季节性河流体系高流态沉积构造特征:以内蒙古岱海湖半滩子河为例*
谭程鹏1, 于兴河2, 刘蓓蓓3, 许磊4, 李顺利2, 冯双奇1, 唐雨生1
1 西南石油大学地球科学与技术学院,四川成都 610500
2 中国地质大学(北京)能源学院,北京 100083
3 中国石油大学(北京)地球科学学院,北京 102249
4 中海油研究总院开发研究院,北京 100028
通讯作者简介 于兴河,男,1958年生,博士,中国地质大学(北京)教授,博士生导师,主要从事沉积学和油气储层表征研究。E-mail: billyu@cugb.edu.cn。

第一作者简介 谭程鹏,男,1988年生,现为西南石油大学地球科学与技术学院讲师,主要从事沉积学与储层地质学研究。E-mail: tcp_swpu@126.com

摘要

高流态尤其是超临界流动的水动力学机制及其床沙底形演化的研究相较于次临界流动具有一定的差距。季节性河流以高流态为主要沉积搬运过程,为超临界流的形成与保存提供了有利条件,是研究超临界流沉积的重要载体。在季节性河流沉积体系研究进展调研基础上,明确了其基本定义、判别标准及沉积特征。通过对内蒙古岱海湖北部典型季节性冲积体系——半滩子河流发育的沉积构造进行研究表明:随着低流态向高流态演化,沙丘底形( Dune)逐步向上部平坦床沙底形( Upper plane bed)过渡,形成了低角度 /S型交错层理;在高流态初期,形成了上部平坦床沙成因的平行层理;随着流动强度逐渐增大,流动机制演变为超临界流,平坦床沙逐渐向逆行沙丘( Antidune)过渡,形成了与平行层理伴生的逆行沙丘交错层理;当流动强度进一步增大,携带沉积物的流体发生较强的水力跳跃,形成了流槽与冲坑( Chute-and-Pool)。半滩子河流现代沉积中发育的高流态沉积与区域内气候变化具有明确的响应关系,表明河流沉积中广泛发育的高流态沉积构造指示了强烈季节性变化的气候特征。

关键词: 高流态; 季节性河流; 超临界流; 沉积构造; 气候响应; 岱海湖
中图分类号:P736.22 文献标志码:A 文章编号:1671-1505(2018)06-0929-12
Sedimentary structures formed under upper-flow-regime in seasonal river system: A case study of Bantanzi River,Daihai Lake, Inner Mongolia
Tan Cheng-Peng1, Yu Xing-He2, Liu Bei-Bei3, Xu Lei4, Li Shun-Li2, Feng Shuang-Qi1, Tang Yu-Sheng1
1 School of Geoscience and Technology,Southwest Petroleum University,Chengdu 610500, Sichuan
2 School of Energy Resources,China University of Geosciences(Beijing),Beijing 100083
3 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249
4 CNOOC Research Institute,Beijing 100028;
About the corresponding author Yu Xing-He,born in 1958,is a professor of China University of Geoscience(Beijing). He is mainly engaged in researches of sedimentology and reservoir characterization. E-mail: billyu@cugb.edu.cn.

About the first author Tan Cheng-Peng,born in 1988,is a lecturer of Southwest Petroleum University. He is mainly engaged in researches of sedimentology and reservoir geology. E-mail: tcp_swpu@126.com.

Abstract

In contrast to Froude subcritical flows,understanding of the mechanism and genetic bedforms of upper-flow-regime,especially Froude supercritical flows,remains limited. Seasonal rivers have been considered as important proxy for the study of upper-flow-regime,since the highly potential of preservation and generation of bedforms produced under upper-flow-regime in this kind of depositional system. In this study,the definition,criterion and sedimentary characteristics of seasonal rivers have been summarized briefly according to literatures review. Upper-flow-regime sedimentary structures in the Bantanzi River,which is a typical seasonal alluvial system at the north margin of Daihai Lake,were identified and interpreted. Results show that low-angle and sigmoidal cross-stratifications were generated during the transformation period of dune to upper plane bed. At the initial stage of upper-flow-regime,planar laminations were formed by upper plane bed. As flow strength increasing,flow regime changed to supercritical flow and antidune cross-stratifications were produced. With consistent increasing in flow strength,hydraulic jumps arisen in sediment-laden flow,hence chute-and-pool occurred and produced related sedimentary structures. The upper-flow-regime sedimentary structures developed in the Bantanzi River correspond genetically to the climate features in this area,which infers that extensive upper-flow-regime structures produced and preserved in fluvial deposits could indicate strongly seasonal variation of paleoclimate.

Key words: upper-flow-regime; seasonal rivers; Froude supercritical flow; sedimentary structure; climate response; Daihai Lake
1 概况

沉积物受水流牵引搬运负载, 遵循一定的基本规律, 即流态或流动机制。依据水流强度、沉积物搬运方式、水流中能量消散过程, 以及水面形态与床沙底形形态之间的相位关系, 流态可划分为低流态、过渡流态、高流态3种类型(Friedman and Sanders, 1978; Southard and Boguchwal, 1990; 于兴河, 2008)。

低流态沉积产物普遍存在于现今沉积环境和古代岩石记录中, 受到了沉积学界较多的关注, 并得到了大量的水槽实验验证, 因而该类流动机制以及沉积产物都达到了相对深入的认识(Kennedy, 1963, 1969; Leeder, 1983; Middleton and Southard, 1984)。然而, 高流态尤其是超临界流动的水动力学机制以及沉积构造演化等相较于次临界流动仍然有明显的差距(Yagishita, 1992; Fielding, 2006; 于兴河和李胜利, 2009; Cartigny et al., 2014; 操应长等, 2017)。对于超临界流沉积在地质记录中识别相对较少的原因, Cartigny 等(2014)将其归结于该类沉积主要形成于短暂而高能的沉积事件中, 而高能量快速沉积保存潜力较小。Fielding(2006)则认为不能识别和解释超临界流沉积的原因或许是对这些沉积构造的成因理解不充分所造成的。Alexander 等(2001)认为与超临界流动有关的床沙底形逆行沙丘(Antidune)和流槽与冲坑(Chute-and-Pool)的几何形态和水动力状态认识较清楚, 但与之相关的沉积构造的认识却相对贫乏。正是由于对高、低流态认识深入程度的差异, 沉积学常用的床沙底形演化图版主要表现了低流态床沙底形的演化, 而对于超临界流形成的逆行沙丘、流槽与冲坑、旋回坎床沙底形的演化不甚明晰。Cartigny 等(2014)首次通过水槽实验, 完整地模拟了超临界流床沙底形的演化, 完善补充了超临界流床沙底形识别图版(图 1), 为在野外识别、解释超临界流沉积构造奠定了基础。

图 1 床沙底形扩展图版(据Cartigny et al., 2014)Fig.1 Extended bedform stability diagram (after Cartigny et al., 2014)

高流态基本特点为水浅流急的动态, 主要发育于流速迅速增大到一定峰值的流动中, 同时该流态下床沙底形的保存亦需要流速的快速下降。季节性河流体系以季节性周期变化的水动力机制为特征, 与季节性降雨具有明显的响应关系, 即在雨季形成迅猛的洪水, 以高流态为主要沉积搬运过程, 具有流速短期内快速增高而之后迅速下降的水力学特征(李华启等, 2003; Fielding, 2006; Fielding et al., 2009; Syvitski and Brakenridge, 2013; 高志勇等, 2014, 2015; Plink-Bjö rklund, 2015; Ventra et al., 2015), 为超临界流的形成与保存提供了有利条件, 因此是研究超临界流沉积的重要载体。

近年来, 作者在内蒙古岱海湖周缘河流现代沉积中发现了许多特征鲜明的超临界流沉积构造, 文中拟通过对该类沉积构造详细描述和解释, 总结季节性河流沉积体系中高流态沉积特征, 以期为河流沉积动力学机制研究提供新的视野。

2 季节性河流沉积体系研究进展
2.1 季节性河流定义

全球季风区的降雨多集中在夏季, 可达到了年降雨量的80%~90%以上。因此, 流域范围在季风区内的许多河流, 其流量受降雨的影响而随季节变化是该类河流的典型特征, 即在潮湿的夏季强降雨时期形成峰度极高的洪水, 大量沉积物得以搬运, 且河流形态亦会发生巨大的变化; 而在降雨极少的冬季, 水位下降甚至彻底干涸, 河流搬运能力极低, 河流形态基本稳定不变。例如, 印度恒河在夏季的流量是冬季流量的40~50倍, 且在雨季时期搬运了80%的水量和95%的沉积物(Goodbred, 2003)。半干旱— 干旱地区受季风影响的许多河流, 其雨季降雨量远不及热带— 亚热带季风区的丰度, 仅在特定年份的强烈降雨期才发生剧烈的洪水事件。这类与季节性降雨密切相关的河流即为季节性河流(Latrubesse et al., 2005; Syvitski et al., 2014)。

2.2 季节性河流判定标准— — 季节指数

虽然季节性河流的流量与区域内降雨量之间具有极好响应关系, 但是将其区域内平均降雨量和平均流量之间进行拟合所得关系甚差, 甚至降雨最多月份的降雨量与其对应的月份的河流流量之间的关系也较差(Plink-Bjö rklund, 2015)。为评价区域内降雨季节性变化, Wang 和Ding(2008)针对季风区提出了季风降雨指数(Monsoon Precipitation Index), 在此基础上衍生出评价降雨和流量季节性变化的降雨季节指数(Precipitation Seasonality Index)与流量季节指数(Discharge Seasonality Index), 统称为季节指数(Seasonality Index)。降雨季节指数为夏季月份(5— 9月份)平均降雨量(MJJAS)与冬季月份(11月份— 次年3月份)平均降雨量(NDJFM)差值(南半球与之相反)与年度内降雨量中位值的比值。流量季节指数计算公式与降雨季节指数类似, 为夏季月份平均流量与冬季月份平均流量的差值与年度内流量中位值的比值。

季节性河流其降雨季节指数与流量季节指数之间具有极好的线性关系(Plink-Bjö rklund, 2015), 进一步证实了季节性河流“ 季节” (即夏季与冬季之间差异)变化特征。同时, Plink-Bjö rklund(2015)通过对全球各类型河流统计得出, 季节指数值2为季节性河流与常年稳定性河流之间的界限值, 季节指数大于2即为季节性河流体系(图 2)。

图 2 不同季节性指数河流流量变化特征
A— 季节性指数大于2的河流, 每月流量在雨季达到峰值; 注意: 岱海湖半滩子河流流量变化具有一致特征; 伯德金河位于南半球, 雨季在1— 2月份之间; B— 季节性指数小于2的河流, 每月流量变化较小(据Plink-Bjö rklund, 2015, 有修改)
Fig.2 Discharge variation features of rivers with distinct seasonal index

2.3 季节性河流沉积特征

近年来, 随着对现代季节性河流认识的逐渐深入, 带动了相关沉积学方面的研究, 对于该类沉积体系的认识也逐步深入, 取得了一定的成果。

季节性河流典型沉积特征主要包括: (1)由于洪水具有极高的流动强度, 季节性河流广泛发育超临界流动沉积构造, 例如平行层理、低角度交错层理、流槽与凹坑等(Alexander et al., 2001; Fielding, 2006; Billi, 2007; Fielding et al., 2009; Allen et al., 2013, 2014); (2)洪水在洪峰之后快速衰退, 且其沉积物浓度较高, 因而发育高沉积速率产生的沉积构造, 例如丘状交错层理(Bridge, 1981; Bridge and Best, 1988)、爬升波纹层理(Picard and High, 1973; Croke et al., 1998)以及递变平行层理(Billi, 2007; Plink-Bjö rklund and Birgenheier, 2013; Banham and Mountney, 2014); (3)河道中原地生长的植被及由植被所引发的沉积构造是季节性沉积体系的典型识别标志之一, 尤其是在半潮湿亚热带区域的季节性河流中广泛发育(Fielding et al., 2009; Allen et al., 2011, 2013, 2014); (4)由于洪水中泥质含量较高, 在洪水衰退过程中会在河道中逐渐沉降, 形成泥岩披覆层, 泥岩厚度从几厘米(North and Taylor, 1996; Billi, 2007)到几十厘米(Shukla et al., 2001)不连续地起伏分布, 并且通常可见干裂缝(Nichols and Fisher, 2007; Allen et al., 2011; Mader and Redfern, 2011); (5)因为洪水的快速沉积过程, 软沉积变形构造在多数季节性河流中普遍发育(Hinds et al., 2004; Fielding et al., 2009), 而在一些河流中却很少发育(Plink-Bjö rklund and Birgenheier, 2013), 值得注意的是, 常年性河流中也会出现软沉积变形构造(Coleman, 1969); (6)由于河流的水位线在雨季和旱季之间有较大的起伏变化, 河道中通常发育较长的垂直遗迹化石(Hasiotis et al., 2002; Chakraborty et al., 2010), 以及生长于加积或进积体之间的植物根系遗迹(Shukla et al., 2001; Chakraborty et al., 2010)。

3 岱海湖概况

岱海湖在地理位置上位于内蒙古中部凉城县境内, 在气候类型上处于亚洲季风区边缘, 年平均降雨量为300~450imm, 属于温带季风气候下半干旱地区(图 3)。受季风作用影响, 绝大部分降雨发生在夏季, 并且部分年份的单次降雨量最高可达300imm(Yu et al., 2012, 2013)。根据岱海湖地区近30年降雨量变化统计(图 4), 计算得到其降雨季节指数为5.35, 进一步确定了其降雨量随季节性变化的规律。

图 3 内蒙古岱海湖地理位置地形
图中红色方框为本次研究区— — 半滩子河, 方框中编号1— 4分别为图 5— 图 8剖面位置
Fig.3 Location and topography of Daihai Lake, Inner Mongolia

图 4 内蒙古岱海湖地区近30年平均降雨量变化Fig.4 Average annual precipitation during last 30 years in the area of Daihai Lake, Inner Mongolia

岱海湖北侧的河流无稳定的水源供给, 河流流量主要来自季节性降雨, 雨季期偶发的极端暴雨会导致河流流量快速上升, 从而在短期内迅速形成洪水。洪水搬运能力强, 流动速度快, 以高流态为主要作用机制。同时, 洪水具有流量突升突降的水力学特征, 导致携带大量沉积物迅速沉降, 并得以保存。半滩子河流沉积是岱海湖北部典型季节性冲积体系之一(图 3), 由于河流的下切侵蚀作用, 该河岸两侧连续出露了顺物源方向的剖面, 早期形成的沉积构造在顺物源方向的演化特征较为清楚, 为分析水动力学机制提供了有利的条件。

4 高流态沉积构造特征
4.1 沙丘(Dune)向上部平坦床沙(Upper plane bed)过渡

随着流动强度的增加, 沙丘逐步向上部平坦床沙底形过渡, 形成了中间过渡状态的沉积构造类型— — S型交错层理与低角度交错层理。这类沉积构造广泛发育于河流沉积中(Rø e, 1987; Rø e and Hermansen, 1993; Fielding and Webb, 1996; Fielding, 2006; Fielding et al., 2009)。

S型交错层理的内部纹层在纵向剖面上呈S型, 通常具有顶积、前积及底积3个单元(图 5-B至图5-C'), 而沙丘直接形成的交错层理则只有前积层。S型交错层理的顶积层通常类似平行层理, 顺流向过渡为低角度的前积层, 最终在底部形成平行层理, 表现为连续的整体。

图 5 内蒙古岱海湖地区沙丘向上部平坦床沙过渡形成的交错层理
A— 低角度交错层理; A'— 照片A中间部分对应的素描图; B— S型交错层理, 并且可识别出明显的顶积层、前积层和底积层; B'— 照片B中间部分对应的素描图; C— 逆行沙丘交错层理, 并且可识别出前积层和底积层; C'— 照片C中间部分对应的素描图
Fig.5 Cross-stratifications formed by dunes transformed to upper plane bed in the area of Daihai Lake, Inner Mongolia

3个单元能够有效地保存下来, 取决于流动强度短时间内迅速增加与较高的沉积速率。而季节性河流通常具有短期内流速增加且携带大量沉积物快速沉降的特点, 因此, 这类沉积构造常见于季节性河流沉积中。

需要注意的是, 在一定的条件下, 3个单元不能完整地保存在地质记录中。例如, 当流动强度远大于沉降速度时, 沙丘顶部被冲刷夷平, 并没有沉积物得以堆积, 因而, 在剖面上呈低角度交错层理(图 5-A, 5-A')。从S型交错层理到低角度交错层理, 反映了沙丘随水流逐渐增强的变化过程(Fielding, 2006)。

4.2 上部平坦床沙(Upper plane bed)

作为最典型的高流态沉积构造, 平行层理广泛发育于滨岸、三角洲以及河流环境中(Rø e, 1987; Browne and Plint, 1994)。从水动力成因来看, 平行层理最常见的解释为水浅流急条件下的产物, 但随着水槽实验技术的提升, 水槽实验观测到平行层理是由低幅浪波在平面上迁移形成(Bridge and Best, 1988; Paola et al., 1989; Cheel, 1990; Best and Bridge, 1992)。

平行层理在剖面上表现为不同大小或不同密度的碎屑颗粒呈平坦纹层状叠覆, 并且在层面上通常可见裂线理(剥离线)。平行层理多在细砂和中砂中发育较好, 但在搬运能力极强的水动力条件下, 在粗砂和细砾中也较为常见。岱海湖周缘的季节性河流体系在较短时间内迅速形成了搬运能力极强的水动力条件, 粗碎屑沉积物(粗砂、含砾粗砂及细砾)形成了大量的平行层理(图 6)。此外, 季节性的突发洪水不仅在短期内迅速形成, 并且在短期内洪峰会快速减弱直至消失, 大量沉积物将会快速卸载沉积, 高沉积速率导致平行层理的内部纹层粒度呈正递变(图 6)。

图 6 内蒙古岱海湖地区平行层理及内部正递变纹层
A, B— 具平行层理, 但无明显正递变纹层; C, D— 具明显正递变层纹层的平行层理, 用向上箭头表示
Fig.6 Planar lamination with internal grain size change gradationally in the area of Daihai Lake, Inner Mongolia

4.3 逆行沙丘(Antidune)

随着流动的强度的进一步增加, 当弗劳德数Fr> 1时, 即达到超临界流状态, 明渠水面起伏与床沙底形的起伏开始构成同相位的特征, 由上部平坦床沙底形过渡为逆行沙丘, 沉积物发生顺流向或逆流向迁移, 形成了一系列逆行沙丘交错层理(Carling and Shvidchenko, 2002; Spinewine et al., 2009)。逆行沙丘交错层理通常发育于深水重力流沉积(Postma and Kleverlaan, 2018), 陆上冲积扇— 河流— 三角洲沉积环境(Blair, 1987; Sinha and Friend, 1994), 尤其是在一些现代季节性河流沉积环境中可见保存较好的逆行沙丘交错层理(Langford and Bracken, 1987; Fielding and Alexander, 1996; Alexander and Fielding, 1997)。

逆行沙丘交错层理的外部形态通常呈低幅度上凸, 内部纹层与外部形态通常保持一致, 并向下游或上游方向倾斜, 并且向底部逐渐过渡为平行纹层。在该地区逆行沙丘交错层理的起伏高度通常2~8icm, 波长变化范围较大, 从5~30icm均有分布(图 7)。沉积物粒度相对平行层理有明显减小, 主要为中砂与含砾中砂。此外, 由于平坦床沙与逆行沙丘2种底形经常会发生过渡, 因此逆行沙丘交错层理常与平行层理伴生(图 7-A, 7-C, 7-C')。

图 7 内蒙古岱海湖地区逆行沙丘交错层理
A— 平行层理向逆行沙丘过渡形成的交错层理; B— 一组完整的逆行沙丘交错层理; B'— 照片B的沉积构造素描图; C— 多组逆行沙丘交错层理; C'— 照片C的沉积物构造素描图, 黑色箭头指示处
Fig.7 Antidune cross-stratification in the area of Daihai Lake, Inner Mongolia

在野外识别中, 高流态所形成的逆行沙丘交错层理与低流态形成的顺向交错层理(槽状交错层理、板状交错层理)最直观的区别在于: 逆行沙丘交错层理内部纹层幅度较小, 而波长较大, 即宽厚比较大, 所形成的外观形态呈席状或长条状, 且底面较平整, 通常不发育冲刷凹陷(图 7-A); 而常规交错层理纹层组厚度较大, 通常10icm以上, 且纹层与层系界面角度较大, 即“ 交错” 的形态更为明显, 且底面常发育明显的冲刷凹槽。此外, 逆行沙丘交错层理的内部纹层既可呈正粒序, 也可见反粒序, 而常规交错层理内部纹层呈正粒序。再者, 逆行沙丘交错层理常与高流态沉积构造伴生, 如平行层理和后积交错层理(图 7); 而常规交错层理常与低流态的沉积构造相伴生, 如流水沙纹交错层理。

4.4 流槽与冲坑(Chute-and-Pool)

在超临界流中, 通常存在稳定流态与非稳定流态, 其判别标准为维德尼科夫数(Ve— Vedernikov number)(Chow, 1959; Koloseus and Davidian, 1966), Ve=xFr, x是与流动速度与流动深度相关的系数(Chezy, x=1/2或Manning, x=2/3)。当Ve< 1时, 为稳定超临界流动, 水面波发育受到抑制, 主要的床沙底形类型即为逆行沙丘; 反之, 当Ve> 1时, 为非稳定超临界流动, 水面波幅度放大, 进而导致水力跳跃并发育卷浪(Roll waves), 进而发育流槽与冲坑(Karcz and Kersey, 1980; Alexander et al., 2001; Spinewine et al., 2009; Cartigny et al., 2014)。随着流动强度进一步增大, 流槽与冲坑会呈现出周期性或旋回性发育特征, 称为旋回坎(Cyclic step)。旋回坎为一系列向上游缓慢迁移的凹槽, 而每一个凹槽则是向下游的水力跳跃所形成(Parker, 1996), 该床沙底形和流槽与冲坑非常类似, 因此也有学者认为流槽与冲坑是有限数量的旋回坎(Fukuoka et al., 1982)。

随着流速的增大, 发生水力跳跃, 逆行沙丘会转化为流槽与冲坑底形(Middleton, 1965)。流槽与冲坑底形所形成的沉积构造总体特征为侵蚀凹槽内充填向上游倾斜的纹层, 即后积交错层理。在早期的研究中, 由于较低的保存潜力, 几乎未见流槽与冲坑沉积构造发育于河流沉积中的报道(Fielding, 2006)。在河流沉积中发现并解释为流槽与冲坑沉积构造的实例最早出现在Fielding 等(2000)在澳大利亚昆士兰地区上二叠统Colinlea河流沉积砂岩中。

作者在岱海湖地区季节性河流沉积产物中发现了多处典型的流槽与冲坑沉积构造(图 8)。这些流槽与冲坑沉积构造发育于含砾粗砂、中— 细砾中, 进一步体现了较强的水动力背景。冲坑的高度在20~50icm之间, 而顺流向的长度为0.8~1.5im。流槽与冲坑通常为不对称透镜状, 其中上游一侧较陡, 下游一侧较缓。其形成过程是由于流槽中浅水急流, 迅速过渡到水体较深的冲坑, 进而形成向上游方向迁移的水力跳跃。沉积物在水力跳跃作用下, 由于重力差异发生沉降, 在上游一侧底部为块状— 正递变, 并且由于快速沉积在局部可见火焰状构造(图 8-C); 水力跳跃消散了流动强度, 流速在冲坑的下游一侧减缓, 进而形成向上游倾斜的纹层, 即后积交错层理(图 8)。流槽与冲坑沉积构造之间为平行层理与逆行沙丘交错层理所分割。

图 8 内蒙古岱海湖地区流槽与冲坑所形成的不对称透镜状侵蚀凹槽与充填后积交错层理Fig.8 Asymmetrical lenticular scours filled with backset cross-stratifications, generated by chute-and-pool in the area of Daihai Lake, Inner Mongolia

值得注意的是, 这种冲刷槽中的后积交错层理在古代沉积中, 由于古水流方向不清, 常常会被解释为顺流向的槽状交错层理, 进而不能较准确地进行沉积解释。岱海湖周缘的现代季节性河流沉积中保存的这类独特的沉积构造, 为古代沉积现象的解释提供了新的可能。

5 讨论
5.1 高流态沉积构造随流动强度增大而逐步演化形成

岱海湖周缘河流沉积体系中发育一系列高流态沉积构造: 随着低流态向高流态流动演化, 沙丘底形逐步向上部平坦床沙底形过渡, 形成了低角度/S型交错层理; 在高流态初期, 形成了上部平坦床沙底形成因的平行层理; 随着流动强度逐渐增大, 流动机制演变为超临界流动, 上部平坦床沙逐渐向逆行沙丘过渡, 形成了大量与平行层理伴生的逆行沙丘交错层理, 在顺流向剖面上以低幅度上凸的外部形态、与外部协调一致的内部纹层为识别特征; 当流动强度进一步增大, 携带沉积物的流体发生较强的水力跳跃, 形成流槽与冲坑底形, 以不对称的透镜状侵蚀— 充填、块状— 正递变以及后积交错层理为典型识别标志(图 9)。

图 9 随着流动强度变化, 高流态床沙底形的形成与保存过程Fig.9 Evolution of upper-flow-regime bedforms generated and preserved as flow strength changing

5.2 季节性河流体系利于高流态沉积构造的形成与保存

岱海湖周缘沉积体系中发育的一系列高流态沉积构造表明, 高流态沉积构造, 尤其是超临界流沉积普遍存在于季节性河流沉积中。其原因在于季节性河流体系在雨季短时间内形成的洪水, 以高流态为主要的沉积物搬运机制, 大量沉积物被搬运沉积, 形成一系列高流态沉积构造; 与此同时, 快速形成的洪水具有迅速消退的特征, 这种迅速消退是前期所形成的高流态沉积构造得以保存的重要水力学条件(Fielding, 2006)。

5.3 河流沉积中广泛发育的高流态沉积构造可作为季节性气候变化的指示

不仅是半干旱温带季风作用边缘的岱海湖地区, 在澳大利亚昆士兰热带季风区的博德金河(Alexander and Fielding, 1997)也发现了大量高流态沉积构造。同样在现代沉积环境中发现了该系列沉积构造, 在加拿大新斯科舍石炭系(古气候为热带季风气候)(Calder, 1998), 以及澳大利亚昆士兰二叠系沉积(寒温带季节性气候)(McLoughlin, 1993)均发育大量高流态沉积构造。因此, 可以得出: 广泛发育的高流态沉积构造形成与保存在河流沉积中具有指示强烈季节性变化的古气候特征, 即高流态沉积构造可作为沉积记录— — 气候响应之间的重要连接。

6 结论

1)通过调研近些年季节性河流沉积研究进展发现: 河流的流量受降雨的影响而发生季节性变化, 当河流流量主要集中在较短的雨季时, 即其季节指数大于2时, 则为季节性河流, 其典型的沉积特征为发育大量的高流态沉积构造。

2)岱海湖半滩子河具有在雨季短时间内形成洪水并迅速消退的水力学特征, 形成并保存了一系列高流态沉积构造: 低角度/S型交错层理、平行层理、逆行沙丘交错层理及透镜状侵蚀— 充填后积交错层理(Chute-and-Pool)。

3)综合内蒙古半滩子河现代沉积与其他研究实例表明: 河流沉积中广泛发育的高流态沉积构造具有指示强烈季节性变化的古气候特征, 即高流态沉积构造可作为沉积记录— — 气候响应之间的重要连接。

作者声明没有竞争性利益冲突.

参考文献
[1] 操应长, 杨田, 王艳忠, 李文强. 2017. 超临界沉积物重力流形成演化及特征. 石油学报, 38(6): 607-621.
[Cao Y C, Yang T, Wang Y Z, Li W Q. 2017. Formation, evolution and sedimentary characteristics of supercritical sediment gravity-flow. Acta Petrolei Sinica, 38(6): 607-621] [文内引用:1]
[2] 高志勇, 冯佳睿, 周川闽, 崔京钢, 李小陪, 赵雪松, 郭美丽, 吴昊. 2014. 干旱气候环境下季节性河流沉积特征: 以库车河剖面下白垩统为例. 沉积学报, 32(6): 1060-1071.
[Gao Z Y, Feng J R, Zhou C M, Cui J G, Li X P, Zhao X S, Guo M L, Wu H. 2014. Arid climate seasonal rivers deposition: A case of Lower Cretaceous in Kuche river outcrop. Acta Sedimentologica Sinica, 32(6): 1060-1071] [文内引用:1]
[3] 高志勇, 周川闽, 冯佳睿, 崔京钢, 郭美丽, 吴昊. 2015. 盆地内大面积砂体分布的一种成因机理: 干旱气候下季节性河流沉积. 沉积学报, 33(3): 427-438.
[Gao Z Y, Zhou C M, Feng J R, Cui J G, Guo M L, Wu H. 2015. Distribution of a large area of sand body formation mechanism: Ephemeral streams in arid climate. Acta Sedimentologica Sinica, 33(3): 427-438] [文内引用:1]
[4] 李华启, 姜在兴, 邱隆伟, 邓兴梁, 赵少宇, 鲁洪波. 2003. 柯克亚凝析气田中新统西河甫组季节性河流沉积特征研究. 新疆地质, 21(1): 69-73.
[Li H Q, Jiang Z X, Qiu L W, Deng X L, Zhao S Y, Lu H B. 2003. Seasonal river sedimentation of Xihefu Formation in Kekeya gas condensate field. Xinjiang Geology, 21(1): 69-73] [文内引用:1]
[5] 于兴河. 2008. 碎屑岩系油气储层沉积学. 北京: 石油工业出版社, 108-110.
[Yu X H. 2008. Clastic Petroleum Reservoir Sedimentology. Beijing: Petroleum Industry Press, 108-110] [文内引用:1]
[6] 于兴河, 李胜利. 2009. 碎屑岩系油气储集层沉积学的发展历程与热点问题思考. 沉积学报, 27(5): 880-895.
[Yu X H, Li S L. 2009. The development and hotspot problems of clastic petroleum reservoir sedimentology. Acta Sedimentologica Sinica, 27(5): 880-895] [文内引用:1]
[7] Alexand er J, Bridge J S, Cheel R J, LeClair S F. 2001. Bedforms and associated sedimentary structures formed under supercritical water flows over aggrading sand beds. Sedimentology, 48(1): 133-152. [文内引用:3]
[8] Alexand er J, Fielding C R. 1997. Gravel antidunes in the tropical Burdekin River, Queensland , Australia. Sedimentology, 44(2): 327-337. [文内引用:2]
[9] Allen J P, Fielding C R, Rygel M C. 2013. Deconvolving signals of tectonic and climatic controls from continental basins: An example from the Late Paleozoic Cumberland Basin, Atlantic Canada. Journal of Sedimentary Research, 83(9-10): 847-872. [文内引用:2]
[10] Allen J P, Fielding C R, Gibling M R, Rygel M C. 2011. Fluvial response to paleoequatorial climate fluctuations during the late Paleozoic ice age. Geological Society of America Bulletin, 128(7-8): 1524-1538. [文内引用:2]
[11] Allen J P, Fielding C R, Gibling M R, Rygel M C. 2014. Recognizing products of palaeoclimate fluctuation in the fluvial stratigraphic record: An example from the Pennsylvanian to Lower Permian of Cape Breton Island , Nova Scotia. Sedimentology, 61(5): 1332-1381. [文内引用:1]
[12] Banham S G, Mountney N P. 2014. Climatic versus halokinetic control on sedimentation in a dryland fluvial succession. Sedimentology, 61(2): 570-608. [文内引用:1]
[13] Best J, Bridge J. 1992. The morphology and dynamics of low amplitude bedwaves upon upper stage plane beds and the preservation of planar laminae. Sedimentology, 39(5): 737-752. [文内引用:1]
[14] Billi P. 2007. Morphology and sediment dynamics of ephemeral stream terminal distributary systems in the Kobo Basin(northern Welo, Ethiopia). Geomorphology, 85(1): 98-113. [文内引用:3]
[15] Blair T C. 1987. Sedimentary processes, vertical stratification sequences, and geomorphology of the Roaring River alluvial fan, Rocky Mountain National Park, Colorado. Journal of Sedimentary Petrology, 57(1): 1-18. [文内引用:1]
[16] Bridge J S. 1981. Bed shear stress over subaqueous dunes, and the transition to upper stage plane beds. Sedimentology, 28(1): 33-36. [文内引用:1]
[17] Bridge J S, Best J L. 1988. Flow, sediment transport and bedform dynamics over the transition from dunes to upper-stage plane beds: Implications for the formation of planar laminae. Sedimentology, 35(5): 753-763. [文内引用:2]
[18] Browne G H, Plint A G. 1994. Alternating braidplain and lacustrine deposition in a strike-slip setting: The Pennsylvanian Boss Point Formation of the Cumberland Basin, Maritime Canada. Journal of Sedimentary Research, 64(1): 40-59. [文内引用:1]
[19] Calder J H. 1998. The Carboniferous evolution of Nova Scotia. In: Blundell D J, Scott A C(eds). Charles Lyell: The Past is the key to the present. Special Publication of Geological Society of London, 143: 261-302. [文内引用:1]
[20] Carling P A, Schvidchenko A B. 2002. A consideration of the dune-antidune transition in fine gravel. Sedimentology, 49(6): 1269-1282. [文内引用:1]
[21] Cartigny M J B, Ventra D, Postma G, Wagoner D B J H. 2014. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume experiments. Sedimentology, 61(3): 712-748. [文内引用:3]
[22] Chakraborty T, Ghosh P. 2010. The geomorphology and sedimentology of the Tista megafan, Darjeeling Himalaya: Implications for megafan building processes. Geomorphology, 115(3): 252-266. [文内引用:2]
[23] Cheel R J. 1990. Horizontal lamination and the sequence of bed phases and stratification under upper-flow-regime conditions. Sedimentology, 37(3): 517-529. [文内引用:1]
[24] Chow V T. 1959. Open-channel Hydraulics. McGraw-Hill Book, New York: 39-69. [文内引用:1]
[25] Coleman J M. 1969. Brahmaputra River: Channel processes and sedimentation. Sedimentary Geology, 3(2): 129-239. [文内引用:1]
[26] Croke J C, Magee J M, Price D M. 1998. Stratigraphy and sedimentology of the lower Neales River, West Lake Eyre, Central Australia: From Palaeocene to Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 144(3-4): 331-350. [文内引用:1]
[27] Fielding C R. 2006. Upper flow regime sheets, lenses and scour fills: Extending the range of architectural elements for fluvial sediment bodies. Sedimentary Geology, 190(1): 227-240. [文内引用:8]
[28] Fielding C R, Alexand er J. 1996. Sedimentology of the upper Burdekin River of north Queensland , Australia: An example of a tropical, variable discharge river. Terra Nova, 8(5): 447-457. [文内引用:1]
[29] Fielding C R, Webb J A. 1996. Facies and cyclicity of the Late Permian Bainmedart Coal Measures in the northern Prince Charles Mountains, MacRobertson Land , Antarctica. Sedimentology, 43(2): 295-322. [文内引用:1]
[30] Fielding C R, Sliwa R, Holcombe R J, Kassan J. 2000. A new palaeogeographic synthesis of the Bowen Basin of central Queensland . In: Beeston J (ed). Bowen Basin Symposium 2000 Proceedings. Geological Society of Australia Coal Geology Group, Rockhampton: 287-302. [文内引用:1]
[31] Fielding C R, Allen J P, Alexand er J, Gibling M R. 2009. Facies model for fluvial systems in the seasonal tropics and subtropics. Geology, 37(7): 623-626. [文内引用:5]
[32] Friedman G M, Sand ers J E. 1978. Principles of Sedimentology. Wiley: 1-38. [文内引用:1]
[33] Fukuoka S, Okutsu K, Yamasaka M. 1982. Dynamics and kinematic features of sand waves in upper regime. Proceeding of Japanese Society of Civil Engineering, 323: 77-89. [文内引用:1]
[34] Goodbred S L. 2003. Response of the Ganges dispersal system to climate change: A source-to-sink view since the last interstade. Sedimentary Geology, 162(1): 83-104. [文内引用:1]
[35] Hasiotis S T, Wagoner J C, Demko T M, Wellner R W, Jones C R, Hill R E. 2005. Continental ichnology: Using terrestrial and freshwater trace fossils for environmental and climatic interpretations. SEPM Short Course, 51. [文内引用:1]
[36] Hinds D J, Aliyeva E, Allen M B, Davies C E, Kroonenberg S B, Simmons M D, Vincent S J. 2004. Sedimentation in a discharge dominated fluvial-lacustrine system: The Neogene Productive Series of the South Caspian Basin, Azerbaijan. Marine and Petroleum Geology, 21(5): 613-638. [文内引用:1]
[37] Karcz I, Kersey D. 1980. Experimental study of free surface flow instability and bedforms in shallow flows. Sedimentary Geology, 27(4): 263-300. [文内引用:1]
[38] Kennedy J F. 1963. The mechanics of dunes and antidunes in erodible-bed channels. Journal of Fluid Mechanics, 16(4): 521-544. [文内引用:1]
[39] Kennedy J F. 1969. The formation of sediment ripples, dunes and antidunes. Annual Review of Fluid Mechanics, 1(1): 147-168. [文内引用:1]
[40] Koloseus H J, Davidian J. 1966. Free-surface instability correlations, and roughness-concentration effects on flow over hydrodynamically rough surfaces. Water Supply Paper, 1592-C: 1-72. [文内引用:1]
[41] Langford R, Bracken B. 1987. Medano Creek, Colorado, a model for upper-flow-regime fluvial deposition. Journal of Sedimentary Petrology, 57(5): 863-870. [文内引用:1]
[42] Latrubesse E M, Stevaux J C, Sinha R. 2005. Tropical rivers. Geomorphology, 70(3): 187-206. [文内引用:1]
[43] Leeder M R. 1983. On the interactions between turbulent flow, sediment transport and bedform mechanics in channelized flows. In: Modern and Ancient Fluvial Systems. Collinson J D, Lewin J (eds. ). International Association of Sedimentology Special Publication, 6: 5-18. [文内引用:1]
[44] Mader N K, Redfern J. 2011. A sedimentological model for the continental Upper Triassic Tadrart Ouadou Sand stone Member: Recording an interplay of climate and tectonics(Argana Valley;South-west Morocco). Sedimentology, 58(5): 1247-1282. [文内引用:1]
[45] McLoughlin S. 1993. Plant fossil distributions in some Australian Permian non-marine sediments. Sedimentary Geology, 85: 601-619. [文内引用:1]
[46] Middleton G V. 1965. Antidune cross-bedding in a large flume. Journal of Sedimentary Research, 35(4): 922-927. [文内引用:1]
[47] Middleton G V, Southard J B. 1984. Mechanics of sediment movement. Society of Economic Paleontologists and Mineralogists Short Course, 3: 401. [文内引用:1]
[48] Nichols G J, Fisher J A. 2007. Processes, facies and architecture of fluvial distributary system deposits. Sedimentary Geology, 195(1): 75-90. [文内引用:1]
[49] North C P, Taylor K S. 1996. Ephemeral-fluvial deposits: Integrated outcrop and simulation studies reveal complexity. AAPG Bulletin, 80(6): 811-830. [文内引用:1]
[50] Paola C, Wiele S M, Reinhart M A. 1989. Upper regime parallel lamination as the result of turbulent sediment transport and low-amplitude bedforms. Sedimentology, 36(1): 47-59. [文内引用:1]
[51] Parker G. 1996. Some speculations on the relation between channel morphology and channel-scale flow structures. In: Coherent Flow Structures in Open Channels. Ashworths P J, Bennett S J, Best J L, McLelland S J(eds). John Wiley & sons, New York: 423-458. [文内引用:1]
[52] Picard M D, High L R. 1973. Sedimentary Structures of Ephemeral Streams. Developments in Sedimentology 17. Amsterdam: Elsevier, 223, 1-32. [文内引用:1]
[53] Plink-Björklund P. 2015. Morphodynamics of rivers strongly affected by monsoon precipitation: Review of depositional style and forcing factors. Sedimentary Geology, 323: 110-147. [文内引用:4]
[54] Plink-Björklund P, Birgenheier L. 2013. Highly Seasonal Ancient Monsoonal River Systems: Depositional Style, Allogenic and Autogenic Controls. 10th International Conference on Fluvial Sedimentology, Leeds, 206-207. [文内引用:2]
[55] Postma G, Kleverlaan K. 2018. Supercritical flows and their control on the architecture and facies of small-radius sand -rich fan lobes. Sedimentary Geology, 364: 53-70. [文内引用:1]
[56] Røe S L. 1987. Cross-strata and bedforms of probable transitional dune to upper-stage plane-bed origin from a Late Precambrian fluvial sand stone, northern Norway. Sedimentology, 34(1): 89-101. [文内引用:2]
[57] Røe S L, Hermansen M. 1993. Processes and products of large, Late Precambrian sand y rivers in northern Norway. In: Alluvial Sedimentation. Marzo M, Puigdefabregas C. Blackwell, Oxford(eds). International Association of Sedimentology Special Publication, 17: 151-166. [文内引用:1]
[58] Shukla U K, Singh I B, Sharma M, Sharma S. 2001. A model of alluvial megafan sedimentation: Ganga megafan. Sedimentary Geology, 144(3-4): 243-262. [文内引用:2]
[59] Sinha R, Friend P F. 1994. River systems and their sediment influx, Indo-Gangetic plains, Northern Bihar, India. Sedimentology, 41(4): 825-845. [文内引用:1]
[60] Southard J B, Boguchwal L A. 1990. Bed configurations in steady unidirectional flows: Part 2. Synthesis of flume data. Journal of Sedimentary Petrology, 60(5): 658-679. [文内引用:1]
[61] Spinewine B, Sequeiros O E, Garcia M H, Beaubouef R T, Sun T, Svoye B Parker G. 2009. Experiments on wedge-shaped deep sea sedimentary deposits in minibasins and /or on channel levees emplaced by turbidity currents. Part Ⅱ. Morphodynamic evolution of the wedge and of the associated bedforms. Journal of Sedimentary Research, 79(8): 608-628. [文内引用:2]
[62] Syvitski J P M, Brakenridge G R. 2013. Causation and avoidance of catastrophic flooding along the Indus River, Pakistan. GSA Today, 23(1): 4-10. [文内引用:1]
[63] Syvitski J P M, Cohen S, Kettner A J, Brakenridge G R. 2014. How important and different are tropical rivers?An overview. Geomorphology, 227: 5-17. [文内引用:1]
[64] Ventra D, Cartigny M J B, Bijkerk J F, Acikalin S. 2015. Supercritical-flow structures on a Late Carboniferous delta front: Sedimentologic and paleoclimatic significance. Geology, 43(8): 731-734. [文内引用:1]
[65] Wang B, Ding Q. 2008. Global monsoon: Dominant mode of annual variation in the tropics. Dynamics of Atmospheres and Oceans, 44(3): 165-183. [文内引用:1]
[66] Yagishita K. 1992. Recent studies on some sedimentary structures formed under upper-flow-regime conditions: Review and discussion. Annual Report of the Faculty of Education University of Iwate, 52: 85-95. [文内引用:1]
[67] Yu X H, Li S L, Chen B T, Tan C P, Xie J, Hu X N. 2012. Interaction between downslope and alongslope processes on the margins of Daihai Lake, North China: Implication for deltaic sedimentation models of lacustrine rift basin. Acta Geologica Sinica, 86(4): 932-948. [文内引用:1]
[68] Yu X H, Li S L, Tan C P, Xie J, Chen B T, Yang F. 2013. The response of deltaic systems to climatic and hydrological changes in Daihai Lake rift basin, Inner Mongolia, northern China. Journal of Palaeogeography, 2(1): 41-55. [文内引用:1]