第一作者简介 李华,男,1984年生,博士,副教授,主要研究方向为深水沉积。E-mail: 501026@yangtzeu.edu.cn。
深水水道是深水区常见的地貌单元,既是深水重力流沉积物的搬运通道,又是其主要沉积场所。对重力流水道沉积研究已有 60余年的历史,成果极为丰富。本文简要回顾了深水水道沉积研究历程及最新研究成果,总结了主要水道类型沉积特征及形成机理。重力流水道可分为复合型水道、垂向加积型水道、迁移型水道和分支小水道。复合型水道形成与重力流演化过程密切相关,其内部发育轴部沉积、碎屑流 /滑塌沉积、水道—堤岸沉积体系及迁移型水道。弯曲型迁移水道多为重力流自生环流而成,顺直型迁移水道为等深流与重力流共同作用而成。重力流水道研究的发展方向主要有 3个方面,即:( 1)积极开展多手段和方法综合研究;( 2)深入系统对比研究其形成机制及主控因素;( 3)加强储集层分布规律研究。
About the first author Li Hua,born in 1984,is an associate professor. He is mainly engaged in deepwater deposits. E-mail: 501026@yangtzeu.edu.cn.
Deepwater channel is usually geomorphology in deepwater zone,which is not only transport way of deepwater gravity flow sediment,but also is mainly sedimentary place. There have been abundant fruits on gravity flow channel for more than 60 years. The research process and latest achievement are reviewed,characteristic and mechanism of deepwater channel have been summarized in this paper. The gravity flow channel could be divided into complex channel,vertical aggradation channel,migrational channel and small bifurcated channels. The process of complex channel is closely related to evolution of gravity flow. Channel axial deposits,debris flow/slump deposit,channel-levee system and migrational channel develop in complex channel. Sinuous migrational channel secondary circulation of gravity flow was formed. Strait migrational channel is interaction between gravity flow and contour current. The direction of work on gravity flow channel in the future always results from were proposed as follows: (1)more way and method comprehensive research; (2)systematic comparative study on mechanism and mainly controlling factors; (3)reinforce to work on the reservoir distribution.
随着科学技术的进步和人们海洋意识的提高, 深水沉积已成为国际沉积学研究的重点和热点之一(朱筱敏等, 2019)。深水重力流水道是深水沉积常见的地貌单元, 既是连接陆架、陆坡及深海盆地的重要纽带, 也是沉积物搬运、沉积的重要场所, 还是地球系统科学研究的突破口(汪品先, 2009)。同时, 深水油气勘探证明重力流水道沉积是油气重要富集单元之一(McCaffrey and Kneller, 2001)。近10余年, 深水重力流水道研究快速发展, 并获得了诸多成果(图 1)。然而, 对重力流水道沉积特征及类型研究较多, 对其形成机理、主控因素及储集层分布规律研究较为薄弱, 特别是缺乏不同类型水道形成机理的对比研究。在回顾深水重力流水道沉积研究历程的基础上, 重点结合最近10余年重力流水道沉积研究进展, 总结认识及主要问题, 上述研究工作的开展和深化不仅可以加深深水水道的形成机理、成因演化及主控因素的认识, 促进古海洋、古气候及古构造的研究, 推动地球系统科学的探索, 还可揭示深水优质储集层分布规律, 为油气勘探提供理论依据。
20世纪50年代以来, 随着重力流沉积研究的不断深入, 深水水道沉积也随之被发现并引起了沉积学工作者的重视。目前, 对水道的类型、沉积特征、形成过程、沉积模式及储集层分布规律都有了一系列的成果, 其研究历程大致可以分为3个阶段。
1990年以前, 重力流水道研究主要以海底扇为载体(Normark, 1970; Walker, 1978; Karl and Kenyon, 1989)。通过湖盆和海盆深水扇研究, 提出了较为经典、到目前还被广泛引用的深水扇模式。Normark(1970)将重力流水道分为侵蚀型、侵蚀/沉积复合型及沉积型。侵蚀型水道以侵蚀作用为主, 形态多为“ V” 形, 内部沉积物较少, 仅在底部沉积部分粗粒沉积物; 侵蚀/加积型水道侵蚀和沉积作用交替出现, 形态多为“ U” 形, 两侧发育溢流或堤岸沉积; 沉积型水道以沉积作用为主, 形态多为“ U” 形, 沉积物较为丰富。Walker(1978)提出的海底扇模式最为经典。该模式将海底扇划分为上扇、中扇和下扇。其中, 上扇以补给水道最为发育, 该类型水道以侵蚀作用为主, 水道轴部发育碎屑流和浊流等粗粒沉积。中扇分支水道极为发育, 以含砾砂岩及砂岩为主。下扇水道不发育, 以层状砂泥沉积为主。Karl和Kenyon(1989)研究了侧积型水道与构造运动之间的关系。同时, 沉积学家通过物理模拟尝试研究重力流演化及沉积响应(Middleton, 1966a, 1966b, 1967, 1989; Garcia and Parker, 1989)。Garcia和Parker(1989)通过物理模拟认为浊流在峡谷— 水道过渡区运动过程中, 由于与底部摩擦导致剪切速度发生变化, 可发生水跃现象。
1990年至2000年, 深水水道研究实例明显增多, 研究成果不断涌现。其主要是对海底扇模式的细化, 特别是水道的具体化(Reading and Richards, 1994; Shanmugam and Moiola, 1995; Clark and Pickering, 1996; Bouma, 2000; Peakall et al., 2000; Shanmugam, 2000; Stow and Mayall, 2000)。Reading和Richards(1994)发表了根据物源供给和沉积物粒度将海底扇划分为12种类型的研究成果。Clark和Pickering(1996)研究了深水水道的构型及油气勘探潜力。基于水道宽深比及迁移特征, 将水道划分为侧积和加积等类型, 并对其充填结构进行了分析, 进而定性研究了其油气储集性能。Peakall等(2000)发表了对深水弯曲型水道的形态、沉积特征、形成机理进行了较为全面的研究成果。同时, 采用物理及数值模拟方法对浊流的流体机制变化及沉积响应研究明显增多(Edwards et al., 1994; Dade and Huppert, 1995; Mulder et al., 1997; Skene et al., 1997; Kneller and Buckee, 2000)。
2000年以后, 深水重力流水道研究更为全面, 成果更为丰富。目前, 对水道类型、沉积特征、过程演化及沉积模式研究都取得了长足的进步(Keevil et al., 2006; Mayall et al., 2006; Kolla et al., 2007; McArthur et al., 2016; Deptuck and Sylvester, 2018; He et al., 2018)。现代峡谷及水道内重力流及沉积响应观测也取得了较多重要成果(Parsons et al., 2010; Xu et al., 2013; 徐景平, 2013; Zhang et al., 2018)。除此之外, 深水沉积还出现了临界流、超临界流、异重流沉积等新分支研究(Mulder et al., 2009; Bourget et al., 2010; Migeon et al., 2012)。地质大数据的建立和应用也是深水重力流水道研究的新方法和新思路(翟明国等, 2018; 赵鹏大, 2018)。为更好地开展深水沉积, 国际合作(如IODP339, 349)及学术会议交流日益频繁(eg. 3rd Deep-Water Circulation Conference, 4th International Submarine Canyon Symposium, 南海深海过程演变), 并涌现了一系列成果(Saller et al., 2004; Wynn et al., 2007; Zhong et al., 2015; Liu et al. 2017; Omosanya and Harshidayat, 2019), 包括论文(eg. Deep-Sea Research Ⅱ , volumes 142; Marine Geology, volumes 394)、论著等(eg. Submarine Geomorphology, Micallef et al., 2018)。
中国重力流沉积具有层位多、分布范围广的特点, 在大部分含油气盆地都有发育(鄂尔多斯盆地、渤海湾盆地、南海琼东南盆地及珠江口盆地等), 有些甚至为主力产油气层。早期对重力流水道沉积的研究重在其形态、沉积特征及演化分析, 后期逐渐过渡为水道构型、形成机理及主控因素研究, 现在对重力流水道研究精度不断提高, 包括水道类型、充填及过演化程模拟等(姜在兴等, 1988; 李文厚等, 1997; 林畅松等, 2001; 王英民等, 2007; 吴时国和秦蕴珊, 2009; 解习农等, 2012; 郑荣才等, 2013; 庞雄等, 2014; 王华等, 2015; 李华等, 2018)。
目前, 对深水重力流水道分类方案主要有以下3种: (1)根据侵蚀— 沉积作用分为侵蚀型、沉积型及侵蚀/沉积复合型(Normark, 1970)。(2)按照弯曲度可分为顺直型、低弯度及高弯度水道(Mayall et al., 2006; Wynn et al., 2007)。(3)根据形态可将水道分为孤立型(isolated)、迁移型(laternal stacked)及加积型(vertically stacked)(Clark and Pickering, 1996)。
在国内外研究成果的基础上, 结合团队在鄂尔多盆地西南缘、南海北部莺歌海、琼东南、珠江口及台西南盆地、东非鲁伍马、坦桑利亚及拉姆盆地、西非尼日尔三角洲、里奥穆尼盆地、下刚果及加蓬盆地、巴西坎波斯盆地、孟加拉扇、墨西哥湾等地相关研究, 根据水道的规模、沉积单元及堆积方式等将重力流水道划分为复合型水道、垂向加积型水道、迁移型水道及分支小水道4种类型(表 1)。值得注意的是, 自然界还存在较多过渡型水道, 其多为上述2种或多种水道组合而成。
3.2.1 复合型水道沉积
复合型水道在深水环境极为常见, 其宽几百米至几十千米。外形一般为“ U” 或“ V” 型, 水道底部见明显的侵蚀特征, 整体迁移不明显, 内部发育多类型、多规模的次级水道, 水道之间相互侵蚀、切割, 沉积物粒度较粗, 多为碎屑流沉积充填, 可发育浊流沉积(Mayall et al., 2006; Cross et al., 2009; Jobe et al., 2010; Khan and Arnott, 2011; 刘军等, 2011; Celma et al., 2014; Li et al., 2018; 李华等, 2018; Casciano et al., 2019)(表 1)。
陕西唐王陵奥陶系复合水道沉积以砾岩、含砾砂岩、砂岩及粉砂岩为主, 水道内部次级水道相互侵蚀、切割, 发育侵蚀面、槽模及交错层理, 可大致分为15期(图 2-A)。南海西北部琼东南盆地中央峡谷(大型复合水道)宽约15 km, 由下至上大致依次发育轴部沉积、水道、水道— 堤岸及块状搬运复合体(图 2-B)。
3.2.2 垂向加积型水道沉积
垂向加积型水道规模大小不一, 水道以垂向加积为主(Kolla et al., 2007; Labourdette and Bez, 2010)。根据充填样式可细分为2种类型: 一种为多期次水道垂向叠置而未发生迁移(Popescu et al., 2001; Schwenk et al., 2003), 另一种为水道内部以层状充填为主, 次级水道不发育。前者在自然界中相对较为发育, 其多出现在水道局部位置或水道末期(Kollar et al., 2007; Labourdette and Bez, 2010)。后者相对较少, 其发育规模一般较大(李华等, 2018)(表 1)。
内蒙古桌子山地区复合水道内部可分为16个下粗上细中砂岩及细砂岩旋回, 平行层理及粒序层理较为常见(图 2-C)。东非坦桑尼亚盆地垂向加积型水道宽约15 km, 深度约750 m, 下部弱反射、连续性较差, 中部强反射、连续性好, 平行— 亚平行, 上部中等强度反射, 连续性中等, 平行— 亚平行地震反射特征, 次级水道不发育(图 2-D)。
3.2.3 迁移型水道沉积
迁移型水道侧向迁移现象明显(图 3), 根据水道弯曲度及迁移位置可进一步分为弯曲型和顺直型迁移水道。
弯曲型迁移水道弯曲度较高, 多在弯曲部位发育迁移, 形成类似曲流河“ 点坝” 沉积的侧积体。该类型水道在西非尼日尔三角洲盆地、下刚果盆地、巴西坎波斯盆地、墨西哥湾及南海等12处深水区发育, 且具有良好的油气勘探潜力(Kolla et al., 2001, 2007; Abreu et al., 2003; Posamentier, 2003; Schwenk et al., 2003; Saller et al., 2004; Deptuck et al., 2007; Wynn et al., 2007; Li et al., 2010; 李华等, 2011; 张文彪等, 2015)。爱尔兰深水水道沉积迁移特征明显, 发育典型的侧积体(图 3-A)。尼日尔三角洲盆地弯曲水道弯曲度1.2~1.8, 最高可达2.3。水道几到数十千米, 储集性能较好, 是油气勘探的主要目的层。水道弯曲处侧积体极为发育(图 3-B, 3-C)(Li et al., 2010)。而顺直型迁移水道弯曲度较低, 整体侧向迁移。在西非下刚果盆地及加蓬盆地、巴西坎波斯盆地、格林兰伊尔明厄盆地、中国南海琼东南盆地及珠江口盆地(图 3-D, 3-E)发育顺直型迁移水道(Biscara et al., 2010; Zhu et al., 2010; He et al., 2013; Li et al., 2013; 李华等, 2013; Ma et al., 2015; Zhong et al., 2015; Gong et al., 2016a, 2018a)。上述2种迁移型水道形成机制不同, 详见后文4.3部分。
3.2.4 分支小水道沉积
分支小水道规模一般较小, 多发育在水道末端或朵叶内部, 在重力流沉积体系中较为常见(Posamentier and Walker, 2006; Picot et al., 2016)(图 4)。外形多为“ U” 形, 透镜状, 岩性主要为细砂岩、粉砂岩、灰岩及泥灰岩等, 发育槽模、变形构造、平行层理及水平层理等。内蒙古桌子山剖面上奥陶系拉什仲组发育一系列孤立型小水道, 其宽度50~60 cm, 厚度15~25 cm, 以细砂及粉砂为主(图 4-A)(李华等, 2018)。另外, 在陕西耀县桃曲坡奥陶系小水道岩性为灰岩, 内部见水平层理(图 4-B)。分支小水道通常呈发散状或放射状分布于水道末端, 平面组成朵状(图 4-C)。
复合水道是重力流水道沉积的主要类型, 其弯曲度一般较低(Mayall et al., 2006; Khan and Arnott, 2011; 刘军等, 2011)。本类型水道形成过程极为复杂, 前人基于露头、地震等资料对复合水道充填演化、形成过程研究, 进而探讨形成机理及主控因素(Cross et al., 2009; Jobe et al., 2010; Khan and Arnott, 2011; Celma et al., 2014; Li et al., 2018; Casciano et al., 2019)。Mayall等(2006)基于岩心、露头、测井及地震等资料, 对复合水道弯曲度、沉积序列、结构及充填过程等进行了较为深入的研究, 最终对其储集性能进行了分析。复合水道从下至上依次发育底部滞留沉积、滑塌及碎屑流沉积、弯曲迁移型水道沉积及高弯度水道— 堤岸沉积(图 5)。南海北部白云深水区浅层水道也发育类似沉积序列(刘军等, 2011)。Cross等(2009)通过埃及尼罗河三角洲西缘深水斜坡— 水道沉积体系研究, 认为复合水道经历了6个阶段, 即(1)初始阶段, 发育侵蚀、过路、滑塌; (2)侧向加积型水道发育阶段; (3)加积型弯曲水道阶段; (4)水道— 堤岸沉积体系阶段; (5)水道废弃及最大湖/海泛沉积阶段; (6)进积席状砂发育阶段。Khan和Arnott(2011)将加拿大南部水道复合体分为了3期。每一期具有类似的侵蚀及充填过程。Celma等(2014)认为复合水道形成过程与重力流的形成演化密切相关, 海平面升降是其影响因素之一。当海平面最低时, 重力流能量高, 以侵蚀作用为主, 形成水道雏形, 水道内部重力流以过路不沉积为主; 当海平面开始升高时, 重力流规模较大, 能量较高, 水道内部开始出现富砾等粗粒的水道— 堤岸沉积体系; 当海平面进一步升高, 重力流能量减弱, 水道内部发育块状搬运复合体沉积及薄层浊流沉积。基于重力形成演化及能量变化, Li 等(2018)将复合水道划分为3个阶段:早期侵蚀, 辫状水道充填; 中期弯曲水道、水道— 堤岸沉积; 晚期水道废弃。2019年, Casciano等(2019)研究了意大利中部亚平宁山脉中新统复合水道与构造运动之间的关系, 认为逆冲断层速度、盆地下沉速度和物源供给, 控制复合水道的岩性特征、水道迁移方向及沉积演化。
综上所述, 复合水道的形成、发育及衰亡与重力流的发生、发展及消亡密切相关(Mayall et al., 2006; Leeuw et al., 2016; Li et al., 2018; 李华等, 2018)。重力流爆发初期, 能量高, 规模大, 侵蚀能量强, 在运动过程中以侵蚀作用为主, 形成U或V形地貌, 水道雏形形成, 随后水道规模逐渐增大。复合水道内部由于重力流能量高, 以侵蚀过路为主, 沉积作用极少, 仅在水道底部形成砾质轴部沉积, 水道两侧溢流/堤岸沉积不发育。随着重力流能量的逐渐减弱, 其在水道内形成一系列较小规模的弯曲水道, 其相互侵蚀— 切割— 充填, 发育砂质沉积。当重力流能量进一步减弱, 沙泥比降低, 沉积物浓度较低, 复合水道内部发育高弯曲的水道, 弯曲水道具有一定的迁移特征, 溢流/堤岸沉积发育。当重力流消亡时, 水道以半深水— 深水泥质沉积为主。值得注意的是, 不同地区复合型水道各异, 尽管水道发育过程较为类似, 但是其主控因素, 重力流流态变化及沉积过程都会有所不同, 需要结合传统地质研究、数值及物理模式以及现代深海观察等手段综合研究。
本类型水道较为特殊, 在自然界中较为少见, 对其形成机理研究相对较少。结合前人及团队研究成果, 推测垂向加积型水道与复合型水道形成机理大致相同, 但条件更为特殊。
1)规模相对较大, 水道底部发育呈空白或弱地震反射的轴部沉积, 顶部为连续性好、平行— 亚平行的泥岩沉积(图 2), 其沉积特征、演化过程与复合型水道类似, 都需要大规模、高能量、侵蚀能力较强的重力流。
2)垂向加积水道内部成层性特征较为明显, 无或很少小规模的重力流水道; 水道以垂向加积为主, 无迁移及相互侵蚀— 切割特征; 水道两侧发育小规模的溢流/堤岸沉积; 水道内部以砂岩、粉砂岩沉积为主, 仅在水道底部见少量含砾砂岩(图 2-C)。因此, 推测垂向加积型水道内部重力流可能规模相对复合型水道小, 水道内部重力流流态相对较为稳定, 沉积物浓度较低, 既可形成较细的砂岩沉积, 又可能发育稀释性浊流或溢流, 在水道两侧发育少量的堤岸/溢流沉积。但该类型水道形成机理还需进一步的研究。
迁移型水道是深水水道特殊类型之一, 根据其弯曲度可分为顺直和弯曲迁移型2种。前人对其成因进行了较为深入的研究(Rasmussen, 1994, 2003; Sé ranne and Abeigne, 1999; Keevil et al., 2006; Labourdette, 2007; Parsons et al., 2010; Zhu et al., 2010; 李华等, 2011, 2013; He et al., 2013; Li et al., 2013; Gong et al., 2016a, 2018a)。目前, 对于其成因主要有4种观点, 即(1)重力流自生环流(Keevil et al., 2006; Labourdette, 2007; Parsons et al., 2010); (2)重力流与等深流交互作用(Rasmussen et al., 2003; Herná ndez-Molina et al., 2008; Biscara et al., 2010; Zhu et al., 2010; He et al., 2013; Li et al., 2013; Ma et al., 2015; Zhong et al., 2015; Gong et al., 2016a, 2018a); (3)海平面升降(Rasmussen, 1994); (4)上升流受科氏力作用(Sé ranne和Abeigne, 1999)。其中, 重力流自生环流主要用于解释弯曲度较大的深水迁移型水道; 而低弯度(顺直)迁移水道则认为是等深流与重力流交互作用而成。本部分重点论述重力流成因的迁移型水道。
弯曲型迁移水道在西非尼日尔三角洲盆地、下刚果盆地、里奥穆尼盆地、巴西东部、东非鲁伍马盆地、墨西哥湾及南海北部较为发育。该类型水道弯曲度较大, 形态与曲流河类似, 并多在弯曲部分发生迁移, 形成侧积体沉积。前人通过现代观测、地震、露头、物理及数值模拟等对其成因进行了较为系统的研究(Keevil et al., 2006; Labourdette, 2007; Parsons et al., 2010)。重力流在弯曲水道内运动过程中, 特别是在水道弯曲部位, 会产生螺旋型的次生环流, 该环流与曲流河类似, 其在凹岸以侵蚀沉积为主, 而在凸岸发生沉积, 形成侧积体, 导致水道弯曲度逐渐增大(图 6)。尽管深水弯曲迁移型水道与曲流河存在诸多相似之处, 但其沉积环境差异巨大, 最明显的区别在于次生环流方向相反(Keevil et al., 2006; Amos et al., 2010; 黄璐等, 2013)。
重力流水道在沿斜坡向下延伸过程中, 由于外部环境及自身流体发生变化, 具有分叉的趋势, 形成规模较小、数量众多的分支小水道, 其在平面上多呈发散状、朵状, 剖面上为丘状, 这些分支小水道是朵叶(lobe)或前(末)端扇(frontal splay, terminal fan)的主体。分支小水道形成主要有2个方面的原因: 一是峡谷、堤岸发育的水道具有明显的限制作用, 当水道在延伸过程中, 随着峡谷规模减小及堤岸逐渐消失, 限制环境消失, 重力流携带的大量沉积物将被卸载于水道末端, 其内部发育发散状的分支小水道; 二是水道在延伸过程中具有分叉的趋势(李华等, 2011)。
重力流水道是重力流沉积的典型沉积单元, 其研究时间较长, 对其研究已获得了较为丰富的成果, 但仍存在一系列问题, 主要如下:
1)综合研究手段有待加强。重力流水道沉积研究多侧重于定性分析, 定量研究较少, 并缺乏有效的综合研究。目前, 对重力流水道研究以露头及地震资料为主, 并结合少量测井及岩心资料(Janocko et al., 2013a; Jolly et al., 2016; Hansen et al., 2017; Englert et al., 2018; Palozzi et al., 2018), 通过地质及地球物理方法对其进行表征, 进而定性分析其形成过程、主控因素及储集层分布规律。而现代观测(Parsons et al., 2010)、室内物理模拟及数值模拟等定量(Keevil et al., 2006; Janocko et al., 2013b; Motanated and Tice, 2016; Reimchen et al., 2016; Covault et al., 2017)、半定量研究工作较为薄弱。同时, 地质、地球物理、物理模拟及数字模拟等研究工作相对独立, 尚待进一步的结合、完善。
2)形成机制及主控因素研究尚待深入。重力流在运动过程中沉积动力、流体动力学变化过程及沉积响应是当前重力流研究的热点和难点之一(Janocko et al., 2013a, 2013b; Hughes, 2016; Leeuw et al., 2016; Motanated and Tice, 2016; Reimchen et al., 2016; Covault et al., 2017; Paull et al., 2018; Stevenson et al., 2018)。其中, 重力流水道的形成机制及主控因素研究涉及到诸多问题尚待研究。包括各种类型水道的形成、演化及主控因素; 弯曲水道的形成及演化, 低弯度和高弯度水道形成机理有何差异, 是否有内在联系; 水道弯曲度、充填过程与哪些因素有关; 重力流水道分叉及决口扇发育规律及影响因素; 水道— 朵叶转化的条件及因素; 不同影响因素的互补关系如何等。
3)储集层分布规律研究较为薄弱。重力流水道储集层分布规律是油气勘探的重要研究内容。而深水区“ 源-汇” 系统及重力流流体演化对有利储集层分布有着重要的影响(Gong et al., 2016b, 2018b, 2019)。尽管重力流通常携带大量的沉积物, 但是其砾、沙、泥、水等混杂, 导致重力流沉积通常储集性能差异明显, 具有明显的非均质性。前人对重力流水道储集层研究较为薄弱, 研究手段较为单一, 主要为地震和露头资料, 缺乏丰富的测试资料(Mayall et al., 2006; Cui et al., 2015; Zhang et al., 2015; Bell et al., 2018), 有必要综合运用多种手段对水道储集性能进行研究。
针对深水重力流水道研究存在的主要问题, 综合多种手段, 系统对比研究不同背景下的重力流水道形成机制, 是未来发展方向。具体表现在以下3个方面:
1)综合现代观测、地球物理、物理及数值模拟等综合研究手段, 进行定性、半定量及定量多尺度、全方位研究重力流水道是今后的发展趋势。其中, 建立及运用全球深水重力流水道大数据是其研究的新方向, 有利于促进重力流水道的综合研究。
2)系统对比研究不同背景、不同类型重力流水道形成机理, 探讨其形成过程与重力流性质及流态变化的联系。具体可从2个方面进行: 一是基于露头、地震、测井及钻孔等资料, 对重力流的物源供给、沉积物分布、粒度、规模、坡度、构造运动和气候等静态因素进行系统的对比研究; 二是结合现代观察、物理及数值模拟等手段, 对重力流演化过程中的速度、浓度、浊度和Fr等进行动态综合分析, 研究重力流的流体演化及沉积动力变化规律, 进而研究其沉积响应。
3)加强重力流水道储集层分布规律研究, 提高储集层的预测精度。复合型、加积型、迁移型及大规模的分支小水道形成机理不同, 储集层分布各异。不同时期的水道及水道的不同位置储集层分布也有所不同。基于“ 源-汇” 系统及重力流演化, 对不同类型、期次和部位的重力流水道储集层进行研究, 仍是主要方法和手段。
致谢 审稿专家及编辑提出了宝贵的意见和建议, 研究生吴广完成了图 6-B的清绘工作, 在此表示感谢。
(责任编辑 郑秀娟; 英文审校 龚承林)
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
|
[106] |
|