2018年5月28日中国吉林松原 M5.7级地震引起的液化构造*
邵珠福1,2, 刘泽璇1, 钟建华3, John Howell2, 栾锡武4, 冉伟民4, 刘晶晶1, 张文鑫1, 赵冰1
1 东北石油大学地球科学学院,黑龙江大庆 163318
2 Department of Geology and Petroleum Geology,University of Aberdeen,Aberdeen,AB24 3UE,UK
3 中国石油大学地球科学与技术学院,山东青岛 266580
4 中国地质调查局青岛海洋地质研究所,山东青岛 266071

第一作者简介 邵珠福,男,1984年生,毕业于中国石油大学(华东),现为东北石油大学地质系副教授,主要从事沉积学与石油地质学的教学和研究。E-mail: kangzhu09@yeah.net

摘要

2018 5 28日,吉林松原市宁江区毛都站镇牙木吐村发生M 5.7级地震( 45°16'12″N, 124°42'35″E),震源深度13 km,震中位于郯庐断裂带西北侧的扶余 /松原—肇东断裂带、第二松花江断裂带和扶余北断裂带交汇处。地震诱发震中距3 km范围内普遍的液化和地表裂缝,给当地居民带来严重灾害。可见液化构造以砂火山为主,其次为液化砂堆、液化砂脉和液化砂席等。液化砂火山又可分为有火山口型砂火山、无火山口型砂火山和无砂型(水)火山。地震液化伴生软沉积物变形构造有变形层理、负载构造和火焰构造、滑塌褶皱、碟状构造和包卷层理等。地震诱发液化砂火山形成过程包括液化层内超孔隙流体压力形成、上覆低渗透层破裂和水、砂喷出地表后砂涌 3个阶段。液化和流化砂体在上涌过程中会注入低渗透黏土层形成各种形态的砂脉、砂席和多种类型的变形构造。垂向上地震液化结构可划分为底部松散可液化层、下部液化变形层、上部液化变形层和地表砂火山 4层结构。液化层埋深 2~5 m,液化层厚度2 m。松原M 5.7级地震发震机制为 NE- SW( 35°~215°)方向挤压应力使断层活跃,推测扶余 /松原—肇东断裂是主要的发震断层。松原地震液化构造研究为现代地震活动区和灾害易发区预测提供依据,为地震引发的现代软沉积物变形构造研究提供丰富的素材,兼具将今论古意义,为揭示本世纪以来郯庐断裂带北段进入了一个强断裂和地震活跃阶段提供了最新的实际资料。

关键词: 地震; 软沉积物变形构造; 液化构造; 砂火山; 松原
中图分类号:P512.2 文献标志码:A 文章编号:1671-1505(2020)01-0075-22
Liquefaction structures induced by the M5.7 earthquake on May 28,2018 in Songyuan area,Jilin Province,China
Shao Zhu-Fu1,2, Liu Ze-Xuan1, Zhong Jian-Hua3, John Howell2, Luan Xi-Wu4, Ran Wei-Min4, Liu Jing-Jing1, Zhang Wen-Xin1, Zhao Bing1
1 School of Geosciences,Northeast Petroleum University,Heilongjiang Daqing 163318,China
2 Department of Geology and Petroleum Geology,University of Aberdeen,Aberdeen AB24 3UE,UK
3 School of Geosciences,China University of Petroleum,Shandong Qingdao 266580, China
4 Qingdao Institute of Marine Geology,China Geological Survey,Shandong Qingdao 266071,China

About the first author Shao Zhu-Fu,born in 1984,is an associate professor of the Department of Geology of Northeast Petroleum University,with a Ph.D. degree obtained from China University of Petroleum. He is currently engaged in sedimentology and petroleum geology. E-mail: kangzhu09@yeah.net.

Abstract

An earthquake of magnitude M5.7 occurred in Yamutu village,Songyuan City,Jilin Province of Northeast China(45°16'12″N,124°42'35″E)on May 28,2018,with a focal depth of 13 km. The epicenter is located at the intersection of the Fuyu/Songyuan-Zhaodong fault,Second Songhua River fault and Fuyu north fault which lie west of Tanlu Fault. The earthquake-induced widespread liquefication structures and ground cracks within 3 km from the epicenter,bringing serious disasters to the local surroundings. The visible liquefied structures are mainly composed of sand volcanos,followed by liquefied sand mounds,sand dikes and sand sills. The liquefied sand volcanoes can be divided into volcanoes with craters,volcanoes without craters and water volcanoes(sand-free). Other soft-sediment deformation structures(SSDSs)induced by earthquakes include deformation lamination,load structures and flame structures,deformation folds,dish structures,convolute bedding and some water-escape structures. The formation process of the sand volcanos comprises building up excess pore-fluid pressure in the liquefied layer,cracking of the low-permeability overlying layer and sand-water venting out of the ground surface inthree stages. During the upwelling,the liquefied sand is injected into the low-permeability layer to form sand veins,sand sills and various types of deformation structures. The vertical seismic liquefaction structure can be divided into the four parts of the bottom clean unconsolidated liquefiable sand,the lower liquefied deformation layer,the upper liquefied deformation layer and the ground surface liquefied sand volcano layer. The liquefaction occurred at a buried depth of 2-5 m,causing a thickness of 2 m of sand to liquefy. NE-SW(35°~215°)trending compressive stress that caused the fault to reactivate may be the seismogenic mechanism of the Songyuan M5.7 earthquake,and the Fuyu/Songyuan-Zhaodong fault was conjectured to be the major seismogenic fault. The study of the Songyuan seismic liquefaction structures provides guidance for the prediction of modern earthquake activity areas and disaster-prone areas and provides abundant basis material for studying earthquakes induced SSDSs in modern sediments,which will be of great significance in interpreting the theories of “the present is the key to the past”,which provides the latest practical data to reveal that the northern part of tanlu fault zone has entered into a stage of strong faults and seismicity since the beginning of this century.

Keyword: earthquake; soft sediment deformation structure; liquefaction structure; sand volcano; Songyuan
1 概述

软沉积物变形构造的形成取决于沉积物(未固结)液化敏感性、改变沉积物屈服强度状态的触发机制和足够的驱动力3个方面(Allen, 1986)。

变形机理随材料性质的不同而不同, 对于弹塑性地质沉积物, 足够大的应力超过其屈服强度或降低其固有屈服强度均可导致变形(Owen, 1987)。

液化变形是一种常见的无黏性软沉积物变形构造, 如液化砂脉、液化砂席、液化砂柱、液化砂(泥)火山、液化砂管、液化砂涌(sand blow)、液化砂尖顶(cusps)、包卷层理、碟状构造、负载构造、回缩构造、底辟构造、假结核和其他泄水构造等(Lowe, 1975, 1976; Allen, 1977, 1982; Owen, 1987, 1995; Obermeier, 1996; Takahama et al., 2000; Rodrí guez-Pascua et al., 2000; Tuttle, 2001; Massari et al., 2001; Kholodov, 2002; Lu et al., 2006; Moretti and Sabato, 2007; Glennie and Hurst, 2007; Chen et al., 2009; Bonini, 2009; Owen et al., 2011; Owen and Moretti, 2011; Ross et al., 2011; Gibert et al., 2011; Rowe, 2013; Su et al., 2014; Valente et al., 2014; 易雪斐等, 2015; Oppo and Capozzi, 2016; Ulvrova et al., 2016; Mazumder et al., 2016; 杜远生和余文超, 2017; Hurst and Vigorito, 2017; 钟建华等, 2018)。液化甚至可产生大型砂岩注入体(Satur and Hurst, 2007; Grippa et al., 2019)。

液化可分为静态液化、脉冲液化和循环液化3种类型(Owen, 1987), 可发生在冰川、荒漠、山间凹陷、河流、三角洲、潮汐带、滨浅海、大陆斜坡和海底扇等多种环境(Kuribayashi and Tatsuoka, 1975; Alfaro et al., 1997; Moretti et al., 2001; Moretti and Sabato, 2007; Shi et al., 2007; Perucca et al., 2009; Wagoner Loon, 2009; Alfaro et al., 2010; Wagoner Loon and Maulik, 2011; Moretti and Ronchi, 2011; Phillips et al., 2013; Owen and Santos, 2014; Ravier et al., 2015; 钟建华等, 2018; Koç -Taş gı n and Diniz-Akarca; 2018), 甚至可以发生在火星上(Mahaney et al., 2004; Wang et al., 2005), 但以湖泊和海洋为主。液化多发生在碎屑岩和碳酸盐岩中(Su et al., 2014)。地震、火山喷发、海啸和风暴水波、沉积物负载、冰川消融、冻土融化、成岩作用、潮汐、洪水、滑动滑塌、浊流、地下水活动、管道流、气体泄漏、底辟作用、海平面升降和生物活动等都可以触发液化活动(Burne, 1970; Allen and Banks, 1972; Owen, 1987; Obermeier, 1996; Murton et al., 2000; Harris et al., 2000; Moretti et al., 2001; Mahaney et al., 2004; Zhong et al., 2006; Mazumder et al., 2006; Glennie and Hurst, 2007; Greb and Archer, 2007; 钟建华等, 2008; Owen and Moretti, 2008, 2011; 梅冥相等, 2009; 钟建华和梁刚, 2009; Wagoner Loon, 2009; Alfaro et al., 2010; Owen et al., 2011; Rowe, 2013; Li et al., 2013; Chen and Lee, 2013; Miyakawa et al., 2013; Phillips et al., 2013; Tian et al., 2013; 邵珠福等, 2014a; Owen and Santos, 2014; Ravier et al., 2015; Ulvrova et al., 2016; Mazumder et al., 2016; Ko et al., 2017; Hurst and Vigorito, 2017; Capaccioni et al., 2017; 杜远生和余文超, 2017; 冯增昭等, 2017; 冯增昭, 2017; 钟建华等, 2018; Koç -Taş gı n and Diniz-Akarca, 2018)。

地震常常引起饱和砂沉积层液化和流化, 地震时, 饱含水的松散沉积物受到地震循环波剪切力影响, 静态孔隙水形成了具超孔隙水压力的水体, 并克服了砂颗粒间的内摩擦力而使砂颗粒发生流动, 颗粒重新排列。饱和砂沉积物变为无流体, 没有屈服强度, 上覆压力和颗粒之间支撑力转化为颗粒之间的孔隙流体压力, 此时液化产生并持续一段时间。随后颗粒恢复至接触状态, 排列更加紧密(Allen, 1982; Owen, 1987; Obermeier, 1996; Obermeier and Pond, 1999; Tuttle, 2001; Owen and Moretti, 2011)。随着地震周期性震荡, 剪切力持续增加, 孔隙流体压力逐步增强, 当孔隙流体压力(pore-fluid pressure)超过上覆地层压力或者上覆密封层的破裂压力时, 孔隙流体压力释放, 产生流化, 导致应变, 流体携带砂体流动, 于是产生泄水构造和变形(Obermeier, 1996; Owen et al., 2011; 邵珠福等, 2014a, 2014b, 2014c)。地震液化强度与震级、震中距、震源深度和地震持续时间有关, 同时受沉积物颗粒大小、厚度、固结程度、上覆非渗透层厚度等条件影响(Burne, 1970; Obermeier, 1996; Moretti et al., 1999; Valente et al., 2014)。液化在粗粉砂和细砂中最易发生(Owen and Moretti, 2011), 也有学者发现了砾石液化(Takahama et al., 2000)。一般引起液化最小震级M5~6级(杨承先, 1985; Allen, 1986; Obermeier and Pond, 1999; Ko et al., 2017)。

2018年5月28日1时52分, 松原市宁江区发生M5.7级地震(45° 16'12″N, 124° 42'35″E), 震源深度13 km, 随后28— 31日发生多次2~3级余震。地震引发周围3 km范围内广泛发育液化和流化构造, 其中以液化砂火山最为普遍。文中通过详细介绍液化构造种类、组合关系与空间分布等, 阐述其成因机制, 以期对古地震和现代地震研究提供素材。

2 地质概况

松原地处吉林省西北部, 地貌上属于平原区, 构造位置位于郯庐断裂带北段西侧、松辽盆地中央凹陷带(图 1)。松辽盆地为华北板块、西伯利亚板块和太平洋板块所夹持的前中生界基底上的中、新生代陆相叠合盆地(葛荣峰等, 2015; 孟元林等, 2012; 王璞珺等, 2015; 韩江涛等, 2018), 西侧为嫩江— 开鲁断裂和大兴安岭, 东侧为郯庐断裂带北段的依兰— 伊通断裂带和张广才岭, 北侧为讷谟尔河断裂带和小兴安岭, 南侧为赤峰— 开原断裂和燕山构造带, 主体呈NNE方向, 盆地发育经历了断陷— 坳陷— 反转三大演化阶段, 充填碎屑岩与火山岩沉积, 盆地内部断裂以NNE-NE和NNW-NW向为主(张功成等, 1997; 何委徽等, 2011)。

图 1 中国吉林松原地区构造位置图
F1— 嫩江— 开鲁断裂带; F2— 依兰— 伊通断裂带; F3— 赤峰— 开原断裂
红色圆点为1976年以来松辽盆地及周边地震震中位置, 黄色圆点为2018年5月28日松原宁江区牙木吐村M5.7级地震发育位置
Fig.1 Tectonic location of Songyuan area in Jilin Province, China

郯庐断裂带是中国东部中新生代以来长期活动的深大断裂, 长约2400 km, 其北段(肇兴— 昌图段)从松原地区东侧穿过, 北起黑龙江边的肇兴县, 南到昌图县, 走向NE40° ~45° , 延伸约 800 km, 分依兰— 伊通和密山— 敦化2条主干断裂(罗志立等, 2005; 万桂梅等, 2009)。郯庐断裂带中— 新生代断裂和地震活动十分频繁和强烈, 如在1668年在郯城— 莒县发生了华北地区最强烈的8.5级的大地震, 在其中段的沂沭断裂带及其附近地区的中— 新生代地层中, 已识别出由地震产生的软沉积变形构造(震积岩)的组级地震事件地层多达17个(田洪水等, 2017)。

松原地区周边断裂活动频繁(图 2), 最主要的有扶余— 肇东断裂、第二松花江断裂、扶余北断裂、孤店断裂、查干花— 道字井断裂(杨清福等, 2010; 薛艳等, 2015; 邵博等, 2015; 刘权锋等, 2017; 刘俊清等, 2017; 盘晓东等, 2018)。

图 2 中国吉林松原地区及周边断层分布(据刘权锋等, 2017; 修改)Fig.2 Fault distribution of Songyuan area and its surrounding areas in Jilin Province, China(modified after Liu et al., 2017)

1)扶余— 肇东断裂。北起肇东, 南到怀德, 为松辽盆地中央凹陷区和东南隆起区分界线, 走向NE, 倾向SE, 倾角70° ~80° , 为早、中更新世活跃断层(刘权锋等, 2017; 盘晓东等, 2018)。

2)第二松花江断裂。西起大安, 东到崇善, 全长超过500 km, 走向NW, 倾向SE, 倾角70° ~80° , 最新活动时代早、中更新世(杨清福等, 2010)。

3)扶余北断裂。扶余— 肇东断裂分支, 走向EW, 倾向S, 倾角70° ~80° , 为一长度近30 km的隐伏断裂, 全新世以来一直活跃(刘权锋等, 2017)。

4)孤店断裂。扶余— 肇东断裂分支, 走向NE-NW, 倾向SE, 长度超过60 km, 具有典型的正反转构造性质, 全新世以来仍有活动(邵博等, 2015; 刘权锋等, 2017)。

5)查干花— 道字井断裂。扶余— 肇东断裂南段分支, 走向NE-NW, 倾向NW, 长度超过30 km, 全新世以来仍有活动(刘权锋等, 2017)。

松原地处松嫩平原腹地, 第四纪松散沉积物厚度80~100 m, 主要为黑色淤泥与砂土质互层沉积, 地层从下到上依次为下全新统温泉河组、中全新统坦途组和上全新统郭家店组(郭伟静等, 2007; 赵福岳, 2010)。地下水位埋深一般小于5 m(田辉等, 2011; 盘晓东等, 2018)。据震中约1 km处3口浅钻井显示(图 3), 牙木吐村周边浅地表松散沉积物(郭家店组)可划分5个地层单元: ①为富含腐殖质黏土(黑土地), 厚度50~70 cm, 为农作物生长主力层位; ②浅棕色粉砂质黏土, 与地层单元①呈渐变关系, 粒度略粗, 厚度45~60 cm; ③红褐色黏土, 为古风化壳沉积, 可作为标志层全区对比, 厚度10~15 cm; ④浅灰色粉砂质黏土, 厚度10~15 cm, 粒度较单元③变粗, 含水饱和度增高, 与下覆单元呈渐变过渡关系; ⑤浅黄色细砂、粉砂, 分选、磨圆较好, 饱含水, 厚度约20 m。

图 3 中国吉林松原M5.7级地震震源区浅层沉积物岩性剖面图Fig.3 Lithologic profile of shallow sediments in sesmic region of the M5.7 earthquake in Songyuan area, Jilin Province, China

自2006年以来, 松原地区地震频发, M2级以上地震多达77次, 2013年以后地震活动尤为频繁, 且多以浅源地震为主(图 4)。

图 4 中国吉林松原地区2000年以来地震(M≥ 2)发育分布(数据截止到2019年6月3日)Fig.4 Tempotal distribution of earthquakes(M≥ 2)after 2000 in Songyuan area, Jilin Province, China (based on data before June 3rd, 2019)

有史记载最大1次地震为1119年发生在前郭县的6 34级地震(吴戈, 1991), 震中位于扶余断裂带与第二松花江断裂带交会处; 2006年3月和2013年10月在松原查干花镇发生的2次M5.5级地震群, 震中位置位于孤店断裂带和查干泡— 道字井断裂带交会处(邵博等, 2015; 盘晓东等, 2018); 2018年5月27日松原M5.7级地震震中位于扶余— 肇东断裂带和第二松花江断裂带交会处。

由于郯庐断裂带与其附近的断裂存在着主从与联动的活动关系(王小凤等, 2000), 因此, 处在郯庐断裂带北段近旁的扶余— 肇东及孤店等活断层与依兰— 伊通主干断裂带的活动也存在着上述主从与联动关系。

3 地震液化构造

松原地区2018年5月28日M5.7级地震导致地表松散沉积物(图 3中地层单元⑤)严重的液化现象, 在应力薄弱带形成液化喷砂流(砂火山喷发)。地震瞬间或者地震后不久(数分钟内), 液化层内强烈的超孔隙压力突破上覆地层重力或破裂压力, 沿早期的洞穴或者裂缝发生泥砂上涌, 形似喷泉, 砂火山喷发持续时间可达半小时, 当压力足够大, 液化泥砂喷流高度可达6~7 m(Obermeier, 1996)。砂火山喷流结束后, 喷出的泥砂在火山口堆积, 形成各种类型的砂火山, 如图 5所示, 地震结束后, 在震中距3 km范围内发现了多处液化砂火山。根据前述, 地层单元⑤为砂火山的液化源层, 上覆于第⑤层之上的①— ④层为非液化层(属非透水层), 层内发育液化侵入砂脉或砂席。

图 5 中国吉林松原M5.7级地震液化砂火山分布
黄色符号标注的点为砂火山分布的位置
Fig.5 Distribution of liquefied sand volcanoes of the M5.7 earthquake in Songyuan area, Jilin Province, China

3.1 液化砂火山

液化砂火山又称sand boil(Lowe, 1975; Obermeier et al., 1990, 1992; Obermeier, 1996; Li et al., 1996; Moretti et al., 1999; Tuttle, 2001; Massari et al., 2001; Kanibir et al., 2006; Ross et al., 2011; Moretti and Ronchi, 2011; Bhattacharya et al., 2011; Yamaguchi et al., 2012; Capaccioni et al., 2017), 是松原松原地区最普遍的地震触发构造, 也是最主要的液化构造类型。在松原M5.7级震源区周围3 km范围内发现液化砂火山出露点超过55个, 液化砂火山分布具有成群性, 且展布具有一定的优势方向(图 5)。根据形态和结构, 液化砂火山可分为3种类型。

3.1.1 有火山口型砂火山

地震产生液化和流化后, 超孔隙流体压力流体携带液化层砂体上涌, 沿着断裂带或者应力薄弱带形成通道(水腔)(Lowe and Robert, 1974; Lowe, 1983; Owen, 1996; Harris et al., 2000; Massari et al., 2001; Owen, 2003; Wagoner Loon, 2009; Yamaguchi, 2012; Phillips et al., 2013; Su et al., 2014), 喷出地表后, 形成砂火山(图 4)。随着能量减弱, 喷发停止, 形成火山口状沉陷(Collinson et al., 2006)、回填构造(Takahama et al., 2000)和砂涌(Obermeier, 1996; Tuttle, 2001; Owen and Moretti, 2011)。流体压力释放后, 两翼砂体因脱水形成朵叶体沉积, 平面上呈圆形, 宽度不等, 剖面上一般呈圆锥形或者穹窿状, 内部发育倾斜层理(Collinson et al., 2006)。

砂火山的规模与震级和距离震中远近有直接关系, 一般来讲, 地震等级越大、震中距越小, 砂火山越大, 2013年松原M5.8级地震诱发单个液化喷砂面积超过300 m2(魏美璇等, 2016)。如图 6所示, 松原M5.7级地震在距离震中800 m处可见最大砂火山沉积直径超过12 m(图 6-a), 随着震中距增加, 砂火山规模减小, 最小者直径仅5 cm, 一般砂火山直径2~8 m, 砂火山口直径0.5~1 m。砂火山沉积厚度在火山口周围大, 向外逐渐变小, 厚者可超过0.5 m, 薄者仅为2 cm。砂火山的分布可分对称型和非对称型, 一般来讲, 地表地形平坦、无障碍物阻挡并且砂体分布范围大者分布均匀(图 6-b), 地势高地起伏、受地表断裂影响和障碍物阻挡处, 砂火山不对称(图 6-c, 6-d)。同时砂火山对称形态可能受风向等因素影响。砂火山的分布有孤立的(图 6-a, 6-d), 也有成群分布(图 6-b, 6-c), 成群分布的砂火山一般具有优势排列方向, 研究区成群砂火山分布优势方向为N-S方向(图 5), 其次为NW-SE方向。

图 6 中国吉林松原M5.7级地震液化砂火山形态及组合特征
a— 孤立的有火山口型砂火山, 直径约12 m, 砂火山口直径1.3 m, 照片拍摄位置为图 5中点A; b— 有火山口型砂火山组合, 火山口直径0.7~1.0 m, 多期砂火山形成同心环状“ 阶地” , 边缘发育冲沟, 砂火山沉积表面发育小型河道, 照片拍摄位置为图 5中点B; c— 条带状砂火山组合, 规模较小, 厚度2 cm, 照片拍摄位置为图 5中点D; d— 孤立的无火山口型砂火山, 丘状, 长3.1 m, 宽1.6 m, 高0.45 m, 长轴方向近N-S, 照片拍摄位置为图 5中点E
Fig.6 Shape and combination of liquefied sand volcanoes of the M5.7 earthquake in Songyuan area, Jilin Province, China

随着周期性地震波影响, 砂火山喷发也具有周期性特点。当喷发结束后, 砂体侧向流动可形成倾斜层理, 如图 7所示, 倾斜层理形态与砂火山沉积基本保持一致, 从火山口侧缘向四周尖灭, 在靠近火山口内部, 由于喷发回流作用, 层理多向砂火山通道内部延伸, 流体携带泥砂, 充填火山口, 形成回填构造(Takahama et al., 2000), 在此过程中在火山口沉积边缘形成冲沟, 两侧朵叶体沉积表面发育小型表面水系(图 6-b)。松原砂火山沉积倾斜层理单层厚度0.5~5 cm(图 8-a至8-c), 局部微层序可见层理显正粒序特征(图 7; 图 8-b), 代表孔隙流体压力逐渐减小的单次喷发过程(Rodrí guez-Pascua et al., 2015), 喷发开始时, 能量较强, 沉积物颗粒较粗, 随后能量减弱, 颗粒变细。在垂向剖面中, 砂火山沉积透镜体经常会被误认为沉积层, 倾斜层会被误认为是交错层理(Collinson, 2006)。

图 7 砂火山沉积内部结构示意图(据Obermeier, 1996; Su et al., 2014; 修改)Fig.7 Sketch showing internal structure of sand volcanoes(modified after Obermeier, 1996; Su et al., 2014)

图 8 中国吉林松原M5.7地震砂火山沉积内部结构
a— 砂火山沉积侧翼倾斜层理和负载构造; b— 砂火山沉积内部正粒序沉积和倾斜层理; c— 砂火山内部倾斜层理和底部侵蚀(负载构造); d— 砂火山内部泥质碎屑与底部负载构造。照片来自于小型探槽内部(深度约30 cm), 探槽位于砂火山口侧翼约1 m处(图 5中点A)
Fig.8 Internal structure of sand volcanoes of the M5.7 earthquake in Songyuan area, Jilin Province, China

地震液化, 超孔隙流体压力流体携带砂层向上逃逸, 侵蚀两壁低渗透黏土, 形成泥质角砾, 泥质角砾随砂体一起上涌、喷出并沉积(Obermeier, 1996; Su et al., 2014), 松散黏土颗粒经过一定距离的搬运厚具有较好的分选性和磨圆性, 且沉积后呈叠瓦状排列(图 7; 图 8-d), 也有学者指出砂火山沉积中无泥质角砾沉积(Li et al., 1996)。

3.1.2 无火山口型砂火山

无火山口型砂火山是丘状或坟堆状砂体沉积, 无明显火山口沉降带, 砂火山沉积中间最高, 向四周变低, 平面上近圆形或椭圆形, 剖面呈透镜状或者圆锥状, 孤立或者呈条带状分布。砂火山直径0.2~10 m, 高0.1~0.6 m。如图 6-d所示孤立无火山口型砂火山沉积, 平面呈椭圆状, 长轴方向近N-S。

根据无火山口型砂火山的上述特征且与具有火山口的砂火山对比, 推断无火山口型砂火山形成满足2个条件: 一是有足够的液化砂体供应, 使得具超孔隙流体压力的液化砂喷出地表后, 其涌道能及时充填; 二是超孔隙水压力不足, 涌道空间刚被充填, 超孔隙水压力就被消耗已尽而不足以使液化砂继续喷出, 从而形成了无火山口型砂火山堆积。

3.1.3 无砂型(水)火山

无砂型(水)火山是指砂火山喷发时只喷出水, 无砂体喷出和堆积, 只存在一个火山口。如图 9所示无砂型火山口近圆形, 直径2.2 m, 火山口沉降45 cm。火山口边缘发育同心环形正断层, 火山口内部发育多组不同方向断裂。

图 9 中国吉林松原地震无砂型火山口
照片拍摄位置为图 5中点C
Fig.9 Crater of water volcanoes(sand-free)of the M5.7 earthquake in Songyuan area, Jilin Province, China

无砂型(水)火山口沉积还没有学者报道, 在研究区只发现1处, 形成此种类型火山口需要特殊的地质和水动力条件: 首先, 液化区砂体供应缺乏或者无砂体沉积, 使得流体上涌时并未携带砂体; 其次, 超孔隙流体压力值在适当范围, 不宜过大, 流体上涌突破地表时迅速减小至零, 因此难以携带砂体喷出。有学者指出该类凹坑属于“ 震塌陷” 、“ 震陷坑” 、“ 震陷向斜” (陈希哲, 2003; 田洪水等, 2015)。岩浆喷发火山口和砂火山口的形成在某种意义上都有塌陷成因, 此类型火山沉积的动力学过程还需要进一步细致研究。

地震诱发砂火山的形成主要包括地震前、地震时和地震后3个阶段(Rodrí guez-Pascua et al., 2015)。地震前阶段, 饱含水的松散沉积物以细砂为主, 分选和磨圆较好, 上部被低渗透性黏土层或粉砂质黏土层覆盖, 覆盖层的厚度不宜过大, 才能满足形成砂火山形成的物质条件(图 10-a)。地震时, 受地震波剪切力影响, 地面震动产生裂缝, 松散砂层液化, 孔隙水向上运动, 聚集在黏土层和砂层分界处(图 10-b)。单次液化结束后, 砂再次沉积, 排列更加紧密, 超孔隙流体压力持续聚集于砂层和黏土层分界面, 孔隙流体压力不断增加, 产生上举浮力; 上覆黏土层因持续震动而上下波动, 裂缝进一步扩大(图 10-c)。地震结束后, 当孔隙流体压力逐步升高并超过上覆黏土层水力破裂压力时, 产生水力压裂断层, 高能水体喷射出地表形成火山(图 10-d), 随后引起更广泛的砂体液化和流化, 水的上移携带砂体持续喷出地表形成砂火山, 水和砂喷射引起火山口两侧地面上下波动(图 10-e)。持续的地面波动使地表沉降区和隆升区相间, 因此产生更多断裂使砂和水继续喷出形成砂火山(图 10-f)。当地震能量全部释放, 超孔隙流体压力减小至静压平衡, 砂火山喷发结束, 液化和流化停止, 喷出地表流动的砂因脱水停止运动形成砂火山沉积, 砂火山过程结束(图 10-g)。

图 10 地震诱发砂火山形成过程示意图(据Rodrí guez-Pascua et al., 2015; 修改)Fig.10 Sketch showing forming process of sand volcano induced by earthquakes(modified after Rodrí guez-Pascua et al., 2015)

3.2 砂堆

松原M5.7级地震诱发了广泛的砂堆构造(图 11), 砂堆构造形成于2种环境, 一种是距离地面约2 m高的沙丘上, 沙丘以古河道边滩沉积细砂和粉砂为主, 其次为风成砂(图 11-a); 另外一种砂堆发育于砂火山沉积体上, 火山口内部和侧翼朵叶体都有砂堆存在(图 11-b, 11-c)。砂堆形态类似于火山锥, 没有或者有很小的火山口, 平面呈圆形, 剖面呈透镜状, 直径3~15 cm, 砂堆高度3~8 cm。砂堆大多成群发育, 砂堆沉积周围颗粒较粗, 向中间锥顶颗粒逐渐变细, 砂堆内部见小型倾斜层理, 倾角30° 左右。

图 11 中国吉林松原地震诱发砂堆构造
a— 古河道边滩细砂顶部砂堆, 孤立, 直径约13 cm, 照片拍摄位置为图 5中点F; b— 砂火山口内部砂堆, 孤立, 直径约4~7 cm, 照片拍摄位置为图 5中点B; c— 砂火山侧翼朵页体表面砂堆沉积, 组合分布, 直径3~5 cm, 照片拍摄位置为图 5中点B
Fig.11 Mounds structures induced by the M5.7 earthquake in Songyuan area, Jilin Province, China

砂堆构造是一种特殊的砂火山构造(Su et al., 2014)。砂堆是由地震液化诱发, 但其形成需要特殊的地质条件。首先, 砂堆形成于砂体之上而非黏土之上, 且砂体分选和磨圆较好, 易于液化或者本身就是液化体; 其次, 地震液化形成超孔隙流体压力要在适度范围, 不宜过小, 否则难以喷发, 也不宜过大, 否则形成大型砂火山; 再者, 砂堆形成时砂体处于欠饱和状态, 砂子喷出成为砂体后不能流动或者只能短距离运移, 砂子多靠重力近源堆积, 因此砂堆沉积最前端(裙边)沉积颗粒较粗, 这不同于常规砂火山沉积。地震液化导致流体携带流化砂体上涌, 冲出地表黏土时继续向上运移, 能量迅速衰减, 喷出沙丘顶面形成第1种砂堆(图 11-a), 当超压水和砂冲破封盖层喷出地表形成砂火山后, 在其内部仍存在超孔隙压力, 因此流体携带砂喷出砂火山沉积形成第2种砂堆, 因能量衰减, 所以砂堆规模较小, 几乎没有火山口(图 11-b, 11-c)。

3.3 液化砂脉和砂席

液化砂脉和砂席规模受震级和震中距控制, 松原M5.7级地震液化砂脉宽度3~11 cm, 侧向延伸长度0.2~2 m, 砂席厚度5~15 cm, 侧向延伸超过50 m(图 12)。一般液化砂层厚度大、上覆非液化软沉积层的厚度适中、地下水位线高是形成砂脉和砂席的有利条件。液化砂脉和砂席是最常见的地震诱发液化变形构造之一(Obermeier et al., 1990; Obermeier and Pond, 1999; Obermeier and Dickenson, 2000; Rodrí guez-Pascua et al., 2000; Tuttle, 2001; Shi et al., 2007; Perucca et al., 2009; Wagoner Loon, 2009; Berra and Felletti, 2011; Topal and Ö zkul, 2014; Hilbert-Wolf et al., 2016; Ko et al., 2017; Brogi et al., 2018; 钟建华等, 2018)。近几年, 在郯庐断裂带中段的中— 新生界中已识别出了多个发育液化砂脉等的地震事件地层(田洪水等, 2005, 2016, 2017; Tian et al., 2015, 2016; 张邦花等, 2016)。

图 12 中国吉林松原地震液化砂脉和砂席
a— 柱状液化砂脉, 宽3~7 cm, 高10 cm, 垂直地表裂缝充填, 照片拍摄位置为图 5中点A; b— 浅钻岩心中云朵状液化砂脉, 砂脉埋深45 cm, 照片拍摄位置为图 5中点A; c— 地层液化砂脉, 云朵状, 照片拍摄位置为图 5中点A; d— 液化含砾粗砂脉, 埋深1.1 m, 照片拍摄位置为图 5中点B; e— 液化砂席, 厚度7~15 cm, 距离地表 55 cm, 照片拍摄位置为图 5中点G.
Fig.12 Liquefied dike and sill structures induced by the M5.7 earthquake in Songyuan area, Jilin Province, China

砂脉和砂席的形成机理有3种, 分别是水力压裂、侧向传播和表面震动(Obermeier and Pond, 1999)。当液化强度更大时, 砂脉和砂席演变为大型砂岩侵入体, 厚度可达数十米, 延伸范围几千平方千米(Obermeier et al., 1991; Satur and Hurst, 2007; 钟建华等, 2018; Grippa et al., 2019)。

地震液化后, 除了发育砂火山外, 液化砂层会侵入上覆低渗透黏土层中, 砂火山通道和砂与黏土分界面是最有利的场所, 其次是黏土层内部各岩性分界面(图 3)。砂脉的方向和形态无确定性, 云朵状、飘带状、蘑菇状、柱状等皆有可能。砂席一般为水平或顺层发育的砂脉, 其规模一般大于正常砂脉。

3.4 其他液化伴生构造

与砂火山和砂脉等地震震动液化变形构造共(伴)生其他软沉积物变形构造主要有负载构造、火焰构造和变形层理(图 8-a, 8-c, 8-d; 图 12-a)。在不同的强地震区, 这些变形构造是最为常见, 如许多学者(Alfaro et al., 1997, 2010; Owen et al., 2011; Tian et al., 2013; Topal and Ö zkul, 2014)识别出的负载构造; Pisarska-Jamro z˙y 等(2019)识别出的火焰构造和Allen(1977)Obermeier(1996)Kundu 等(2011)Alfaro 等(2010)鉴别出的包卷层理等。

4 垂向地震液化序列

结合区域地质特点, 总结松原M5.7级地震三维液化构造沉积模式(图 13)。垂向上, 松原M5.7级地震液化构造具有明显分层性: ①最底层地震液化层:厚度大、分选和磨圆较好的未固结细砂及易受地震剪切力影响而液化。地下水位线也位于该层, 液化构造形成的前提是高渗透松散砂体饱含水, 水位线不宜过低, 否则难以液化, 一般2~5m。变形层理、包卷层理、泄水构造等常在该层发育。②下部液化构造带:位于上覆低渗透黏土下端, 距离砂层较近, 为第1层液化构造带。受地震液化和流化作用影响, 高孔隙压力流体和砂上涌, 穿过岩性分界面, 侵入上覆黏土中形成砂脉、砂席, 伴生变形层理、负载构造等。③上部液化构造带:液化上涌流体携带砂及部分泥屑运移至近地表时, 部分能量减弱, 加之裂缝和岩性界面或层理等影响, 广泛发育砂脉、砂席等液化构造, 伴生负载构造、变形层理等。④地表液化构造层:主要为液化砂火山和砂堆构造, 伴生砂脉、负载构造等。

图 13 松原M5.7级地震液化构造模式图(据Collinson, 2006; 修改)Fig.13 Model of liquefied structures induced by the M5.7 earthquake in Songyuan area(modified after Collinson, 2006)

5 讨论

自2006年以来, 松原地区进入地震活跃期, 尤其是2013年松原前郭地区M5.8级震群发育, 说明该区构造活动进入活跃期。学者们认为近东西向挤压应力场诱发的NE向和NW向断裂活动为震源(陈作全等, 2015; 李君和王勤彩, 2018), 然而学者们对于该地区发震断层意见不一(图 1-b), 如通榆— 长春断裂(薛艳等, 2015)、第二松花江断层(杨清福等, 2010)、孤店隐伏断裂(邵博等, 2015)、扶余/松原— 肇东断裂(王亮等, 2015; 刘权锋等, 2017), 查干花— 道字井断裂(盘晓东等, 2018), 也有学者认为是油田生产活动诱发(刘俊清等, 2017)。

2018年5月松原M5.7级地震后, 发现震中牙木吐村附近产生了1条新的正断层, 文中称之为牙木吐断裂(图 5)。如图 14所示, 该断裂走向NE35° , 断裂带宽度1.5~2.8 m, 断距10~30 cm。牙木吐同震断层具有典型双断地堑结构, 是地震应力释放至地表的反映(Ma et al., 2009; 田洪水等, 2015)。

图 14 中国吉林松原M5.7级地震后形成的牙木吐断裂
a— 牙木吐断裂, 为双断式地堑结构, 照片拍摄位置为图 5中点A; b— 牙木吐断裂局部形态, 错断马路, 照片拍摄位置为图 5中点H
Fig.14 Yamutu fault formed after the M5.7 earthquake in Songyuan area, Jilin Province, China

地震区周围广泛发育张裂缝, 尤其在牙木吐断裂周边, 裂缝尺寸和发育密度增大(图 15)。裂缝可分为2种类型:一种为共轭节理, 成对出现, 为追踪张节理, 2组节理走向分别为0° ~180° 和80° ~260° (图 15-a); 另外一种为0° ~180° 方向占绝对优势的张裂缝, 分布稳定, 单条裂缝延伸可超过50 m, 裂缝宽度0~4 cm, 裂缝密度1条/m。绝大多数裂缝没有被充填, 偶见个别裂缝充填砂(图 15-b)。

图 15 中国吉林松原M5.7级地震地面裂缝及应力模式
a— 2组地面追踪张节理, 延伸方向分别为0° ~180° 和80° ~260° , 照片拍摄位置为图 5中点Ⅰ ; b— 地面张裂缝, 延伸方向0° ~180° , 照片拍摄位置为图 5中点Ⅰ ; c— 松原地震区域应力场模式
Fig.15 Ground cracks and stress pattern of the M5.7 earthquake in Songyuan area, Jilin Province, China

结合区域地质资料和研究成果, 根据地震后地面断裂和节理的类型和方向, 初步判定松原2018年5月M5.7级地震区域应力场特征为区域最大主压应力方向为40° ~220° , 最小主拉应力方向为130° ~310° (图 15-c)。牙木吐断裂延伸方向与扶余/松原— 肇东断裂方向基本一致(图 1-b), 推测扶余/松原— 肇东断裂为本次地震的发震断层。

松嫩平原第二松花江流经松原, 距离M5.7级地震震中距离不足500 m, 平均水位线129.32~134.95 m(田辉等, 2011), 牙木吐村周边海拔高度128~137 m, 5月下旬该区土地冰冻消融, 地震区地下水位较浅, 推测为2~5 m。地震活动产生的循环剪切力在该深度大于初始液化剪切力(详见Obermeier, 1996; Fig.3), 因此极易诱发地震液化(Owen and Moretti, 2011; 赵栖远, 2012)。

地震诱发液化砂火山的另一个重要条件是上覆非渗透层厚度不宜过大, 如果太厚会增加上覆载荷压力和抗剪强度, 因而无法液化, 容易导致液化封盖层厚度1~5 m。松原地区地表黏土厚度1.35~1.5 m, 具有液化发生的有利封闭层条件。也有学者报道液化产生的封盖层厚度超过10 m(Obermeier and Pond, 1999; Chan et al., 2007; Wheatley et al., 2016)

足够大的砂层厚度是液化前提, 松原地区黏土层下未固结干净砂层厚度超过20 m(图 3中地层单元⑤)。按照中国地震烈度表(1980), 松原M5.7级地震烈度为Ⅶ 级, 依据Ishihara(1985)研究方法(Obermeier and Dickenson, 2000), 松原地震地表加速度为0.17 g, 得出松原M5.7级地震液化砂层厚度约为2 m。

地表液化范围受控于震级和震源深度, 依据不同学者给出的最大液化震中距与震级相关关系公式或图版, 松原M5.7级地震最大液化半径2.878 km(Kuribayashi and Tatsuoka, 1975), 或2~10 km(Obermeier and Pond, 1999)、4~13 km(Tuttle, 2001; Bonini, 2009)。通过野外考察, 发现松原地震地表可见最大液化半径3 km, 与上述研究结果基本吻合。

6 研究意义

松原M5.7级地震液化构造提供了研究现代地震的一个很好例子。作为重要的一种软沉积物变形构造, 液化变形构造可产生于多种沉积环境, 由多种机制触发(Moretti, 2016; Shanmugam, 2017), 地震成因液化构造的识别是研究热门也是难点, 许多学者给出相关判别标准(Obermeier, 1996; Tuttle, 2001; Moretti and Sabato, 2007; Owen and Moretti, 2011)。本研究为这些标准提供证据, 尤其是为研究古地震和古液化构造提供三维空间参数(Tuttle, 2001), 弥补了实验模拟的缺陷(Nichols et al., 1994; Owen, 1996; Moretti et al., 1999; Ross et al., 2011; Tian et al., 2013)。液化构造也是恢复地震等级的重要参数, 因此具有重要的“ 将今论古” 价值。

松原是地震活跃带, 频发的地震给当地农业和油田开发带来了严重灾害, 地震液化构造研究能够预测灾害易发区和影响范围, 因而能够指导当地工农业生产、建筑施工和油田勘探和生产动态监测。

松原地处松辽盆地腹地, 频发的地震表明周边构造运动活跃, 该研究有助于认识区域构造应力场及断层活动规律, 为盆地的演化乃至板块的活动研究提供基础数据, 具有“ 将今论未来” 价值。

陈颙(2000)认为, 关于郯庐断裂带这类活动深断裂— 地震带与其附近100~200 km的活动陆块边缘与强震区, 共同构成活动构造带, 而且郯庐断裂带邻近地区所发生的强地震一般与郯庐断裂带的活动有关。松原地区处在郯庐断裂带北段近旁。因此, 结合松原地区2006年以来发生的若干次地震, 本研究为揭示了郯庐断裂带目前的活动特点— — 本世纪以来郯庐断裂带北段进入了一个强断裂和地震活跃阶段, 提供最新的翔实资料。

7 结论

1)松原M5.7级地震诱发大量的液化变形构造, 最常见的是砂火山构造, 包括有火山口型砂火山、无火山口型砂火山和无砂型(水)火山3类, 其次是砂堆构造、液化砂脉和砂席等。其他地震成因的变形构造如负载构造、火焰构造、包卷层理等也有发育, 数量较少。

2)地震诱发液化砂火山形成过程包括液化层内超孔隙流体压力形成、上覆低渗透层破裂和水、砂喷出地表后砂涌3个阶段。松原M5.7级地震液化构造可以分为最底部地震液化层、下部液化构造带、上部液化构造带和地表液化构造层4个序列。液化砂火山分布具有分带性, 主要延伸方向N-S, 其次为NW-SE, 地下液化构造主要为砂脉、砂席和其他液化变形构造。

3)地下水位线2~5 m, 上覆低渗透黏土层厚1.35~1.5 m, 松散砂层厚度超过20 m, 是松原M5.7级地震诱发广泛液化的有利条件。地震液化砂层厚度超过2 m, 地表震中距3 km范围内可见液化砂火山构造。

4)松原M5.7级地震后地表发育NE34° 地堑式正断层, 结合广泛分布的0° ~180° 向张裂缝和2组追踪张裂缝(0° ~180° 与80° ~260° )判断松原地震区最大主压应力方向为40° ~220° , 最小主拉应力方向为130° ~310° , 扶余/松原— 肇东断裂很可能是发震断层。

5)松原M5.7级地震液化构造研究为古代地震和液化构造研究提供三维空间参数, 为预测现代地震活动区和灾害易发区提供方向, 为区域构造研究提供基础, 兼具“ 将今论古” 和“ 将近论未来” 意义, 并对揭示21世纪以来郯庐断裂带北段进入了一个强断裂和地震活跃阶段有着重要意义。

致谢 感谢吉林油田王洋工程师、陈伟工程师和彭东昊工程师提供野外考察帮助; 感谢Monash University的Lü Wang博士和University of Aberdeen的Gail Maxwell 博士提供的沉积学方面的宝贵建议; 感谢东北石油大学平贵东博士、谢昭涵博士, 我们进行了关于区域构造应力场许多讨论。感谢3位匿名审稿人对初稿的修改建议。

(责任编辑 李新坡; 英文审校 龚承林)

参考文献
[1] 陈希哲. 2003. 土力学地基基础. 北京: 清华大学出版社, 414-419, 511-521.
[Chen X Z. 2003. Foundation of Soil Mechanics. Beijing: Tsinghua University Press, 414-419, 511-521] [本文引用:1]
[2] 陈颙, 李娟, 李丽. 2000. 地震、断层与断层作用. www. jy. zjdz. gov. cn: 科技委论坛, No. 13: 1-5.
[Chen Y, Li J, Li L. 2000. Earthquake and fault with faulting. www. Jy. zjdz. gov. cn: Tribune of Science and Technology Committee, No. 13: 1-5] [本文引用:1]
[3] 陈作全, 武成智, 张淑洁, 肖玉明, 王迪. 2015. 2013前郭M5. 8级强震群序列特征分析. 防灾减灾学报, 31(3): 11-15.
[Chen Z Q, Wu C Z, Zhang S J, Xiao Y M, Wang D. 2015. Sequence analysis of strong earthquake group in the M5. 8 in 2013. Journal of Disaster Prevention and Reduction, 31(3): 11-15] [本文引用:1]
[4] 杜远生, 余文超. 2017. 地震和非地震引发的软沉积物变形. 古地理学报, 19(1): 65-72.
[Du Y S, Yu W C. 2017. Earthquake-caused and non-earthquake-caused soft-sediment deformations. Journal of Palaeogeography(Chinese Edition), 19(1): 65-72] [本文引用:2]
[5] 冯增昭, 鲍志东, 郑秀娟, 王媛. 2017. 中国软沉积物变形构造及地震岩研究简评. 古地理学报, 19(1): 7-12.
[Feng Z Z, Bao Z D, Zheng X J, Wang Y. 2017. Researches of soft-sediment deformation structures and seismites in China: A brief review. Journal of Palaeogeography(Chinese Edition), 19(1): 7-12] [本文引用:1]
[6] 冯增昭. 2017. 一次成功的专题研讨会: “多成因的软沉积物变形构造及地震岩”. 古地理学报, 19(1): 1-6.
[Feng Z Z. 2017. A successful symposium of “Multi-origin of soft-sediment deformation structures and seismites”. Journal of Palaeogeography(Chinese Edition), 19(1): 1-6] [本文引用:1]
[7] 葛荣峰, 张庆龙, 王良书, 解国爱, 徐士银, 陈娟, 王锡勇. 2015. 松辽盆地构造演化与中国东部构造体制转换. 地质论评, 56(2): 180-195.
[Ge R F, Zhang Q L, Wang L S, Xie G A, Xu S Y, Chen J, Wang X Y. 2015. Tectonic evolution of Songliao Basin and the prominent tectonic regime transition in eastern China. Geological Review, 56(2): 180-195] [本文引用:1]
[8] 郭伟静, 陈树良, 刘杰. 2007. 松辽盆地南缘四平—双辽地区第四系全新统地层划分. 地质与资源, 16(1): 7-11.
[Guo W J, Chen S L, Liu J. 2007. Quaternary Holocene Stratigraphy in Siping-Shuangliao area in the south margin of Songliao Basin. Geology and Resources, 16(1): 7-11] [本文引用:1]
[9] 韩江涛, 郭振宇, 刘文玉, 侯贺晟, 刘国兴, 韩松, 刘立家, 王天琪. 2018. 松辽盆地岩石圈减薄的深部动力学过程. 地球物理学报, 61(6): 2265-2279.
[Han J T, Guo Z Y, Liu W Y, Hou H S, Liu G X, Han S, Liu L J, Wang T Q. 2018. Deep dynamic process of lithosphere thinning in Songliao basin. Chinese Journal of Geophysics, 61(6): 2265-2279] [本文引用:1]
[10] 何委徽, 真允庆, 陈中, 巫静, 刁谦, 韩红庆, 包怡, 周瑾, 杨伟, 王佩业, 张宏伟, 吴金凤, 孙雪芳. 2011. 松辽盆地“三层式”构造格局与深部找藏. 地质调查与研究, 34(3): 228-240.
[He W H, Zhang Y Q, Chen Z, Wu J, Diao Q, Han H Q, Bao Y, Zhou J, Yang W, Wang P Y, Zhang H W, Wu J F, Sun X F. 2011. Three-layer tectonic framework and deep oil reservoir prospecting in the Songliao Basin. Geological Survey and Research, 34(2): 228-240] [本文引用:1]
[11] 李君, 王勤彩. 2018. 2013年松原5级震群序列精定位、震源机制解及发震构造特征. 地震, 38(4): 62-73.
[Li J, Wang Q C. 2016. Relocation and focal mechanism of the Songyuan earthquake swarm sequence in 2013. Earthquake, 38(4): 62-73] [本文引用:1]
[12] 刘俊清, 刘财, 雷建设, 甘卫军, 杨清福, 张晨侠. 2017. 2013年前郭MS 5. 8震群矩张量研究. 地球物理学报, 60(9): 3418-3431.
[Liu J Q, Liu C, Lei J S, Gan W J, Yang Q F, Zhang C X. 2017. The moment tensors of the 2013 Qianguo MS5. 8 seismic swarm. Chinese Journal of Geophysics, 60(9): 3418-3431] [本文引用:2]
[13] 刘权锋, 盛俭, 卢滔, 张洪艳, 盘晓东. 2017. 扶余/松原—肇东断裂研究综述. 防灾科技学院学报, 19(3): 8-16.
[Liu Q F, Sheng J, Lu T, Zhang H Y, Pan X D. 2017. Research status of Fuyu/Songyuan-Zhaodong Fault. Journey of Institute of Disaster Prevention, 19(3): 8-16] [本文引用:6]
[14] 罗志立, 李景明, 李小军, 刘树根, 赵锡奎, 孙玮. 2005. 试论郯城—庐江断裂带形成、演化及问题. 吉林大学学报(地球科学版), 35(6): 699-706.
[Luo Z L, Li J M, Li X J, Liu S G, Zhao X K, Sun W. 2005. Discussion on the formation, evolution and problems of the Tancheng Lujiang Fault Zone. Journal of Jilin University(Earth Science Edition), 35(6): 699-706] [本文引用:1]
[15] 梅冥相, 高金汉, 孟庆芬, 刘智荣. 2009. 前寒武纪与微生物席相关的粉砂岩岩墙: 以天津蓟县古元古界串岭沟组为例. 古地理学报, 11(1): 37-50.
[Mei M X, Gao J H, Meng Q F, Liu Z R. 2009. Microbialmatrelated silty dykes of the Precambrian: An example from the Paleoproterozoic Chuanlinggou Formation at Jixian section in Tianjin. Journal of Palaeogeography(Chinese Edition), 11(1): 37-50] [本文引用:1]
[16] 孟元林, 胡安文, 乔德武, 解习农, 潘雪梅, 王建伟, 田伟志. 2012. 松辽盆地徐家围子断陷深层区域成岩规律和成岩作用对致密储层含气性的控制. 地质学报, 86(2): 325-334.
[Meng Y L, Hu A W, Qiao D W, Xie X N, Pan X M, Wang J W, Tian W Z. 2012. Regional digenetic law and control of diagenesis over gas-bearing capacity of tight reservoirs in deep Xujiaweizi Fault Depression, Songliao Basin. Acta Geologica Sinica, 86(2): 325-334] [本文引用:1]
[17] 盘晓东, 贾若, 康建红, 刘冰冰. 2018. 2013年10月31日吉林前郭M 5. 8震群研究. 国际地震动态, (4): 80-89.
[Pan X D, Jia R, Kang J H, Liu B B. 2018. Research on Qianguo M5. 8 earthquake swarm on October 31, 2013. Recent Developments in World Seismology, (4): 80-89] [本文引用:5]
[18] 邵博, 沈军, 李莹甄, 于晓辉, 戴训也, 袁俊枫, 尉洋. 2015. 综合石油地质、历史地震等资料评估吉林孤店隐伏断裂的地震危险性. 中国地震, 31(4): 668-678.
[Shao B, Shen J, Li Y Z, Yu X H, Dai X Y, Yuan J F, Wei Y. 2015. Quantitative seismic risk evaluation on blind Gudian Fault in Jilin Province on petroleum geological and historical seismic data. Earthquake Research in China, 31(4): 668-678] [本文引用:4]
[19] 邵珠福, 钟建华, 范莉红, 罗可, 王韶杰. 2014a. 辽河西部凹陷南段沙三段震积岩特征及其石油地质意义. 石油学报, 35(3): 439-449.
[Shao Z F, Zhong J H, Fan L H, Luo K, Wang S J. 2014a. Characteristics and petroleum geologic significance of seismites in the Member 3 of Shahejie Formation in south section of western sag, Liaohe depression. Acta Petrolei Sinica, 35(3): 439-449] [本文引用:2]
[20] 邵珠福, 钟建华, 李勇, 毛毳, 刘圣鑫, 倪良田, 田媛, 刘云田, 崔新颖, 王晓楠, 李伟华, 林刚山. 2014b. 青岛灵山岛纹层控制的砂级颗粒支撑叠瓦构造的发现及其意义. 中国科学: 地球科学, 44(8): 1761-1776.
[Shao Z F, Zhong J H, Li Y, Mao C, Liu S X, Ni L T, Tian Y, Cui X Y, Wang X N, Li W H, Lin G S. 2014b. Characteristics and sedimentary processes of lamina-controlled sand -particle imbricate structure in deposits on Lingshan Island , Qingdao, China. Science China: Earth Sciences, 57(5): 1061-1076] [本文引用:1]
[21] 邵珠福, 钟建华, 李勇, 倪良田, 刘圣鑫, 范丽红, 陈彬. 2014c. 灵山岛晚中生代重力流沉积特征及环境分析. 地质论评, 60(3): 555-566.
[Shao Z F, Zhong J H, Li Y, Ni L T, Liu S X, Fan L H, Chen B. 2014c. the sedimentary characteristics and environmental analysis of Late Mesozoic gravity flow in Lingshan Island . Geological Review, 60(3): 555-566] [本文引用:1]
[22] 田洪水, 王华林, 祝介旺, 杨传成, 吕明英, 张慎河. 2015. 山东安丘地区软土震陷及地震产生的土层构造新启示. 岩土工程学报, 37(4): 734-740.
[Tian H S, Wang H L, Zhu J W, Yang C C, Lü M Y, Zhang S H. 2015. New revelation from seismic subsidence of soft soils and earthquake-induced soil-layer deformation structures in Anqiu area, Shand ong Province. Chinese Journal of Geotechnical Engineering, 37(4): 734-740] [本文引用:3]
[23] 田洪水, Wagoner Loon A J, 王华林, 张慎河, 祝介旺. 2016. 大盛群中的震积岩: 郯庐断裂带强构造与地震活动新证据. 中国科学: 地球科学, 46(1): 79-96.
[Tian H S, Wagoner Loon A J, Wang H L, Zhang S H, Zhu J W. 2016. Seismites in the Dasheng Group: New evidences of strong tectonic and earthquake activities of the Tanlu Fault zone. Science China: Earth Sciences, 46: 79-96]. [本文引用:2]
[24] 田洪水, 王金光, 吕明英, 王立法. 2005. 山东安丘古近纪冲积层中的地震记录. 沉积学报, 23(3): 75-81.
[Tian H S, Wang J G, Lü M Y, Wang L F. 2005. Seismic records in Paleogene alluvial layers in Anqiu, Shand ong. Acta Sedimentologica Sinica, 23: 75-81]. [本文引用:1]
[25] 田洪水, 祝介旺, 王华林, 张增奇, 张邦花, 张慎河. 2017. 沂沭断裂带及其近区地震事件地层的时空分布及意义. 古地理学报, 19(3): 393-417.
[Tian H S, ZhuJ W, Wang H L, Zhang Z Q, Zhang B H, Zhang S H. 2017. Spatio-temporal distribution and significance of seismic event horizons in the Yishu Fault Zone and its adjacent area. Journal of Palaeogeography(Chinese Edition), 19(3): 393-417]. [本文引用:2]
[26] 田辉, 郭晓东, 刘强, 张文强. 2011. 浅析松原市地下水水位动态及环境问题. 地下水, 33(6): 45-46.
[Tian H, Guo X D, Liu Q, Zhang W Q. 2011. Matsubara City of groundwater dynamics and environmental issues. Groundwater, 33(6): 45-46] [本文引用:2]
[27] 万桂梅, 汤良杰, 金文正, 余一欣. 2009. 郯庐断裂带研究进展及存在问题探讨. 地质论评, 55(2): 251-259.
[Wan G M, Tang L J, Jin W Z, Yu Y X. 2009. Progresses and problems in the study of Tancheng—Lujiang Fault Zone. Geological Review, 55(2): 251-259] [本文引用:1]
[28] 王亮, 李君, 顾强强, 何荣淼. 2015. 吉林松原 5级震群的重新定位研究. 防灾减灾学报, 31(1): 30-34.
[Wang L, Li J, Gu Q Q, He R M. 2015. Accurate relocation of earthquake swarm in Songyuan, Jilin, China. Journal of Disaster Prevention and Reduction, 31(1): 30-34] [本文引用:1]
[29] 王璞珺, 赵然磊, 蒙启安, 瞿雪姣, 朱德丰, 高有峰. 2015. 垩纪松辽盆地: 从火山裂谷到陆内拗陷的动力学环境. 地学前缘, 22(3): 99-117.
[Wang P J, Zhao R L, Meng Q A, Qu X J, Zhu D F, Gao Y F. 2015. The cretaceous Songliao Basin: Dynamic background from volcanic rift to interior basin. Earth Science Frontiers, 22(3): 99-117] [本文引用:1]
[30] 王小凤, 李中坚, 陈柏林. 2000. 郯庐断裂带. 北京: 地质出版社, 1-362.
[Wang X F, Li Z J, Chen B L. 2000. The Tanlu Fault. Beijing: Geological Publishing House, 1-362] [本文引用:1]
[31] 魏美璇, 郝玺民, 吕晗, 周明鑫, 于畅. 2016. 基于GIS的2013年吉林前郭M 5. 8震群砂土液化灾害的研究. 防灾减灾学报, 32(3): 64-69.
[Wei M X, Hao X M, H, Zhou M X, Yu C. 2016. Sand liquefaction disaster research of 2013 M5. 8 Qianguo Earthquake swarm based on gis. Journal of Disaster Prevention and Reduction, 32(3): 64-69] [本文引用:1]
[32] 吴戈. 1991. 东北大陆地震史料研究与分析. 东北地震研究, 7(1): 17-24.
[Wu G. 1991. The study and the analysis of historical earthquake material in North-East China. Northeastern Seismological Research, 7(1): 17-24] [本文引用:1]
[33] 薛艳, 曾宪伟, 刘桂萍, 蔡宏雷. 2015. 2013年吉林前郭MS 5. 8震群序列研究. 中国地震, 31(3): 481-491.
[Xue Y, Zeng X W, Liu G P, Cai H L. 2015. Study on MS 5. 8 swam sequence of Qianguo, Jilin in 2013. Earthquake Research in China, 31(3): 481-491] [本文引用:2]
[34] 杨承先. 1985. 沙脉、沙火山的特征及其地震意义. 西北地震学报, 7(2): 99-103.
[Yang C X. 1985. The characteristics of sand vein and sand volcano and their importance to earthquake. Northwestern Seismological Journal, 7(2), 99-103] [本文引用:1]
[35] 杨清福, 王佳蕾, 刘志平, 吴兆营, 陈波. 2010. 第二松花江断裂带地质特征及第四纪活动性研究. 中国地震, 26(1): 34-45.
[Yang Q F, Wang J L, Liu Z P, Wu Z Y, Chen B. 2010. Geological features and Quaternary activity of the second Songhua river fault. Earthquake Research in China, 26(1): 34-45] [本文引用:3]
[36] 易雪斐, 张昌民, 李少华, 杜家元, 李康, 王浩宇, 李向阳, 周凤娟, 袁才. 2015. 砂岩侵入体系模拟及形成机理分析. 古地理学报, 17(5): 669-676.
[Yi X F, Zhang C M, Li S H, Du J Y, Li K, Wang H Y, Li X Y, Zhou F J, Yuan C. 2015. Sand injectite simulation and formation mechanism analysis. Journal of Paleaeogeography(Chinese Edition), 17(5): 669-676] [本文引用:1]
[37] 张邦花, 田洪水, 祝介旺. 2016. 山东郯城麦坡中更新世地震事件记录. 古地理学报, 18(5): 799-808.
[Zhang B H, Tian H S, Zhu J W. 2016. Records of the Pleistocene seismic events in Tancheng Maipo, Shand ong Province. Journal of Palaeogeography(Chinese Edition), 18(5): 799-808] [本文引用:1]
[38] 张功成, 刘和甫, 朱德丰. 1997. 松辽盆地晚中生代裂谷作用与伸展构造样式. 新疆石油地质, 18(1): 30-34.
[Zhang G C, Liu H F, Zhu D F. 1997. Late Mesozoic rifting and extensional structural pattern in Songliao Basin. Xinjiang Petroleum Geology, 18(1): 30-34] [本文引用:1]
[39] 赵福岳. 2010. 松辽平原第四纪地质历史演化规律研究. 国土资源遥感, 22(S1): 152-158.
[Zhao F Y. 2010. A study of the regularity of Quaternary geological history evolution in Songliao Plain based on geological remote sensing survey. Remote Sensing for Land and Resources, 22(S1): 152-158] [本文引用:1]
[40] 赵栖远. 2012. 地下水和覆盖层对砂土液化的影响. 西部探矿工程, (1): 8-12.
[Zhao Q Y. 2012. Effect of groundwater and cover on sand liquefaction. West China Exploration Engineering, (1): 8-12] [本文引用:1]
[41] 钟建华, 曹梦春, 倪良田, 孙宁亮, 刘闯, 郝兵, 杨冠群, 宋冠先, 葛毓柱. 2018. 砂脉的研究现状与进展. 古地理学报, 20(1): 119-132.
[Zhong J H, Cao M C, Ni L T, Sun N L, Liu C, Hao B, Yang G Q, Song G X, Ge Y Z. 2018. Situation of study and development tendency of sand y dykes. Journal of Palaeogeography(Chinese Edition), 20(1): 119-132] [本文引用:5]
[42] 钟建华, 梁刚. 2009. 沉积构造的研究现状及发展趋势. 地质论评, 55(6): 831-839.
[Zhong J H, Liang G. 2009. Situation of study and development tendency of sedimentary structure. Geological Review, 55(6): 831-839] [本文引用:1]
[43] 钟建华, 许世红, 王志坤, 王海侨, 马锋, 段宏亮, 艾合买提江·阿不都热和曼, 周娟, 刘云田, 李勇. 2008. 柴达木盆地西部七个泉地区第四纪冰川刨耕变形层理的研究. 地质论评, 54(2): 207-214, 293.
[Zhong J H, Xu S H, Wang Z K, Wang H Q, Ma F, Duan H L, Abdurahman A, Zhou J, Liu Y T, Li Y. 2008. Study on the Quarternary glacial-ploughed deformation beddings in Seven Springs Area, western Qaidam Basin. Geological Review, 54(2): 207-214, 293] [本文引用:1]
[44] Alfaro P, Moretti M, Soria J M. 1997. Soft-sediment deformation structures induced by earthquakes(seismites)in Pliocene lacustrine deposits(Guadix-Baza Basin, Central Betic Cordillera). Eclogae Geologic, 90: 531-540. [本文引用:2]
[45] Alfaro P, Gibert L, Moretti M, Garcia-Tortosa F J, De Galdeano C S, Galindo-Zaldivar J, Lopez-Garrido A C. 2010. The significance of giant seismites in the Plio-Pleistocene Bazapalaeo-lake(S Spain). Terra Nova, 22: 172-179. [本文引用:4]
[46] Allen J R L, Banks N L. 1972. An Interpretation and Analysis of Recumbent-Folded Deformed Cross-Bedding. Sedimentology, 19: 257-283. [本文引用:1]
[47] Allen J R L. 1977. The possible mechanics of convolute lamination in graded sand beds. Journal of the Geological Society, 134: 19-31. [本文引用:2]
[48] Allen J R L. 1982. Sedimentary Structures: Their Character and Physical Basis. Elsevier, Amsterdam, 1-663. [本文引用:2]
[49] Allen J R L. 1986. Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentary basins. Sedimentary Geology, 46: 67-75. [本文引用:2]
[50] Berra F, Felletti F. 2011. Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures(continental Lower Permian sediments, Southern Alps, Northern Italy): Stratigraphic significance. Sedimentary Geology, 235: 249-263. [本文引用:1]
[51] Bhattacharya S, Hyodo M, Goda K, Tazoh T, Taylor C A. 2011. Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku(Japan)earthquake. Soil Dynamics and Earthquake Engineering, 31: 1618-1628. [本文引用:1]
[52] Bonini M. 2009. Mud volcano eruptions and earthquakes in the Northern Apennines and Sicily, Italy. Tectonophysics, 474: 723-735. [本文引用:2]
[53] Brogi A, Capezzuoli E, Morett M, Olvera-García E, Matera P F, Garduno-Monroy V, Mancini A. 2018. Earthquake-triggered soft-sediment deformation structures(seismites)in travertine deposits. Tectonophysics, 745: 349-365. [本文引用:1]
[54] Burne R V. 1970. The Origin and Significance of Sand Volcanoes in the Bude Formation(Cornwall). Sedimentology, 15: 211-228. [本文引用:2]
[55] Capaccioni B, Coltorti M, Todesco M, Cremonini S, Di Giuseppe D, Faccini B, Tessari U. 2017. Sand volcano generated by a violent degassing from methane-saturated aquifers: The case study of Medolla(Modena, Italy). Engineering Geology, 221: 91-103. [本文引用:2]
[56] Chan M, Netoff D, Blakey R, Kocurek G, Alvarez W. 2007. Clastic-injection pipes and syndepositional deformation structures in Jurassic eolian deposits: Examples from the Colorado Plateau. In: Hurst A, Cartwright J(eds). Sand injectites: Implications for hydrocarbon exploration and production: AAPG Memoir, 87: 233-244. [本文引用:1]
[57] Chen J T, Lee H S. 2013. Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits(Shand ong Province, China): Differential liquefaction and fluidization triggered by storm-wave loading. Sedimentary Geology, 288: 81-94. [本文引用:1]
[58] Chen J T, Wagoner Loon A J, Han Z Z, Chough S K. 2009. Funnel-shaped, breccia-filled clastic dykes in the Late Cambrian Chaomidian Formation(Shand ong Province, China). Sedimentary Geology, 221: 1-6. [本文引用:1]
[59] Collinson J D, Mountney N, Thompson D B. 2006. Sedimentary Structures(3rd Edition). Harpenden: Terra Publishing, 1-292. [本文引用:3]
[60] Gibert L, Alfaro P, García-Tortosa F J, Scott G. 2011. Superposed deformed beds produced by single earthquakes(Tecopa Basin, California): Insights into paleoseismology. Sedimentary Geology, 235: 148-159. [本文引用:1]
[61] Glennie K, Hurst A. 2007. Fluidization and associated soft-sediment deformation in eolian sand stones: Hopeman Sand stone(Permian), Scotland , and Rotliegend, North Sea. In: Hurst A, Cartwright J(eds). Sand injectites: Implications for hydrocarbon exploration and production: AAPG Memoir, 87: 245-252. [本文引用:1]
[62] Greb S F, Archer A W. 2007. Soft-sediment deformation produced by tides in a meizoseismic area, Turnagain Arm, Alaska. Geology, 35: 435-438. [本文引用:1]
[63] Grippa A, Hurst A, Palladino G, Iacopini D, Lecomte I, Huuse M. 2019. Seismic imaging of complex geometry: Forward modeling of sand stone intrusions. Earth and Planetary Science Letter, 513: 51-63. [本文引用:2]
[64] Harris C, Murton J, Davies M C R. 2000. Soft-sediment deformation during thawing of ice-rich frozen soils: Results of scaled centrifuge modeling experiments. Sedimentology, 47: 687-700. [本文引用:2]
[65] Hilbert-Wolf H L, Roberts E M, Simpson E L. 2016. New sedimentary structures in seismites from SW Tanzania: Evaluating gas-vs. water-escape mechanisms of soft-sediment deformation. Sedimentary Geology, 344: 253-262. [本文引用:1]
[66] Hurst A, Vigorito, M. 2017. Saucer-shaped sand stone intrusions: An underplayed reservoir target. AAPG, 101: 625-633. [本文引用:2]
[67] Kanibir A, Ulusay R, Aydan O. 2006. Assessment of liquefaction and lateral spreading on the shore of Lake Sapanca during the Kocaeli(Turkey)earthquake. Engineering Geology, 83: 307-331. [本文引用:1]
[68] Kholodov V N. 2002. Mud Volcanoes, Their distribution regularities and genesis: Communication 1. mud volcanic provinces and morphology of mud volcanoes. Lithology and Mineral Resources, 37: 197-209. [本文引用:1]
[69] Ko K, Kim S W, Lee H J, Hwang I G, Kim B C, Kee W S, KimY S, Gihm Y S. 2017. Soft sediment deformation structures in a lacustrine sedimentary succession induced by volcano-tectonic activities: An example from the Cretaceous Beolgeumri Formation, WidoVolcanics, Korea. Sedimentary Geology, 358: 197-209. [本文引用:3]
[70] Koç-Taşgın C, Diniz-Akarca C. 2018. Soft-sediment deformation structures related to tectonomagmatic activity: A case study from the borate-bearing lacustrine deposits of early Miocene Bigadic Basin, NW Turkey. Sedimentary Geology, 373: 32-47. [本文引用:2]
[71] Kundu A, Matin A, Mukui M, Eriksson P G. 2011. Sedimentary facies and soft-sediment deformation structures in the Late Miocene-Pliocene Middle Siwalik Subgroup, eastern Himalaya, Darjiling District, India. Journal Geological Society of India, 78: 321-336. [本文引用:1]
[72] Kuribayashi E, Tatsuoka F. 1975. Brief Review of liquefaction during earthquakes in Japan. Soils and Foundations, 15: 81-92. [本文引用:2]
[73] Li Y, Craven J, Schweig E S, Obermeier S S. 1996. Sand boils induced by the 1993 Mississippi River flood: Could they one day be misinterpreted as earthquake-induced liquefaction. Geology, 24: 171-174. [本文引用:2]
[74] Li Y, Shao Z F, Mao C, Yang Y P, Liu S X. 2013. The Seismic induced soft sediment deformation structures in the middle Jurassic of Western Qaidamu Basin. Acta Geologica Sinica, 87: 979-988. [本文引用:1]
[75] Lowe D R. 1983. Restricted shallow-water sedimentation of Early Archean stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambrian Research, 19: 239-283. [本文引用:1]
[76] Lowe R D, Robert D L. 1974. The characteristics and origins of dish and pillar structures1. Journal of Sedimentary Petrology, 44: 484-501. [本文引用:1]
[77] Lowe R D. 1975. Water escape structures in coarse-grained sediments. Sedimentology, 22: 157-204. [本文引用:2]
[78] Lowe R D. 1976. Subaqueous liquefied and fluidized sediment flows and their deposits. Sedimentology, 23: 285-308. [本文引用:1]
[79] Lu H B, Zhang Y X, Zhang Q L, Xiao J F. 2006. Earthquake-related tectonic deformation of soft sediment sand : Its constraints on basin tectonic evolution. Acta Geologica Sinica, 80: 724-732. [本文引用:1]
[80] Ma Y S, Long C Y, Tan C X, Wang T, Gong M Q, Liao C T, Wu M L, Shi W, Du J J, Pan F. 2009. Co-seismic faults and geological hazards and incidence of active fault of Wenchuan Ms 8. 0 Earthquake, Sichuan, China. Acta Geologica Sinica(English Edition), 83: 713-723. [本文引用:1]
[81] Mahaney W C, Milner M W, Netoff D I, Malloch D, Dohm J M, Baker V R, Miyamoto H, Hare TM, Komatsu G. 2004. Ancient wet aeolian environmrnts on Earth: Clues to presence of fossil/live microorganisms on Mars. Icarus, 171: 39-53. [本文引用:2]
[82] Massari F, Ghibaudo G, Alessand ro A D, Davaud E. 2001. Water-upwelling pipes and soft-sediment-deformation structures in lower Pleistocene calcarenites(Salento, southern Italy). GSA, 113: 545-560. [本文引用:3]
[83] Mazumder R, Wagoner Loon A J, Arima M. 2006. Soft-sediment deformation structures in the Earth, soldest seismites. Sedimentary Geology, 186: 19-26. [本文引用:1]
[84] Mazumder R, Wagoner Loon A J, Malviya V P, Arima M, Ogawa Y. 2016. Soft-sediment deformation structures in the Mio-Pliocene Misaki Formation within alternating deep-sea clays and volcanic ashes(Miura Peninsula, Japan). Sedimentary Geology, 344: 323-335. [本文引用:2]
[85] Miyakawa K, Tokiwa T, Murakami H. 2013. The origin of muddy sand sediments associated with mud volcanism in the Horonobe area of northern Hokkaido, Japan. Geochemistry, Geophysics, Geosystems, 14: 4980-4988. [本文引用:1]
[86] Moretti M, Alfaro P, Caselles O, Canas J A. 1999. Modeling seismites with a digital shaking table. Tectonophysics, 304: 369-383. [本文引用:3]
[87] Moretti M, Soria J M, Alfaro P, Alicante Walsh, N. 2001. Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits(Late Miocene, Guadix Basin, Southern Spain). Facies, 44: 283-294. [本文引用:2]
[88] Moretti M, Sabato L. 2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant, Arcangelo Basin(Southern Italy): Seismic shock vs. overloading. Sedimentary Geology, 196: 31-45. [本文引用:3]
[89] Moretti M, Ronchi A. 2011. Liquefaction features interpreted as seismites in the Pleistocene fluvio-lacustrine deposits of the Neuquén Basin(Northern Patagonia). Sedimentary Geology, 235: 200-209. [本文引用:2]
[90] Moretti M. 2016. The environmental significance of soft-sediment deformation structures: Key signatures for sedimentary and tectonic processes. Sedimentary Geology, 344: 1-4. [本文引用:1]
[91] Murton J B, Worsley P, Gozdzik J. 2000. Sand veins and wedges in cold aeolian environments. Quaternary Science Reviews, 19: 899-922. [本文引用:1]
[92] Nichols R J, Sparks R S J, Wilson C J N. 1994. Experimental studies of the fluidization of layered sediments and the formation of fluid escape structures. Sedimentology, 41: 233-253. [本文引用:1]
[93] Obermeier S F, Jacobson R B, Smoot J P, Weems R E, Gohn G S. 1990. Earthquake-induced liquefaction features in the coastal setting of South Carolina and in the fluvial setting of the New Madrid Seismic Zone. U. S. Geological Survey Professional Paper, 1504: 1-44. [本文引用:2]
[94] Obermeier S F, Bleuer N R, Munson C A, Munson P J, Martin W S, McWilliams K M, Tabaczynski D A, Odum J K, Rubin M, Eggert D L. 1991. Evidence of strong earthquake shaking in the Lower Wabash Valley from prehistoric liquefaction features. Natural Science Collection, 251: 1061-1063. [本文引用:1]
[95] Obermeier S F, Munson P J, Munson C A, Martin J R, Frankel A D, Youd T L, Pond E C. 1992. Liquefaction evidence for strong Holocene earthquake(S)in the Wabash Valley of Indiana-Illinois. Seismological Research Letter, 63: 321-335. [本文引用:1]
[96] Obermeier S F. 1996. Use of liquefaction-induced features for paleoseismic analysis: An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology, 44: 1-76. [本文引用:12]
[97] Obermeier S F, Pond E C. 1999. Issues in using liquefaction features for paleoseismic analysis. Seismological Research Letters, 70: 34-58. [本文引用:6]
[98] Obermeier S F, Dickenson S E. 2000. Liquefaction evidence for the strength of ground motions resulting from Late Holocene Cascadia subduction earthquakes, with emphasis on the event of 1700 A. D. Seismological Society of America, 90(4): 876-896. [本文引用:2]
[99] Oppo D, Capozzi R. 2016. Spatial association of mud volcano and sand stone intrusions, Boyadag anticline, western Turkmenistan. Basin Research, 28: 827-839. [本文引用:1]
[100] Owen G. 1987. Deformation processes in unconsolidated sand s. Geological Society Special Publication, 29: 11-24. [本文引用:5]
[101] Owen G. 1995. Soft-sediment deformation in Upper Proterozoic Torridonian Sand stones(Applecross Formation)At Torridon, Northwest Scotland . Journal of Sedimentary Research, 65: 495-504. [本文引用:1]
[102] Owen G, 1996. Anatomy of a water-escape cusp in Upper Proterozoic Torridon Group sand stones, Scotland . Sedimentary Geology, 103: 117-128. [本文引用:2]
[103] Owen G. 2003. Load structures: Gravity-driven sediment mobilization in the shallow subsurface. Geological Society, 216: 21-34. [本文引用:1]
[104] Owen G, Moretti M. 2008. Determining the origin of soft-sediment deformation structures: A case study from Upper Carboniferous delta deposits in south-west Wales, UK. Terra Nova, 20: 237-245. [本文引用:1]
[105] Owen G, Moretti M. 2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sand s. Sedimentary Geology, 235: 141-147. [本文引用:4]
[106] Owen G, Moretti M, Alfaro P. 2011. Recognising triggers for soft-sediment deformation: Current understand ing and future directions. Sedimentary Geology, 235: 133-140. [本文引用:7]
[107] Owen G, Santos M G M. 2014. Soft-sediment deformation in a pre-vegetation river system: The Neoproterozoic Torridonian of NW Scotland . Proceedings of the Geologists’ Association, 125: 511-523. [本文引用:2]
[108] Perucca L P, Bracco A I, Moreiras S M. 2009. Determination of seismogenic structures and earthquake magnitudes from seismites in the Acequion river, Precordillera Range, central-western Argentina. Journal of Iberian Geology, 35: 5-18. [本文引用:2]
[109] Phillips E, Everest J, Rrrves H. 2013. Micromorphological evidence for subglacial multiphase sedimentation and deformation during overpressurizedfluid flow associated with hydrofracturing. Boreas, 42: 395-427. [本文引用:3]
[110] Pisarska-Jamro$\dot{Z}$y M, Wagoner Loon A J, Mleczak M, Roman M. 2019. Enigmatic gravity-flow deposits at Uj$\acute{s}$cie(western Poland ), triggered by earthquakes(as evidenced by seismites)caused by Saalianglacioisostatic crustal rebound. Geomorphology, 326: 239-251. [本文引用:1]
[111] Ravier E, Buoncristiani J, Menzies J, Guiraud M, Portier E. 2015. Clastic injection dynamics during ice front oscillations: A case example from Sólheimajökull(Iceland ). Sedimentary Geology, 323: 92-109. [本文引用:2]
[112] Rodríguez-PascuaM A, Calvo J P, Vicente G D, Gomez-Gras D. 2000. Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology, 135: 117-135. [本文引用:2]
[113] Rodríguez-Pascua M A, Silva P G, Perez-Lopez R, Giner-RoblesJ L, Martín-Gonzalez F, Moral BD. 2015. Polygenetic sand volcanoes: On the features of liquefaction processes generated by a single event(2012 Emilia Romagna 5. 9 MW earthquake, Italy). Quaternary International, 357: 329-335. [本文引用:2]
[114] Ross J A, Peakall J, Keevil G M. 2011. An integrated model of extrusive sand injectites in cohesionless sediments. Sedimentology, 58: 1693-1715. [本文引用:3]
[115] Rowe C. 2013. Shaking Loose: Sand volcanoes and Jurassic earthquakes. Geology, 41(10): 1135-1136. [本文引用:2]
[116] Satur N, Hurst A. 2007. Sand -injection Structures in Deep-water Sand stones from the Ty Formation(Paleocene), SleipnerØst Field, Norwegian North Sea. AAPG Memoir, 87: 113-117. [本文引用:2]
[117] Shanmugam G. 2017. The seismite problem. Journal of Palaeogeography, 19: 19-64. [本文引用:1]
[118] Shi G R, Du Y S, Gong Y M. 2007. Soft-sediment deformation structures interpreted as seismite from the Middle Permian of the southern Sydney Basin, southeastern Australia. Australian Journal of Earth Sciences, 54: 861-874. [本文引用:2]
[119] Su D C, Qiao X F, Sun A P, Li H B, Somerville I D. 2014. Large earthquake-triggered liquefaction mounds and a carbonate sand volcano in the Mesoproterozoic Wumishan Formation, Beijing, North China. Geological Journal, 49: 69-89. [本文引用:5]
[120] Takahama N, Otsuk T, Brahmantyo B. 2000. A new phenomenon in ancient liquefaction—the draw-in process, its final stage. Sedimentary Geology, 135: 157-165. [本文引用:4]
[121] Tian H S, Zhang B H, Zhang S H, Lü M Y. 2013. Neogene seismites and seismic volcanic rocks in the Linqu area, Shand ong Province, E China. Geologos, 20: 125-137. [本文引用:3]
[122] Tian H S, Wagoner Loon A J, Zhang Z Q, Zhang S H, Zhang B H. 2015. Neogene Paleoseismic events and the Shanwang Biota’s burial in the Linqu area, Shand ong Province, China. Acta Geologica Sinica(English edition), 89: 1103-1119. [本文引用:1]
[123] Tian H S, Wagoner Loon A J, Wang H L, Zhang S H, Zhu J W. 2016. Seismites in the Dasheng Group: New evidence of strong tectonic and earthquake activities of the Tanlu Fault Zone. Sci China Earth Sci, 59: 601-618. [本文引用:1]
[124] Topal S, Özkul M. 2014. Soft-Sediment Deformation Structures interpreted as seismites in the Kolankaya Formation, Denizli Basin(SW Turkey). The Scientific World Journal, 1-13. [本文引用:2]
[125] Tuttle M P. 2001. The use of liquefaction features in paleoseismology: Lessons learned in the New Madrid seismic zone, central United States. Journal of Seismology, 5: 361-380. [本文引用:8]
[126] Ulvrova M, Paris R, Nomikou P, Kelfoun K, Leibrand t S, TappinD R, McCoy F W. 2016. Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano(Aegean Sea, Greece). Journal of Volcanology and Geothermal Research, 321: 125-139. [本文引用:2]
[127] Valente A, $\acute{s}$laczka A, Cavuoto G. 2014. Soft-sediment deformation structures in seismically affected deep-sea Miocene turbidites(Cilento Basin, southern Italy). Geologos, 20(2): 67-78. [本文引用:2]
[128] Wagoner Loon A J. 2009. Soft-sediment deformation structures in siliciclastic sediments: An overview. Geologos, 15: 3-55. [本文引用:4]
[129] Wagoner Loon A J, Maulik P. 2011. Abraded sand volcanoes as a tool for recognizing paleo-earthquakes, with examples from the CisuralianTalchir Formation near Angul(Orissa, eastern India). Sedimentary Geology, 238: 145-155. [本文引用:1]
[130] Wang C Y, Manga M, WongA. 2005. Floods on Mars released from groundwater by impact. Icarus, 115: 551-555. [本文引用:1]
[131] Wheatley, D F, Chan M A, Sprinkel D A. 2016. Clastic pipe characteristics and distributions throughout the Colorado Plateau: Implications for paleoenvironment and paleoseismic controls. Sedimentary Geology, 344: 20-33. [本文引用:1]
[132] Yamaguchi A, Mori T, Kazama M, Yoshida N. 2012. Liquefaction in Tohoku district during the 2011 off the Pacific Coast of Tohoku Earthquake. Soils and Foundations, 52(5): 811-829. [本文引用:2]
[133] Zhong J H, Wang H Q, Li Y, Wang Y, Wen Z F. 2006. Ice-water pits upon the Yellow River delta plain. Sedimentary Geology, 187: 1-10. [本文引用:1]