首先, 由于年代效应、埋藏背景下白云石(岩)化作用动力学障碍的解除及多期成岩— 热流体的参与, 深层— 超深层碳酸盐岩以白云岩占绝对优势(Given and Wilkinson, 1987; Sun, 1994)。同时, 基于白云石交代作用和白云岩的可溶性, 相对容易产生比较丰富的次生孔隙和储集空间, 因此白云岩是潜在的优质油气储集体或储集层(Tucker and Wright, 1990; Sun, 1995; Feng et al., 1998; Warren, 2000; Moore, 2001; Qing et al., 2001)。另外, 由于白云岩的脆性(相对于方解石)和抗压溶性, 在深埋条件下, 白云岩中的储集空间能得到更好地保存, 并容易形成裂缝(或微裂缝)(Moore, 2001)。因此, 白云岩是深层— 超深层最有希望实现油气商业发现的领域。

但关于白云岩本身, 自发现之日(以1791年Deodat Dolomieu描述白云石的经典论文计算)起, 200多年来, “ 白云岩在地质时期广泛分布(特别是前寒武纪), 但现代白云岩(石)非常稀少, 且在低温、常压的无机化学实验中无法合成” , 成为一个长期困扰地质学家们的世纪难题— — 即所谓的“ 白云石(岩)问题” (dolomite problem), 直到现在仍然没有一个满意的答案(Burns et al., 2000; Warren, 2000; Machel, 2004; 梅冥相, 2012)。

悬而未决的科学问题和来自石油产业界的持续现实需求, 也可能是白云岩(石)受到如此多且经久不衰关注的主要原因, 可以说还没有一类岩石受到的关注比白云岩(石)更多, 关注的时间比白云岩(石)更长(Machel, 2004)。

超深层白云岩储集层的研究主要涉及3个方面: 一是关于超深层白云石(岩)成因的解析; 二是关于超深层白云岩储集层形成机理; 三是关于超深层规模性优质白云岩储集层发育的地质模式。3个问题依次递进, 又互相联系, 密不可分。

近年来, 中国深层白云岩领域的油气勘探无论在理论上还是在实践中都已经迈入世界先进行列。目前发现的5个海相大油气田(塔河、靖边、普光、元坝、磨溪— 高石梯)中, 与白云岩储集层有关的就有4个。鄂尔多斯盆地的靖边气田, 储集层为中奥陶统马家沟组白云岩(张永生, 2000; 何自新等, 2005; 黄正良等, 2012), 探明地质储量为3377.13× 108, m3; 四川盆地的普光气田, 储集层为上二叠统长兴组生物礁白云岩和下三叠统飞仙关组鲕粒白云岩(马永生等, 2005, 2007; 马永生, 2006; 强子同等, 2012), 探明地质储量为4121.73× 108, m3; 元坝气田探明地质储量为2303.47× 108, m3; 尤其是在更老更深的地层中, 白云岩表现出更好的储集性能, 如四川盆地的威远气田其储集层为时代最老的震旦系灯影组白云岩(王国芝等, 2014), 探明储量为408.16× 108, m3(罗志立等, 1998)。最近在四川盆地发现的磨溪— 高石梯特大气田储集层为震旦系— 寒武系龙王庙组白云岩, 探明储量4403.83× 108, m3(杜金虎等, 2014; 杨雪飞等, 2015), 整体储量规模超万亿立方米。塔里木盆地的塔深1井在埋深8400多米, 仍发育有优质储集层(Zhu et al., 2010), 并见到液态油显示。这些成果表明深层、深度大于6500, m的超深层白云岩具备丰富而广阔的油气勘探前景。

2 白云岩成因:“ 白云石(岩)问题” 的核心

法国地质学家(Deodat de Dolomieu, 1750-1801)在意大利北部阿尔卑斯山区(该地区也同时被命名为Dolomite Mountains— — 现为“ 世界自然遗产” 地)首先发现“ 白云石(岩)(dolomite)” [CaMg(CO3)2], 从此开启了2个多世纪关于白云石(岩)成因的探索之旅(Mckenzie and Vasconcelos, 2009)。

白云石(岩)究竟是怎么形成的?这个问题至今仍在争论之中, 焦点集中于以下几个方面: (1)白云石的原生沉淀与次生交代; (2)白云石形成的热力学及动力学机制; (3)Mg的来源及白云化流体循环(或路径)。对于更深层更古老的白云岩, 问题变得更为复杂。

2.1 白云石(岩)的原生沉淀与次生交代

白云石(岩)开始一直被认为是原生的(van Tuyl, 1916), 特别是20世纪60年代在波斯湾地区的蒸发潮坪(萨勃哈)(Illing, et al., 1965)和澳大利亚的维多利亚西部大陆盐湖(库龙潟湖)中发现所谓现代白云石(岩)(Von der Borch, 1965), 使得“ 白云石原生论” 风靡起来(Carballo et al., 1987; Mitchell et al., 1987; Deckker and Last, 1988)。这些所谓“ 原白云石” 一般是全新世的产物, 在化学成分和晶体结构上与典型白云石并不一样(Von der Borch, 1976; Von der Borch and Lock, 1979), 是欠稳定的, 具有向典型白云石转化的趋势(Lundegard and Land 1986; Gregg et al., 1992)。深层更古老的白云岩可能就是由这些原白云石演变而来的。

后来, 越来越多研究工作对原白云石直接沉淀的观点提出了质疑, 认为这些原白云石并不是直接从水体中沉淀的, 而是富Mg盐卤水交代早期碳酸盐矿物形成的, 即白云石化作用的结果(Mckenzie, 1981; Patterson and Kinsman, 1982), 甚至最典型的库龙潟湖中的原白云石也是卤水交代文石形成的(Land, 1985)。原白云石(岩)非常稀少, 古老的、特别是结晶型白云石(岩)是交代成因的(Tucker and Wright, 1990)。

然而, 20世纪90年代以来, 研究发现“ 原白云石” 的形成许多都是在微生物的参与(或是受到微生物的介导)下完成的。对波斯湾地区经典萨勃哈中形成的“ 原白云石” 再研究发现: 它们实际上是微生物参与(介导)(如细菌硫酸盐还原)形成的(Botongnali et al., 2010), 原因在于微生物的活动大大消耗了流体中的S O42-, 使原来与S O42-紧密结合的Mg2+释放出来(溶液中Mg2+与S O42-形成强的离子对, 像单个粒子一样保持在一起)以及碱度的提高, 为白云石的沉淀提供了条件(Vasconcelos et al., 1995; Vasconcelos and McKenzie, 1997; Mazzullo, 2000; Van Lith et al., 2003)。这也可以解释, 为什么古代蒸发盐环境中常发育有与石膏或硬石膏相伴生的白云岩。生物成因白云石(岩)已经得到越来越多的支持, 也是近来白云岩研究的新热点。深层古老的白云岩的形成也可能有微生物的参与, 特别是广泛发育的微生物白云岩, 如叠层石、凝块石白云岩(如 You et al., 2013)。另外, 早期地球大气高的 PCO2背景下微生物(如蓝细菌)由于光合作用造成胞内CO2聚焦机制(CCM)(Riding, 2006), 并在早期海洋的高Mg/Ca值、低硫酸盐浓度和低含氧量的背景下造成鞘体钙化或白云石化, 也是值得关注的、潜在的广泛白云石化作用机理。

2.2 白云石形成的热力学与动力学

在正常海相环境中, 尽管Mg2+浓度相对于白云石而言是超饱和的(约20倍)(Bathurst, 1975), 但在其中几乎没有白云石形成。Land(1998)通过长达32年的实验, 也未在25, ℃条件下成功合成白云石, 并因此认为: “ 白云石(岩)问题是一个动力学问题” 。在实验室中, 在低于200, ℃时只能得到富钙白云石(或富镁方解石)— — 即原白云石(Chillingar et al., 1979)。原白云石虽然具有向理想白云石转化的潜在势能, 但不能自发地转变为理想白云石(Lundegard and Land, 1986; Gregg et al., 1992)。在地表温度条件下, 如果没有微生物作用, 白云石是难以直接沉淀的。但埋藏条件下, 这些动力学的障碍基本上就不存在了, 如果有足够的Mg2+来源, 白云化作用发生就变得容易, 这也可以用来解释地层记录中白云岩丰度的年代效应: 更古老更深的地层中具有更多的白云岩(Given and Wilkinson, 1987; Sun, 1994)。

2.3 Mg2+来源与富Mg流体循环

要将方解石交代为白云石, Mg的来源是要考虑的首要问题。海水或浓缩海水(Adams and Rhodes, 1960; Friedman and Sanders, 1967; Land, 1980, 1985)是白云石(岩)化的主要Mg源。但在脱离了海水的埋藏条件下, 富Mg流体的来源就成为制约白云石(岩)化作用的重要因素之一。对世界不同地区白云岩的研究发现, 富Mg 流体的来源是多种多样的, 包括正常海水或海源卤水、海水与卤水的混合或海水与大气水混合、陆源卤水、地层中高镁封存水及深部富Mg热流体(Qing and Mountjoy, 1992, 1994; Warren, 2000; Chen et al., 2004)。

要生成1, m3的白云石(岩), 大约要耗去1000, m3海水中的镁, 因此要使灰岩发生白云岩化, 往往需要几十倍、甚至几千倍的流体与岩石相互作用(Land, 1985)。如此巨量的流体进入沉积物或沉积岩就需要合适的水动力(水文循环)条件和足够长的作用时间才能够完成。这也就是为什么对于深层规模白云化模式基本都是水文循环模式的原因(Kohout, 1967; Garven and Freeze, 1984; Qing and Mountjoy, 1992, 1994; Jones et al., 2000; Wilson et al., 2000; Caspard et al., 2004)。而岩石的原始孔隙度、渗透率和白云化作用的时间尺度, 特别是时间, 也是影响持续、大规模流体流动的非常重要的条件。所以从某种意义上来讲, 时间也是造成深层古老碳酸盐岩中白云岩增多的又一个重要因素。

表1 白云岩形成若干模式一览表 Table1 Formation models of dolostone
2.4 白云石(岩)化作用模式

200多年来, 特别是20世纪60年代以来, 地质学家们提出了众多的白云石(岩)成因模式, 经过时间的洗礼, 有的模式经受了考验, 继续为人们所用, 有的模式或昙花一现、或风行一时后又归于沉寂。这也说明“ 白云岩问题” 的复杂性。在综合考虑了Mg的来源与水动力条件等诸多因素, 特别是考虑了近现代白云石(岩)形成的实例后, 现将一些有代表性的白云石(岩)化模式总结如下。

在这些模式中, 20世纪60年代流行的现代“ 蒸发和萨勃哈模式” 为古代许多潮上带白云岩的形成提供了的解释基础, 而由蒸发模式衍生出的“ 渗透回流模式” 则为潮间— 潮下带的碳酸盐沉积白云石(岩)化作用提供了合理解释, 现在仍然具有重要的现实意义。20世纪70年代“ 混合水白云石(岩)化” 模式的流行为非蒸发相碳酸盐沉积的白云石(岩)化作用提供了解释基础, 但已经受到越来越多的质疑甚至摒弃(Land, 1991)。

20世纪80年代后, 埋藏白云石(岩)化作用和构造— 热液白云石(岩)化作用开始受到关注和重视(Mattes and Mountjoy, 1980; Zenger, 1983; Machel and Mountjoy, 1986), 特别是90年代后, 对构造— 热液白云石(岩)化作用的兴趣再次激发, 并得到进一步的扩展(Austead and Spencer, 1985; Wilson et al., 1990; Qing and Mountjoy, 1992, 1994; Duggan et al., 2001; Chen et al., 2004; Davies and Smith, 2006; 焦存礼等, 2011; Dong et al., 2013)。由于在深层埋藏环境中, 白云石(岩)的形成(交代、沉淀)不存在动力学障碍, 而大型断裂可以提供丰富的开放缝洞系统和热梯度异常, 为热流体的循环提供驱动力, 如果Mg2+供应比较充分, 在断裂带内形成的白云岩就可以形成潜在的大规模白云岩储集体(Sagan and Hart, 2006)。

微生物白云化作用并不是一个新概念, 早在19世纪与20世纪之交就曾经被一俄罗斯微生物学家就通过微生物实验形成了白云石(Nadson, 1928), 但一直没有受到重视。直到20世纪90年代后, 在McKenzie 研究团队为代表的学者的推动下, 才重新燃起了学界对微生物(或介导)白云石化作用的兴趣和热情, “ 原白云石(岩)研究” 被推到了一个新的高度(Vasconcelos et al., 1995; Vasconcelos and McKenzie, 1997; van Lith et al., 2003), 并成为白云石(岩)研究的一个新热点。最近几年, 相关的成果不断涌现, 详见Mckenzie and Vasconcelos(2009)的综述。

白云岩(特别是深层古老白云岩)可能是多阶段、多成因的集合体, 所以深层— 超深层白云岩成因问题非常复杂, 不仅涉及地质学、水文学, 而且还涉及到化学热力学、动力学乃至微生物学等问题, 它们可以形成于同生、准同生至埋藏及构造— 热液的各种环境中, 并且还可能相互叠加, 造成前期白云石结构的破坏、重构, 这些给研究工作带来了非常大的困难和挑战。因此, 在对白云岩成因进行研究的过程中, 要具体问题具体分析: 首先, 从区域沉积背景, 查明白云岩的原始(或先成)沉积环境; 更为重要的是从白云岩本身入手, 查明白云石矿物的不同组构、共生矿物组合和先后次序; 在此基础上, 再运用各种有效的地球化学方法(如C-O-Sr-S 同位素系统, 包体测温技术等), 结合构造、埋藏— 热史分析结果, 辅以同位素定年技术, 对白云化流体性质和流体— 岩石作用过程进行有效约束, 从而建立深层— 超深层白云岩形成、被改造的多阶段动态演化模式。

3 白云岩孔隙与深层白云岩储集层

经典的理论认为白云石交代方解石的过程中[2CaCO3+Mg2+ ↔ CaMg(CO3)2+Ca2+]会造成摩尔体积的减少(约13%)、次生孔隙度增加(Van Tuyl, 1916)。但是, 白云化作用并不一定能造成孔隙度的增加, 在过度白云化作用(overdolomitization)[CaMg(CO3)2+xMg2++xCa2++2xC O32-→ (1+x)CaMg(CO3)2]的情况下, 白云岩的孔隙度甚至会比灰岩低, 这种情况往往发生在基质交代白云石化作用后, 紧跟着发生基质白云石增生(重结晶)和孔缝系统的胶结作用, 从而降低孔径大小, 特别是存在高通量蒸发回流渗透的区域(Lucia and Major, 1994; Lucia, 2004)和过度的热流体改造(重结晶、胶结作用)的区域。

溶蚀作用在白云岩中也能形成大量次生孔隙, 如石油在形成、运移过程中产生的CO2、有机酸和原油裂解、运移过程(因热化学硫酸盐还原作用-TSR)产生的CO2+H2S(Sassen and Moore, 1988; Cai et al., 2001, 2003)等流体都能对白云岩产生溶解(Surdam et al., 1984), 溶解形成自由的Mg2+、Ca2+会在流体运移前锋(如下部含水层)形成方解石或白云石胶结物(Sassen and Moore, 1988; Heydari, 1997; Moore, 2001)。

但实际情况往往比这复杂, 白云岩次生孔隙的形成可能与多种地质作用过程有关(Machel, 2004): (1)交代过程中的摩尔体积置换; (2)未被交代方解石的溶解; (3)白云石的溶解(没有外部酸化影响); (4)孔隙水的酸化(通过羧化、黏土矿物成岩作用等); (5)热化学硫酸盐还原作用(TSR); (6)流体混合或冷却/倒退(retrograde)溶解(Giles and de Boer, 1989; Esteban and Taberner, 2003)。

由于白云岩相对更具脆性, 更容易形成裂缝或微裂缝, 进而提高白云岩层的孔隙度。沿构造断裂带(特别是张性— 张扭性断裂)分布的碳酸盐岩地层会形成大量的开放性裂缝系统和孔隙, 并可作为后期热流体运移的优势通道。而热流体的注入又可以促使裂缝周缘碳酸盐岩发生溶蚀和广泛白云化作用, 进一步增加岩石的孔隙度; 但随着热流体Mg2+浓度的不断增加并相对白云石超饱和或原岩即为白云岩地层时, 会在热流体的前锋带的孔— 缝系统中直接沉淀(由于温压降低), 并引起对基质白云岩一定程度的重结晶, 造成一定程度的孔隙度降低(Davies and Smith, 2006; 陈代钊, 2008; 钱一雄等, 2012; Dong et al., 2013), 因此分析断裂带内热流体的溶蚀带和前锋带(胶结带)的动态变化也能为预测构造— 热液白云岩储集层的分布提供关键信息。

愈来愈多的事实表明, 与构造(断裂)活动有关的热液白云岩储集层在深部地层中非常普遍。如在西加拿大盆地(WCSB)泥盆系(Qing and Mountjoy, 1992, 1994; Duggan et al., 2001)、加拿大东部和美国东北部的密执根盆地和阿帕拉契亚盆地的奥陶系(局部为志留系和泥盆系)的碳酸盐岩储集层有相当一部分是热液白云岩储集层(Middleton et al., 1993; Coniglio et al., 1994)。另外南— 北大西洋边缘裂谷盆地的中生代碳酸盐岩, 以及西班牙岸上和离岸盆地白垩系储集层也被认为是热液白云岩储集层。在海湾地区的二叠系— 三叠系和侏罗系碳酸盐岩中, 最近在世界最大的油田(沙特Ghawar油田)和最大的气田(海湾的North油田)也确认有构造— 热液白云岩成分(Davies and Smith, 2006)。

在深埋条件下, 孔隙保存状况往往决定了白云岩储集层的品质, 而保孔的过程则取决于造孔(增孔)和堵孔(减孔)相关地质作用的复杂动态平衡, 因为二者往往相伴相随, 只是程度不同, 而这往往又与局部的地质条件息息相关。一般情况下, 当碳酸盐沉积物的埋深超过3000, m时, 原生孔隙将消失殆尽(Scholle et al., 1983; Moore, 2001)。但白云岩相对于灰岩而言, 它们保存孔隙的能力更强, 这是因为白云石更能抵抗压实溶解作用(Amthor et al., 1994), 虽然在深埋背景下, 早期形成的白云岩中的孔隙也会发生一些变化(Gregg et al., 1993), 但与灰岩相比在深埋条件下仍然具有更高的孔隙度(Ehrenberg and Nadeau, 2005)。另外, 储集层超压(Feazel and Schatzinger, 1985; Maliva and Dickson, 1992)、油气对储集层孔隙的早期侵位(Feazel and Schatzinger, 1985; Heasley et al., 2000)也可阻止深层白云岩化学压实作用的进行, 有利于孔隙的保存, 但影响深层白云岩储集层孔隙性最不容忽视的还是原始沉积因素(Maliva and Dickson, 1992)和后期流体活动(朱东亚等, 2012)。

4 结论

1)白云岩成因研究的焦点(或核心)集中在3个方面: (1)白云石的原生沉淀与次生交代; (2)白云石形成的热力学及动力学机制; (3)Mg的来源及白云化流体循环(或路径)。

2)深层古老白云岩可能是多阶段、多成因的集合体, 白云岩的成因问题异常复杂, 要具体问题具体分析。混合水白云化模式已经受到普遍的质疑和摒弃, 构造— 热液白云化模式和微生物(或介导)白云化作用已成为当前白云岩研究的新热点。

3)白云岩孔隙的形成与多种地质作用过程相关, 而孔隙的保存状况则决定了白云岩储集体的品质; 原始沉积相和后期流体活动是影响深层白云岩储集性能最不容忽视的因素。

4)中国三大沉积盆地(四川盆地、塔里木盆地和鄂尔多斯盆地)深层白云岩领域的油气勘探均取得了显著的成果, 具备丰富而广阔的勘探前景, 为开展深层— 超深层白云岩油气勘探提供了良好的机遇和挑战。

作者声明没有竞争性利益冲突.

作者声明没有竞争性利益冲突.

参考文献
1 陈代钊. 2008. 构造—热液白云岩化作用与白云岩储集层. 石油与天然气地质, 29(5): 614-622.
[Chen D Z. 2008. Structure-controlled hydrothermal dolomitization and hydrothermal dolomite reservoirs. Oil & Gas Geology, 29(5): 614-622] [文内引用:1]
2 杜金虎, 邹才能, 徐春春, 何海清, 沈平, 杨跃民, 李亚林, 魏国齐, 汪泽成, 杨雨. 2014. 川中隆起龙王庙组特大型气田战略发现与理论技术创新. 石油勘探与开发, 41(3): 268-293.
[Du J H, Zou C N, Xu C C, He H Q, Shen P, Yang Y M, Li Y L, Wei G Q, Wang Z C, Yang Y. 2014. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin. Petroleum Exploration and Development, 41(3): 268-293] [文内引用:1]
3 何自新, 郑聪斌, 王彩丽, 黄道军. 2005. 中国海相油气勘探实例之二: 鄂尔多斯盆地靖边气田的发现与勘探. 海相油气地质, 10(2): 37-44.
[He Z X, Zheng C B, Wang C L, Huang D J. 2005. Cases of discovery and exploration of marine fields in China(Part 2): Jingbian Gas Field, Ordos Basin. Marine Origin Petroleum Geology, 10(2): 37-44] [文内引用:1]
4 黄正良, 陈调胜, 任军峰, 包洪平. 2012. 鄂尔多斯盆地奥陶系中组合白云岩储集层及圈闭成藏特征. 石油学报, 33(S2): 118-124.
[Huang Z L, Chen T S, Ren J F, Bao H P. 2012. The characteristics of dolomite reservoir and trap accumulation in the middle assemblages of Ordovician in Ordos Basin, China. Acta Petrolei Sinica, 33(S2): 118-124] [文内引用:1]
5 焦存礼, 何治亮, 邢秀娟, 卿海若, 何碧竹, 李程成. 2011 塔里木盆地构造热液白云岩及其储集层意义. 岩石学报, 27(1): 277-284.
[Jiao C L, He Z L, Xing X J, Qing H R, He B Z, Li C C. 2011. Tectonic hydrothermal dolomite and its significance of reservoirs in Tarim basin. Acta Petrologica Sinica, 27(1): 277-284] [文内引用:1]
6 罗志立, 刘顺, 徐世琦. 1998. 四川盆地震旦系含气层中有利勘探区块的选择. 石油学报, 19(4): 1-7.
[Luo Z L, Liu S, Xu S Q. 1998. Selection of favorable area of exploration in Sinian bearing gas formation of Sichuan Basin. Acta Petrolei Sinica, 19(4): 1-7] [文内引用:1]
7 马永生. 2006. 中国海相油气田勘探实例之六: 四川盆地普光大气田的发现与勘探. 海相油气地质, 11(2): 35-40.
[Ma Y S. 2006. Cases of discovery and exploration of marine fields in China(Part 6): Puguang Gasfield in Sichuan Basin. Marine Origin Petroleum Geology, 11(2): 35-40] [文内引用:1]
8 马永生, 郭彤楼, 赵雪凤, 蔡勋育. 2007. 普光气田深部优质白云岩储集层形成机制. 中国科学(D辑: 地球科学), 37(S2): 43-52.
[Ma Y S, Guo T L, Zhao X F, Cai X Y. 2007. The formation mechanism of high-quality dolomite reservoir in the deep of Puguang Gas Field. Science China(Series D: Earth Sciences), 37(S2): 43-52] [文内引用:1]
9 马永生, 郭旭升, 郭彤楼, 黄锐, 蔡勋育, 李国雄. 2005. 四川盆地普光大型气田的发现与勘探启示. 地质论评, 51(4): 477-480.
[Ma Y S, Guo X S, Guo T L, Huang R, Cao X Y, Li G X. 2005. Discovery of the large-scale Puguang Gas Field in the Sichuan Basin and its enlightenment for hydrocarbon prospecting. Geological Review, 51(4): 477-480] [文内引用:1]
10 梅冥相. 从3个科学理念简论沉积学中的“白云岩问题”. 2012. 古地理学报, 14(1): 1-12.
[Mei M X. 2007. Brief introduction of“dolostone problem”in sedimentology according to three scientific ideas. Journal of Palaeogeography(Chinese Edition), 14(1): 1-12] [文内引用:1]
11 强子同, 曾德铭, 王兴志, 吴仕玖. 2012. 川东北下三叠统飞仙关组鲕粒滩白云岩同位素地球化学特征. 古地理学报, 14(1): 13-20.
[Qiang Z T, Zeng D M, Wang X Z, Wu S J. 2012. Isotopic geochemical characteristics of oolitic bank dolostones in the Lower Triassic Feixianguan Formation in northeastern Sichuan Province. Journal of Palaeogeography(Chinese Edition), 14(1): 13-20] [文内引用:1]
12 钱一雄, 陈代钊, 尤东华, 卿海若, 何治亮, 董少峰, 马玉春, 焦存礼, 田蜜. 2012. 塔东北库鲁克塔格地区中上寒武统白云岩类型与孔隙演化. 古地理学报, 14(4): 461-476.
[Qian Y X, Chen D Z, You D H, Qing H R, He Z L, Dong S F, Ma Y C, Jiao C L, Tian M. 2012. Types of dolostones and pore evolution of the Middle and Upper Cambrian in Kuruk Tag area of northeastern Tarim Basin. Journal of Palaeogeography(Chinese Edition), 14(4): 461-476] [文内引用:1]
13 王国芝, 刘树根, 李娜, 王东, 高媛. 2014. 四川盆地北缘灯影组深埋白云岩优质储集层形成与保存机制. 岩石学报, 30(3): 667-678.
[Wang G Z, Liu S G, Li N, Wang D, Gao Y. 2014. Formation and preservation mechanism of high quality reservoir in deep burial dolomite in the Dengying Formation on the northern margin of the Sichuan basin. Acta Petrologica Sinica, 30(3): 667-678] [文内引用:1]
14 杨雪飞, 王兴志, 杨跃明, 李兴彦, 姜楠, 谢继荣, 罗文军. 2015. 川中地区下寒武统龙王庙组白云岩储集层成岩作用. 地质科技情报, 34(1): 35-41.
[Yang X F, Wang X Z, Yang Y M, Li X Y, Jiang N, Xie J R, Luo W J. 2015. Diagenesis of the dolomite reservoir in Lower Cambrian Longwangmiao Formation in central Sichuan Basin. 2015. Geological Science and technology Information, 34(1): 35-41] [文内引用:1]
15 张永生. 2000. 鄂尔多斯地区奥陶系马家沟群中部块状白云岩的深埋藏白云石化机制. 沉积学报, 18(3): 424-430.
[Zhang Y S. 2000. Mechanism of deep burial dolomitization of massive dolostones in the Middle Majiagou Group of the Ordovician, Ordos Basin. Acta Sedimentologica Sinica, 18(3): 424-430] [文内引用:1]
16 朱东亚, 孟庆强, 胡文瑄, 金之钧. 2012. 塔里木盆地深层寒武系地表岩溶型白云岩储集层及后期流体改造作用. 地质论评, 58(4): 691-701.
[Zhu D Y, Meng Q Q, Hu W X, Jin Z J. 2012. Deep cambrian surface-karst dolomite reservoir and its alteration by later fluid in Tarim Basin. Geological Review, 58(4): 691-701] [文内引用:1]
17 Adams J E, Rhodes M L. 1960. Dolomitization by seepage refluxion. AAPG Bulletin, 44: 1912-1920. [文内引用:1]
18 Amthor J E, Mountjoy E W, Machel H G. 1994. Regional-scale porosity and permeability variations in Upper Devonian Leduc buildups: Implications for reservoir development and prediction in carbonates. America Association Petroleum Geology Bulletin, 78(10): 1541-1559. [文内引用:1]
19 Austead K L, Spencer R J. 1985. Diagenesis of the Keg River Formation in the South-East of South Australia. Canada Petroleum Geology Bulletin, 33: 167-183. [文内引用:1]
20 Badiozamani K. 1973. The Dorag dolomitization model-application to the Middle Ordovician of Wiscosin. Journal Sedimentology Petroleum, 43: 965-984. [文内引用:1]
21 Bathurst, R G C. 1975. Carbonate Sediments and Their Diagenesis. Developments in Sedimentology, 12. Elsevier, Amsterdam, 658. [文内引用:1]
22 Bontongnali T R R, Vasconcelos C, Warthmann R J, Berasconi S M, Dupraz C, Stromenger C, Mckenzie J A. 2010. Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi(Unites Arab Emirates). Sedimentology, 57(3): 824-844. [文内引用:1]
23 Burns S J, Mckenzie J A, Vasconcelos C. 2000. Dolomite formation and biogeochemical cycles in the Phanerozoic. Sedimentology, 47(Supplement 1): 49-61. [文内引用:1]
24 Cai C F, Hu W S, Worden R H. 2001. Thermochemical sulphate reduction in Cambro-Ordovician carbonates in Central Tarim. Marine and Petroleum Geology, 18: 729-741. [文内引用:1]
25 Cai C F, Worden R H, Bottrell S H, Wang L S, Yang C C. 2003. Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols(mercaptans)in Triassic carbonate reservoirs from the Sichuan Basin, China. Chemical Geology, 202: 39-57. [文内引用:1]
26 Carballo J D, Land L S, Miser D E. 1987. Holocene dolomitization of supratidal sediments by active tidal pumps, Sugarloaf Key, Florida. Journal of Sedimentology Petrolgy, 57: 153-165. [文内引用:1]
27 Caspard E, Rudkiewicz L, Eberli G P, Brosse E, Renard M. 2004. Massive dolomitization of Messinian reef in the Great Bahama Bank: A numerical modeling evolution of Kohout geothermal convection. Geofluids, 4: 40-60. [文内引用:1]
28 Chen D Z, Qing H R, Yang C. 2004. Multistage hydrothermal dolomites in the Middle Devonian(Givetian)carbonates from the Guilin area, South China. Sedimentology, 51: 1029-1051. [文内引用:2]
29 Chilingar G V, Zenger D H, Bissel H J, Wolf K H. 1979. Dolomites and dolomitization. In: Larsen G, Chilingar G V(eds), Diagenesis in sediments and Sedimentary Rocks. Developments in Sedimentology, 25A. Elsevier, Amsterdam. 423-535. [文内引用:1]
30 Coniglio M, Sherlock R, Williams-Jones A E, Middleton K, Frape K. 1994. Burial and hydrothermal diagenesis of Ordovician carbonates from the Michigan Basin, Ontario, Canada. In: Purser B, Tucker M E, Zenger D(eds). Dolomites. In. Association of Sedimentologists Special Publication, 21: 231-254. [文内引用:1]
31 Davies G R, Smith L B Jr. 2006. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin, 90: 1641-1690. [文内引用:3]
32 Deckker P D, Last W M. 1988. Modern dolomite deposition in continental, saline lakes, Western Victoria, Australia. Geology, 16: 29-32. [文内引用:1]
33 Deffeyes K S, Lucia F J, Weylt P K. 1964. Dolomitization: Observations on the island Bonaire, Netherland s Antitites. Science, 143: 678-679. [文内引用:1]
34 Dong S F, Chen D Z, Qing H R, Zhou X Q, Wang D, Guo Z H, Jiang M S, Qian Y X. 2013. Hydrothermal alteration of dolostones in Lower Ordovician, Tarim Basin, NW China: Multiple constraints from petrology, isotope geochemistry and fluid inclusion microthermometry. Marine and Petroleum Geology, 46: 270-286. [文内引用:2]
35 Dorobek S. 1989. Migration of orogenic fluids through the Siluro-Devonian Helderberg Group during late Paleozoic deformation: Constraints on fluid sources and implications for thermal histories of sedimentary basins. Tectonophysics, 159: 25-45. [文内引用:1]
36 Drivet E, Mountjoy E W. 1997. Dolomitization of the Leduc Formation(Upper Devonian), southern Rimbey-Meadowbrook reef trends, Alberta. Journal of Sedimentary Research, 67: 411-423. [文内引用:1]
37 Duggan J P, Mountjoy E W, Stasiuk L D. 2001. Fault-controlled dolomitization at Swan Hills Simonette oil field(Devonian), deep basin west-central Alberta, Canada. Sedimentology, 48: 301-323. [文内引用:2]
38 Ehrenberg S N, Nadeau P H. 2005. Sand stone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships. AAPG Bulletin, 89: 435-445. [文内引用:1]
39 Esteban M, Taberner C. 2003. Secondary porosity development during late burial carbonate reservoir as a result of mixing and /or cooling of brines. Journal Geochemical Exploration, 78-79: 355-359. [文内引用:1]
40 Fanning K A, Byre R H, Brelard J A, Betzer P R. 1981. Geothermal springs of the west Florida continental shelf: Evidence for dolomitization and radionuclide enrichment. Earth and Planetray science Letters, 52: 345-354. [文内引用:1]
41 Feazel C T, Schatzinger R A. 1985. Prevention of carbonate cementation in petroleum reservoirs. In: Schneiderman, Harris P M(eds). Carbonate Cements. The Society of Economic Paleontologists and Mineralogists Spec. Publ. , 36: 97-103. [文内引用:2]
42 Feng Z Z, Zhang Y S, Jin Z K. 1998. Type, origin and reservoir characteristics of dolostones of the Ordovician Majiagou Group, Ordos, North China Platform. Sedimentary Geology, 118: 127-140. [文内引用:1]
43 Folk R L, Land L S. 1975. Mg/Ca ratio and salinity: Two controls over crystallization of dolomite. AAPG Bulletin, 59: 60-68. [文内引用:1]
44 Friedman G M, Sand ers J E. 1967. Origin and occurrence of dolostones. In: Chilingar G V, Bissell H J, Fairbridge R W(eds). Carbonate Rocks, Origin, Occurrence, and Classification. Elsevier, Amsterdam: 267-348. [文内引用:1]
45 Garven G, Freeze R A. 1984. Theoretical analysis of the role of groundwater flow in the genesis of strabound ore deposits, 1. Mathematical and numerical model. American Journal of Science, 284: 1085-1124. [文内引用:1]
46 Garven G. 1995. Continental-scale groundwater flow and geological processes. Annual Review of Earth and Planetary Sciences, 23: 89. [文内引用:1]
47 Gill I P, Moore C H, Aharon P. 1995. Evaporitic mixed-water dolomitization on St. Croix, U S V I. Journal of Sedimentary Research, A65: 591-604. [文内引用:1]
48 Giles M R, de Boer R B. 1989. Secondary porosity: Creation of enhanced porosities in the subsurface from the dissolution of carbonate cements as a result of cooling formation waters. Marine and Petroleum Geology, 6: 261-269. [文内引用:1]
49 Given R K, Wilkinson B H. 1987. Dolomite abundance and stratigraphic age, constraints on rates and mechanisms of phanerozoic dolostone formation. Journal of Sedimentary Research, 57: 1068-1078. [文内引用:2]
50 Goodell H G, Garman R K. 1969. Carbonate geochemistry of Superior Deep Test Well, Andros Island , Bahamas. AAPG Bulletin, 53: 513-536. [文内引用:1]
51 Gregg J M. 1985. Regional epigenetic dolomitization in the Bonneterre dolomite(Cambrian), southeastern Missouri. Geology, 13: 503-506. [文内引用:1]
52 Gregg J M, Howard S A, Mazzullo S J. 1992. Early diagenetic recrystallization of Holocene-3000 years old peritidal dolomites, Ambergis Cay, Belize. Sedimentology, 39: 143-160. [文内引用:2]
53 Gregg J M, Laudon P R, Woody R E, Shelton K L. 1993. Porosity evolution of the Cambrian Bonneterre Dolomite, southeastern Missouri. Sedimentology, 40(6): 1153-1169. [文内引用:1]
54 Hanshaw B B, Back W, Deike R G. 1971. A geochemical hypothesis for dolomitization by ground water. Econ. Geology, 66: 710-724. [文内引用:1]
55 Hardie L A. 1987. Dolomitization: A critical review of some current views. Journal of Sedimentary Research, 57: 166-183. [文内引用:1]
56 Heasley E C, Worden R H, Hendry J P. 2000. Cement distribution in a carbonate reservoir: Recognition of a palaeo oil-water contact and its relationship to reservoir quality in the Humbly Grove field, onshore, UK. Marine and Petroleum Geology, 17(5): 639-654. [文内引用:1]
57 Heydary E. 1997. The role of burial diagenesis in hydrocarbon destruction and H2S accumulation, Upper Jurassic Smackover Formation, Black Creek Field, Mississipian. AAPG Bulletin, 81: 26-45. [文内引用:1]
58 Hsü K J, Siegenthaler C. 1969. Prelimianry experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem. Sedimentology, 12: 448-453. [文内引用:1]
59 Humprey J D. 1988. Late Pleistocene mixing zone dolomitization, southeastern Barbados, West Indies. Sedimentology, 35: 327-348. [文内引用:1]
60 Illing L V, Wells A J, Taylor J C M. 1965. Penecontemporaneous dolomite in the Persian Gulf. In: Murray R C, Pray (ed). Dolomitization and Limestones Diagenesis. The Society of Economic Paleontologists and Mineralogists Special Publication, 13: 89-111. [文内引用:1]
61 Jodry R L. 1969. Growth and dolomitization of Silurian Reefs, St. Clair County, Michigan. AAPG Bulletin, 53: 957-981. [文内引用:1]
62 Jones G, Whitaker F, Smart P L, Sanford W. 2000. Numerical modelling of geothermal and reflux circulation in Enewetak Atoll: Implications for dolomitization. Journal of Geochemical Exploration, 69-70: 71-75. [文内引用:1]
63 Kohout F A. 1967. Ground water flow and geothermal regime of the Florida Plateau. Trans. Gulf Coast Association of Geological Societies, 17: 339-354. [文内引用:1]
64 Land L S. 1973. Contemporaneous dolomitization of middle Pleistocene reefs by meteoric water, north Jamaica. Bulletin Marine Science, 23: 64-92. [文内引用:1]
65 Land L S. 1980. The isotopic and trace element geochemistry of dolomite: The state of the art. In: Zenger D H, Dunham J B, Ethington R L(eds). Concepts and Models of Dolomitization. The Society of Economic Paleontologists and Mineralogists Special Publication, 28: 87-110. [文内引用:1]
66 Land L S. 1985. The origin of massive dolomite. Journal of Geological Education, 33: 112-125. [文内引用:3]
67 Land L S. 1991. Dolomitization of the Hope Gate Formation(North Jamaica)by seawater: Reassessment of mixing zone dolomite. In: H. P. Taylor, J. R. O'Neil, I. R. Kaplan(eds). Stable Isotope Geochemistry: A Tribute to Samuel Epstein(Eds . Geochem. Soc. Spec. Publ. , 3: 121-133. [文内引用:1]
68 Land L S. 1998. Failure to precipitate dolomite at 25 ℃ from dilute solution despite 1000-fold oversaturation after 32 years. Aquatic Geochemistry, 3(4): 361-368. [文内引用:1]
69 Lundegard P D, Land L S. 1986. Carbon dioxide and inorganic acids: Their role in porosity enhancement and cementation, Paleogene of the Texas Gulf. In: Gautier D L(ed). Roles of Organic Matter in Sediment Diageneses. The Society of Economic Paleontologists and Mineralogists Special Publication, 38. [文内引用:2]
70 Luzaj J A, Goldstein R H. 2000. Diagenesis of the Lower Permian Krider Member, Southwest Kansas, U. S. A. : Fluid inclusion, U-Pb, and fission tract evidence for reflux-dolomitization during the latest Permian time. Journal of Sedimentary Research, 70: 762-773. [文内引用:1]
71 Machel H G. 2000. Dolomite formation in Carbbean Island s-Driven by plate tectonics?!Journal of Sedimentary Research, 70: 977-984. [文内引用:1]
72 Machel H G. 2004. Concepts and models of dolomitization: A critical reappraisal. In: Braithwaite C J R, Rizzi G, Drake G(eds). The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoir. Geol. Soc. Lond. Spec. Publ. , 235: 7-63. [文内引用:3]
73 Machel H G, Anderson J H. 1989. Pervasive subsurface dolomitization of the Nisku Formation in central Alberta. Journal of Sedimentary Petrology, 59: 891-911. [文内引用:1]
74 Machel H G, Mountjoy E W. 1986. Chemistry and environments of dolomitization-a reappraisal. Earth-Science Reviews, 23: 175-222. [文内引用:1]
75 Magritz M, Golderberg L, Kafri V, Arad A. 1980. Dolomite formation in the seawater-freshwater interface. Nature, 287: 622-624. [文内引用:1]
76 Maliva R G, Dickson J A D. 1992. Microfacies and diagenetic controls of porosity in Cretaceous/Tertiary chalks, Eldfisk Field, Norwrwegian North Sea. AAPG Bulletin, 76: 1825-1838. [文内引用:2]
77 Matttes B W, Mountjoy E W. 1980. Burial dolomitization of the Upper Devonian Miette buildup, Jasper National Park, Alberta. In: Zenger D H, Dunham J B, Ethington R L(eds). Concepts and models of dolomitization. The Society of Economic Paleontologists and Mineralogists Special Publication, 28: 259-320. [文内引用:1]
78 Mazzullo S J, Reid A M, Gregg J M. 1987. Dolomitization of Holocene supratidal deposits, Ambergis Cay, Belize. Geology Society America Bulletin, 98: 224-231. [文内引用:1]
79 Mazzullo S J, Bischoff W D, Teal C S. 1995. Holocene shallow-subtidal dolomitization by near-normal seawater, northern Belize. Geology, 23: 341-344. [文内引用:1]
80 Mazzullo S J. 2000. Organodolomitization from peritidal to deep-sea sediments. Journal of Sedimentary Research, 70: 10-23. [文内引用:1]
81 McKenzie J A. 1981. Holocene dolomitization of calcium carbonate sediments from the coastal sabkha of Abu Dhabi, U. A. E. : A stable isotope study. The Journal of Geologey, 89(2): 185-198. [文内引用:1]
82 McKenzie J A, Vasconcelos C. 2009. Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: Historical development and new perspectives. Sedimentology, 56(1): 205-219. [文内引用:1]
83 Middleton K, Coniglio M, Sherlock R, Frape S K. 1993. Dolomitization of Middle Ordovician carbonate reservoirs, southwestern Ontario. Canad. Bulletin of Canadian Petroleum Geology, 41(2): 150-163. [文内引用:1]
84 Mitchell J T, Land L S, Miser D E. 1987. Modern marine dolomite cement in a North Jamaican Fringing Reef. Geology, 15: 557-560. [文内引用:1]
85 Moore C H. 2001. Carbonate Reserviors: Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework. Elsevier, Amsterdam: 444. [文内引用:4]
86 Nadson G A. 1928. Beitrag zur Kenntnis der bakeriogenen Kalkablagerungen. Arch. Hydrobiol. ,19: 154-164. [文内引用:1]
87 Oliver. 1986. Fluid expelled tectonically from orogenic belts: Their role in the migration and other geological phenomena. Geology, 14: 99-102. [文内引用:1]
88 Patterson R J, Kinsman J J. 1982. Formation of diagenetic dolomite in coastal sabkha along Arabian(Persian)Gulf. AAPG Bulletin, 66: 28-48. [文内引用:1]
89 Qing H, Mountjoy E. 1992. Large-scale fluid flow in the Middle Devonian Presqu'ile barrier, Western Canada Sedimentary Basin. Geology, 20: 903-906. [文内引用:4]
90 Qing H, Mountjoy E. 1994. Formation of coarsely crystalline, hydrothermal dolomite reservoirs in the Presqu'ile Barrier, Western Canada Sedimentary Basin. AAPG Bulletin, 78: 55-77. [文内引用:4]
91 Qing, H, Rose, E P F, Bosence W J. 2001. Dolomitization by penesaline seawater in the Early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean. Sedimentology, 48: 153-163. [文内引用:1]
92 Riding R. 2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology, 4: 299-316. [文内引用:1]
93 Sagan J A, Hart B S. 2006. Three-dimensional seismic-based definition of fault-related porosity development: Trenton-Black River interval, Saybrook, Ohio. AAPG Bulletin, 90(11): 1763-1785. [文内引用:1]
94 Saller A H. 1984. Petrologic and geochemical constraints on the origin of subsurface dolomite, Enewetak Atoll: An example of dolomitization by normal sea water. Geology, 12: 217-220. [文内引用:1]
95 Sassen R, Moore C H. 1988. Framework of hydrocarbon generation and destruction in eastern Samckover trend. AAPG Bulletin, 72: 649-663. [文内引用:2]
96 Scholle P A, Bebout D G, Moore C H. 1983. Carbonate Depositional Environments. Tulsa, OK, AAPG Memoir, 33: 708. [文内引用:1]
97 Simms M A. 1984. Dolomitization by groundwater-flow systems in carbonate platforms. Trans. Gulf Coast Assoc. GCAGS Transactions, 34: 411-420. [文内引用:1]
98 Sun S Q. 1994. A reappraisal of dolomite abundance and occurrence in the Phanerozoic. Journal of Sedimentary Research, B64: 396-404. [文内引用:2]
99 Sun S Q. 1995. Dolomite reservoirs;porosity evolution and reservoir characteristics. Am. Assoc. Petrol. Geol. Bulletin, 79(2): 186-204. [文内引用:1]
100 Surdam R C, Boese S W, Crossey L J. 1984. The chemistry of secondary porosity. In: McDonald A M, Surdam R C(eds). Clastic Diagensis. AAPG Memoir, 27: 127-150. [文内引用:1]
101 Tucker M E, Wright V P. 1990. Carbonate Sedimentology. Oxford: Blackwell Science, 482. [文内引用:2]
102 van Lith Y, Warthmann R, Vasconcelos C, McKenzie J A. 2003. Sulphate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology, 1: 71-79. [文内引用:1]
103 van Tuyl F M. 1916. The origin of dolomite. Lowa Geological Survey Annical Reptort, 25: 251-422. [文内引用:1]
104 Vasconcelos C, Mckenzie J A, Bernasconi S, Grujic D, Tie A J. 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377: 220-222. [文内引用:2]
105 Vasconcelos C, Mckenzie J A. 1997. Microbial mediation of modern dolomite precipitation and diagensis under anoxic conditions(Lagoa Vermelha, Rio de Janeiro, Brazil). Journal of Sedimentary Research, 67: 378-390. [文内引用:1]
106 Von de Borch C C. 1965. The distribution and preliminary geochemistry of modern carbonate sediments of the Coorong area, South Australia. Geochimical Et Cosmochimica Acta, 29: 781-799. [文内引用:1]
107 Von de Borch C C. 1976. Stratigraphy and formation of Holocene dolomitic carbonate deposits of the Coorong area, South Australia. Journal of Sedimentary Researches, 46(4): 952-966. [文内引用:1]
108 Von der Borch C C, Lock D. 1979. Geological significance of the Coorong dolomites. Sedimentology, 26: 813-824. [文内引用:1]
109 Wanless H R. 1979. Limestone response to stress;pressure solution and dolomitization. Journal of Sedimentology Petrology, 49: 437-462. [文内引用:1]
110 Ward W C, Halley R B. 1985. Dolomitization in a mixing zone of near-sea-water composition, Late Pleistocene, northeastern Yucatan Peninsula. Journal of Sedimentology Petrology, 55: 407-420. [文内引用:1]
111 Warren J. 2000. Dolomite: Occurrence, evolution and economically important associations. Earth Sci. Revience Reviews, 52: 1-81. [文内引用:3]
112 Wilson A M, Sanford W, Whitaker F, Smart P. 2000. Geothermal convection: A mechanism for dolomitization at Enewetak Atoll. Journal of Geochemical Exploration, 69: 41-45. [文内引用:1]
113 Wilson E N, Hardie L A, Phillips O M. 1990. Dolomitization front geometry, fluid flow patterns, and the origin of massive dolomite: The Triassic Latemar buildup, Northern Italy. American Journal of Science, 290(7): 741-796. [文内引用:1]
114 You X L, Sun S, Zhu J Q, Li Q, Hu W X, Dong H L. 2013. Microbially mediated dolomite in Cambrian stromatolites from the Tarim Basin, northwest China: Implications for the role of organic substrate on dolomite precipitation. Terra Nova, 25: 387-395. [文内引用:1]
115 Zenger D H. 1983. Burial dolomitization in the Lost Buro Formation(Devonian), east-central California, and the significance of late diagenetic dolomitization. Geology, 11: 519-522. [文内引用:1]
116 Zhu D Y, Jin Z J, Hu W X. 2010. Hydrothermal recrystallization of the Lower Ordovician dolomite ans its significance to reservoir in northern Tarim Basin. Science China-Earth Sciences, 53: 368-381. [文内引用:1]