纳米矿物在堆积型铝土矿床研究中的应用*
刘睿1, 王国强2, 杜远生3,4, 余文超3,4
1山东理工大学资源与环境工程学院,山东淄博 255000
2山西师范大学地理科学学院,山西临汾 041000
3中国地质大学(武汉)地球科学学院,湖北武汉 430074
4自然资源部基岩区矿产资源勘查工程技术创新中心,贵州贵阳 550081

通讯作者简介 王国强,男, 1990年生, 2020年毕业于中山大学地球科学与工程学院,获博士学位,现为山西师范大学地理科学学院教师,主要从事矿床勘查和纳米地球科学研究。 E-mail: wangguoqiang@sxnu.edu.cn

第一作者简介 刘睿,男, 1990年生, 2017年毕业于中国科学院广州地球化学研究,获博士学位,现为山东理工大学资源与环境工程学院副教授,主要从事纳米地球科学研究。 E-mail: liurui@sdut.edu.cn

摘要

至少一维尺度上小于 100 nm的矿物都属于纳米矿物的范畴,自然界中除了大量的人造纳米矿物之外,天然的纳米矿物分布也很广泛。随着透射电子显微镜( TEM)技术在地球科学中的应用,大量的天然纳米矿物在地壳表层和内部被发现。尤其是在矿田区域,与矿体相关的纳米矿物在各种介质中被发现,并且这些纳米矿物在矿床的研究中有着独特的作用。堆积型铝土矿床储量大,是铝土矿的重要来源。在堆积型铝土矿床中发育有大量的纳米矿物,矿石矿物也以纳米级晶体分布于矿床中,并且在纳米尺度上表现出结构和成分的变化,这些纳米矿物以及结构、成分的变化记录了铝土矿成矿过程的物理化学信息,为探究铝土矿的成因提供了独特的窗口。该综述总结了纳米矿物在研究堆积型铝土矿床中的优势,为研究堆积型铝土矿床的提供了新方法,为认识堆积型铝土矿的成因提供了新角度。

关键词: 纳米矿物; 堆积型铝土矿; 成矿过程; 矿床成因
中图分类号:P611.2+1 文献标志码:A 文章编号:1671-1505(2020)05-1012-09
Application of nanominerals in research on stacked bauxite deposits
Liu Rui1, Wang Guo-Qiang2, Du Yuan-Sheng3,4, Yu Wen-Chao3,4
1 School of Resources and Environmental Engineering,Shandong University of Technology,Shandong Zibo 255000,China
2 Geography Science Institute,Shanxi Normal University,Shanxi Linfen 041000,China
3 School of Earth Sciences,China University of Geosciences(Wuhan),Wuhan 430074, China
4 Innovation Center of Ore Resources Exploration Technology in the Region of Bedrock, Ministry of Natural Resources of People's Republic of China,Guiyang 550081, China

About the corresponding author Wang Guo-Qiang,born in 1990,obtained his Ph.D. degree from School of Earth Sciences and Engineering,Sun Yat-sen University in 2020. Now he is a teacher in Geography Science Institute,Shanxi Normal University,and is mainly engaged in mineral exploration and nanogeoscience. E-mail: wangguoqiang@sxnu.edu.cn.

About the first author Liu Rui,born in 1990,obtained his Ph.D. degree from Guangzhou Institute of Geochemistry,Chinese Academy of Sciences in 2017. Now he is an associate professor in School of Resources and Environmental Engineering,Shandong University of Technology,and is mainly engaged in nanogeoscience. E-mail: liurui@sdut.edu.cn.

Abstract

Nanomineral is the mineral that is less than 100 nm at least one dimension. Aside from the man-made nanominerals,there is a large number of natural nanominerals. With the increasing application of transmission electron microscopy(TEM)in earth science,a large number of natural nanominerals have been discovered in the surface and interior of the Earth. Especially in ore deposit region,nanominerals related to ore bodies are found in various media,and these nanominerals play a unique role in the research of ore deposits. The stacked bauxite deposit is an important source of bauxite because of its large reserve. There are a large number of nanominerals distributed in stacked bauxite deposit,and these ore nanominerals distributed in the deposit in the form of nanocrystals. In addition,the ore minerals in stacked bauxite deposit display changes of the structure and composition in nanoscale. The nanominerals as well as the changes of structure and composition in nanoscale can record the physical and chemical information of bauxite mineralization process,providing a unique window to explore the genesis of the stacked bauxite deposit. This review summarizes the advantages of nanominerals in the research on the stacked bauxite deposit,providing a new method and a new perspective for the understanding of the genesis of bauxite deposit.

Key words: nanomineral; stacked bauxite deposit; mineralization process; genesis of deposit
1 纳米矿物定义和特征

纳米矿物是指在三维尺度至少有一维小于100 nm的矿物(图 1)。目前对纳米尺度的矿物学研究方法主要包括HR-SEM、TEM、FIB、nanoSIMS、AFM/STM和计算机模拟等(Reich et al., 2011)。纳米矿物由于其尺度效应, 在化学特性、力学特征、电学和磁学特征上均表现出与宏观矿物不同的特征(Hochella et al., 2008)。纳米矿物在自然界主要有2类: 天然纳米矿物和人造纳米矿物(包括人类有意和无意产生的)。其中人类有意合成的纳米矿物在成分上比较单一、形貌上比较规则, 而天然纳米矿物在成分上比较复杂、形貌多呈不规则状。随着纳米科学的发展, 越来越多的天然纳米矿物在自然界中被发现。天然纳米矿物的成因涉及到自然界中的各种物理化学过程, 包括溶解、沉淀、相变、燃烧、生物矿化等。纳米矿物由于其独特的物理化学性质, 已经表现出独特的地球化学功能和意义。例如, 纳米矿物由于其极小的尺寸极易被携带发生迁移(曹建劲, 2009), 因而也是成矿元素地球化学迁移的重要方式。

图 1 矿床学研究的不同尺度(据Reich et al., 2011; 修改)Fig.1 Dimensional scale of ore deposits research(modified from Reich et al., 2011)

2 天然纳米矿物在矿床学研究中的应用

天然纳米矿物赋存于各种地质体中, 在矿床学领域, 过去一些不能解释的成矿机制、地质现象以及金属元素的存在形式等, 从纳米矿物的角度得到了较好的解释(琚宜文等, 2016; 王焰新和田熙科, 2016)。同时, 矿物是成矿过程的重要产物, 矿物内部纳米微粒可以提供更加直观和更加丰富的关于成矿过程的信息(曹建劲, 2009)。例如, 形成浅成金矿床的流体仅能够溶解10-9级别的金含量, 而这样低的金含量无法形成具有经济价值的矿床(Reich et al., 2006)。但是, 许多学者在卡林型金矿床的黄铁矿内部发现了含金纳米矿物和自然金纳米矿物(Ciobanu et al., 2011, 2012; Deditius et al., 2011; Pač evski et al., 2012; Fougerouse et al., 2016), 通过对这些纳米微粒的特征研究得出, 含金纳米微粒(或自然金纳米微粒)在黄铁矿中有很高的溶解度, 解释了金在形成浅成金矿过程中赋存形式的问题。大量的研究表明, 矿床中的与成矿物质有关的纳微米矿物种类丰富, 与矿床的成矿物质关系紧密, 有的成矿物质甚至直接以纳米微粒的形式出现在矿床中(纳米金、纳米银、纳米铅、纳米锌等)(图 2)。Deditius等(2011)Hough等(2011)通过对矿床中纳微米矿物的特征探讨了成矿物质的赋存形式。Koneev等(2010)Fougerouse等(2016)利用纳微米矿物的大小、分布状态阐明了寄主矿物和成矿物质的成因。Reich等(2006)Pač evski等(2012)等利用纳微米矿物的特征和其他矿物的成分特征反映矿物经历的热事件。Sun和Xia(2002)等通过实验模拟得出纳微米矿物可以反映矿物形成时的物理化学条件。Gao等(2019)通过对钒钛磁铁矿床中的纳微米矿物进行研究, 并对磁铁矿的形成条件进行相平衡分析, 最终得出其形成过程。

图 2 矿床中发现的各种金属纳米微粒
a— 广东长坑金矿床中的纳米金微粒(Cao, 2009); b— 内蒙古维拉斯托锌铜银多金属矿床中的纳米银微粒(Yi et al., 2019); c— 内蒙古石匠山区铅锌多金属矿矿床中的纳米锌微粒(Hu and Cao, 2019); d— 内蒙古石匠山区铅锌多金属矿矿床中的纳米铅微粒(Hu and Cao, 2019)
Fig.2 Different kinds of metal nanoparticles found in ore deposits

此外, 朱笑青和章振根(1996)姜泽春等(1999)傅宇虹等(2018)通过实验模拟得出, 许多颗粒较大的矿物对纳米矿物具有很强的吸附作用, 纳米矿物可在其他矿物表面大量地富集、迁移、成矿。曹建劲(2009)在对隐伏金属矿床地表和深部介质中的含矿纳米矿物进行研究, 并对金属纳米矿物的形成、迁移和找矿勘探意义进行分析探讨。由此可见, 纳米矿物在矿床学的研究中具有独特的作用, 对纳米矿物的研究在成矿过程和找矿勘探等方面都有很好的应用前景。

3 纳米矿物学在研究堆积型铝土矿床中的应用
3.1 堆积型铝土矿的研究方法

铝土矿是在潮湿的热带— 亚热带气候条下, 由地表风化和交代淋滤作用形成的富含Al、Fe和Ti的氢氧化物和氧化物(Bá rdossy, 1982; Bá rdossy and Aleva, 1990; D'Argenio and Mindszenty, 1995; Calagari and Abedini, 2007; Deng et al., 2010)。铝土矿的分类比较复杂, 目前应用比较广泛的分类为红土型铝土矿和喀斯特型(包括沉积型和堆积型)铝土矿(Bá rdossy, 1982; 杨俊波, 2005; Laskou and Economou-Eliopoulos, 2007; Deng et al., 2010)。堆积型铝土矿(萨伦托型)是铝土矿床的重要类型, 其矿床储量通常为大型— 超大型, 品位中等(王庆飞等, 2012)。该类型铝土矿床多产于含铝量较低的碳酸盐岩不整合面(侵蚀面)上(Bá rdossy and Aleva, 1990; D'Argenio and Mindszenty, 1995)。矿床所处的地貌多为岩溶洼地、坡地。已有的研究表明, 堆积型铝土矿床的成矿物质具有异源性, 在成矿过程中成矿物质经历了风化和搬运作用, 并在适宜的地质环境中沉积形成早期铝土矿层, 铝土矿层经过淋滤作用使成矿元素进一步富集(Valeton et al., 1987; 王泽中, 1997; 刘平, 1999; 李新, 2008; 韦胜永等, 2009)。

目前, 对于堆积型铝土矿床的矿床成因研究已经做了许多工作, 取得了一些成果。例如刘长龄和覃志安(1990)提出堆积型铝土矿的成矿母岩在物理和化学风化作用下形成含铝的胶体态物质, 成矿物质则以碎屑胶体混合形式进行迁移沉积, 淋滤过程中成矿元素在生物的作用下富集成矿; 廖士范和梁同荣(1991)认为堆积型铝土矿床的成矿母岩在风化作用下形成赋含铝土矿物的风化壳, 成矿物质以黏土矿物的形式进行迁移就位, 后期的淋滤作用对成矿的影响比较微弱; Ö ztü rk等(2002)提出堆积型铝土矿床的成矿物质从成矿母岩的风化壳中以细碎屑态被搬运至凹坑和洼地富集, 在淋滤过程中早期铝土矿中的其他元素(如Si和Mn)以离子形式被喀斯特排水系统迁移带走, 进而使成矿元素富集; Liu等(2010)则认为堆积型铝土矿成矿物质以含铝土壤的形式进行迁移、堆积, 在淋滤阶段成矿元素以离子化合物的形式结晶析出, 富集成矿。上述的研究表明堆积型铝土矿床总体的成矿过程已经基本查明, 但是对成矿物质在风化和搬运过程中的赋存形态并未取得一致的认识。同时, 对铝土矿在淋滤过程中成矿元素的富集机制也存在争论(廖士范和梁同荣, 1991; Ö ztü rk et al., 2002; 叶霖等, 2008; 刘幼平等, 2010)。

前人对于堆积型铝土矿的研究主要基于沉积学、 矿物学和地球化学的方法(侯正洪和李启津, 1985; 陈廷臻和武耀诚, 1986; 吕夏, 1988; 刘长龄和覃志安, 1990; 肖金凯等, 1994; 张玉学等, 1999; 杨军臣等, 2004; 鲁方康等, 2009; 杜远生等, 2014; Yu et al., 2014)。 例如通过对铝土矿沉积剖面的研究得出铝土矿的成矿环境(苏熠, 1985), 利用光学显微镜、 热差/热重分析(DTA/TG)、 X-射线衍射(XRD)、 红外光谱(FTIR)、 电子扫描显微镜(SEM)等仪器对铝土矿中的矿物组合以及结构进行研究(杨冠群和廖士范, 1986; 李普涛和张起钻, 2008; Dani, 2011), 利用X荧光光谱仪和等离子质谱仪对铝土矿中主量和微量元素进行测定(陈履安, 1996; 陈代演和王华, 1997; Mongelli and Acquafredda, 1999; Calagari and Abedini, 2007; Yang et al., 2019)。 矿石中同位素组成在堆积型铝土矿床的研究中应用也比较广泛, 例如利用硫化物32S/34S值特征分析铝土矿的形成环境(龙永珍, 2003), 利用氢氧同位素δ 18O和δ D对铝土矿的来源进行示踪(程东等, 2001)。 目前, 利用Rb-Sr、 40Ar-39Ar、 碎屑锆石U-Pb、 Hf等放射性同位素进行铝土矿矿床成因的研究也越来越普遍(刘巽锋等, 1990; 刘平, 1999; 赵社生等, 2001; 王银喜等, 2003; 林最近, 2007)。 此外, 古生物和古地磁的测定也在探讨铝土矿形成的古地理环境、 古气候以及成矿作用中发挥着一定的作用(施和生等, 1989; 莫江平, 1991; 吴国炎, 1997)。 近年来, 矿物微区的地球化学分析越来越多地应用于堆积型铝土矿矿床的研究中, 例如李(2017)通过对豫西铝土矿中金红石的激光探针(LA-ICP-MS)分析得出该地区铝土矿的成矿物质来源; 张亚男等(2013)对黔北务正道地区铝土矿中的鲕粒进行了微区(EPMA和LA-ICP-MS)地球化学特征研究, 反演了该地区铝土矿的形成过程及形成环境。

3.2 纳米矿物学在堆积型铝土矿床研究中的优势

对于堆积型铝土矿床, 其成矿物质主要是风化作用的产物(Bá rdossy, 1982; Bá rdossy and Aleva, 1990), 而风化作用是天然纳米矿物微粒的重要成因(Chen et al., 2010)。在风化过程中, 被风化矿物表面可以形成大量的纳米矿物微粒(Griffin et al., 2018)。这些纳米矿物微粒可以长时间赋存于被风化矿物表面或者被迁移到其他地方保存下来(Schindler and Hochella, 2015; Schindler et al., 2019)。此外, 堆积型铝土矿床中的矿石矿物本身为极细小的晶体(纳米级)(Gamaletsos et al., 2017), 矿石由纳米级矿石矿物聚集形成(图 3)。因此, 铝土矿床本身就是一个天然纳米矿物微粒储库, 含有丰富的纳米矿物微粒, 利用纳米矿物微粒研究铝土矿床成矿物质的富集过程具有天然的优势。同时, 堆积型铝土矿床在形成过程中经历了长期的风化和淋滤作用, 原生铝土矿层中会有大量的元素淋滤流失, 例如S、P、Ca、Mg、Sr、Rb等(王庆飞等, 2012), 这样对于利用传统的地球化学方法研究成矿物质的富集过程具有很大的挑战。相反, 纳米矿物微粒则可以在长期的风化和搬运过程中保存下来。同时, 矿物的形成过程都会经历纳米矿物微粒阶段(杨毅等, 2018)。因此, 纳米矿物微粒为直接和准确地研究堆积型铝土矿床风化和迁移过程中成矿物质的赋存形态提供了有利条件。在此基础上可以通过对比铝土矿形成过程中不同阶段的纳米物质组成和特征, 用以分析纳米矿物在形成过程中的迁移和富集过程。

图 3 广西靖西特大型堆积铝土矿床中的纳米级矿石矿物
a— TEM形貌图; b— EDS能谱图
Fig.3 Nanoscale ore minerals in Jingxi super large stacked bauxite deposit in Guangxi

此外, 许多矿物(如硅酸盐矿物、铁钛氧化物、硫化物等)内部也含有大量的纳米矿物微粒(Filimonova and Trubkin, 2008; Koneev et al., 2010; Fougerouse et al., 2016), 由于寄主矿物的保护作用, 这些纳米矿物微粒通常保留有丰富的关于成矿物质的信息(Deditius et al., 2011; Hough et al., 2011; Ciobanu et al., 2011, 2012; Liu et al., 2020)。并且在堆积型铝土矿床的矿体中, 矿物常发育鲕状结构(刘长龄和覃志安, 1990) (图 4), 鲕状结构也是纳米矿物微粒赋存的理想场所。同时, 鲕状矿物不同圈层中的纳米矿物微粒可以记录下淋滤过程中元素迁移的物理化学条件(Schindler and Hochella, 2015; Schindler et al., 2019), 并且不同圈层中的纳米矿物微粒的结构和化学成分不同, 通过对比不同圈层中的纳米矿物微粒特征也可以反演元素的迁移过程, 这为研究堆积型铝土矿床成矿元素的富集和优化过程提供了便利。

图 4 广西靖西特大型堆积铝土矿床中的鲕状结构
a— 单偏光照片; b— 正交偏光照片
Fig.4 Olitic texture in Jingxi super large stacked bauxite deposit in Guangxi

最后, 不论是成矿母岩的风化壳, 还是铝土矿床的矿石都表现为粉末状或疏松的块状, 这样的岩石和矿石构造便于原生纳米矿物微粒的提取和研究, 避免了由于人为对岩石和矿石的破碎而产生纳米矿物微粒。因此, 纳米矿物微粒是研究堆积型铝土矿床的良好手段。

4 结语与展望

纳米矿物学作为一门年轻的学科, 在矿床学研究中还处于起步阶段。纳米矿物本身具有特殊的理化性质以及独特的地球化学功能, 其在矿床成因研究的前景已经初步显现, 但是仍有许多方面的内容需要进一步探究, 例如纳米矿物在大型— 超大型矿床形成过程中的作用, 纳米矿物是否会对寄主矿物元素分布、同位素的组成造成影响, 进而影响地球化学的分析结果等等。

由于堆积型铝土矿床可以与纳米矿物学较好地结合, 应用纳米矿物可以从全新的角度去解决该类型矿床成因方面的问题。堆积型铝土矿床不仅成矿物质多为纳米矿物, 在风化、搬运和沉积过程中也会产生大量的其他类别的纳米矿物, 如棒状金红石纳米矿物、含铁纳米矿物等, 这些特殊的纳米矿物对于限定堆积型铝土矿床形成的物理化学条件也具有独特的作用。因此, 纳米矿物在堆积型铝土矿床的研究中具有较好的前景, 可为该类型矿床的研究提供新思路和新方法。

(责任编辑 李新坡; 英文审校 徐 杰)

参考文献
[1] 曹建劲. 2009. 地气微粒特征和元素含量结合探测隐伏矿床技术. 金属矿山, 39(2): 1-4.
[Cao J J. 2009. A technique for detecting concealed deposits by combining geogas particle characteristics with element concentrations. Metal Mine, 39(2): 1-4] [文内引用:3]
[2] 陈代演, 王华. 1997. 贵州中北部铝土矿若干微量元素特征及其成因意义. 贵州工业大学学报(自然科学版), 26(2): 37-42.
[Chen D Y, Wang H. 1997. Trace elements chracteristic and genetic singificant of bauxite deposits in central-northern Guizhou. Journal of Guizhou University of technology(Natural Science Edition), 26(2): 37-42] [文内引用:1]
[3] 陈履安. 1996. 腐殖酸在铝土矿形成中的作用的实验研究. 沉积学报, 14(2): 117-123.
[Chen L A. 1996. Experimental study of action of humic acids in the processes of bauxite mineralization. Acta Sedimentologica Sinica, 14(2): 117-123] [文内引用:1]
[4] 陈廷臻, 武耀诚. 1986. 河南省铝土矿的数理统计研究. 地质与勘探, 22(10): 34-41.
[Chen T Z, Wu Y C. 1986. Mathematical statistics of bauxite in Henan Province. Geology and Prospecting. 22(10): 34-41] [文内引用:1]
[5] 程东, 沈芳, 柴东浩. 2001. 山西铝土矿的成因属性及地质意义. 太原理工大学学报, 32(6): 576-579.
[Cheng D, Shen F, Cai D H. 2001. Genetic attribute and geological significance of bauxite ores in Shanxi. Journal of Taiyuan University of Technology, 32(6): 576-579] [文内引用:1]
[6] 杜远生, 周琦, 金中国, 凌文黎, 汪小妹, 余文超, 崔滔, 雷志远, 翁申富, 吴波, 覃永军, 曹建州, 彭先红, 张震, 邓虎. 2014. 黔北务正道地区早二叠世铝土矿成矿模式. 古地理学报, 16(1): 1-8.
[Du Y S, Zhou Q, Jin Z G, Ling W L, Wang X M, Yu W C, Gui T, Lei Z Y, Weng S F, Wu B, Qin Y J, Cao J Z, Peng X H, Zhang Z, Deng H. 2014. Mineralization model for the Early Permian bauxite deposits in Wuchuan-Zheng'an-Daozhen area, northern Guizhou Province. Journal of Palaeogeography(Chinese Edition), 16(1): 1-8] [文内引用:1]
[7] 傅宇虹, 覃宗华, 于文彬, 聂信, 王济, 琚宜文, 万泉. 2018. 纳米矿物—水溶液界面过程. 地球科学, 43(5): 1408-1424.
[Fu Y H, Tan Z H, Yu W B, Nie X, Wang J, Ju Y W, Wan Q. 2018. Nanomineral-aqueous solution interfacial processes. Earth Science, 43(5): 1408-1424] [文内引用:1]
[8] 侯正洪, 李启津. 1985. 山西孝义铝土矿矿石物质成分研究. 矿产与地质, (1): 26-34.
[Hou Z H, Li Q J. 1985. Study on ore composition of bauxite in Xiaoyi, Shanxi Province. Mineral Resources and Geology(Chinese Edition), (1): 26-34] [文内引用:1]
[9] 姜泽春, 莫德明, 陈大梅. 1999. 极性矿物对纳米金的吸附实验. 矿物学报, 19(3): 358-362.
[Jiang Z C, Mo D M, Chen D M. 1999. Experiments on the adsorption of the adsorption of nanometer-sized gold on polar minerals. Acta Mineralogical Sinica, 19(3): 358-362] [文内引用:1]
[10] 琚宜文, 孙岩, 万泉, 卢双舫, 何宏平, 吴建光, 张文静, 王国昌, 黄骋. 2016. 纳米地质学: 地学领域革命性挑战. 矿物岩石地球化学通报, 35(1): 1-20.
[Ju Y W, Sun Y, Wan Q, Lu S F, He H P, Wu J G, Zhang W J, Wang G C, Huang C. 2016. Nanogeology: A revolutionary challenge in geosciences. Bulletin of Mineralogy, Petrology and Geochemistry, 35(1): 1-20] [文内引用:1]
[11] 李普涛, 张起钻. 2008. 广西靖西县三合铝土矿稀土元素地球化学研究. 矿产与地质, 22(6): 535-540.
[Li P T, Zhang Q Z. 2008. Research on geochemistry of REE in the Sanhe Bauxite deposit in Jingxi County, Guangxi. Mineral Resources and Geology, 22(6): 535-540] [文内引用:1]
[12] 李新. 2008. 豫西铝土矿矿床成因探讨. 华北国土资源, (1): 6-8.
[Li X. 2008. Genesis of bauxite deposit in western Henan Province. Huabei Land and Resources, (1): 6-8] [文内引用:1]
[13] 李. 2017. 豫西石炭系本溪组铝土矿成矿物质来源研究. 中国地质大学(北京)硕士学位论文, 1-58.
[Li Y. 2017. Ore-forming Material Source Studies of the Carboniferous Benxi Formation Bauxite Deposit in Western Henan, China. Masteral dissertation of China University of Geosciences(Beijing): 1-58] [文内引用:1]
[14] 廖士范, 梁同荣. 1991. 中国铝土矿地质学. 贵阳: 贵州科技出版社, 1-277.
[Liao S F, Liang T R. 1991. Bauxite Geology of China. Guiyang: Guizhou Science and Technology Publishing House, 1-277] [文内引用:2]
[15] 林最近. 2007. 平果岩溶堆积铝土矿空间分布特征及成因探讨: 以教美矿区为例. 科技情报开发与经济, 17(23): 156-158.
[Lin Z J. 2007. Probe into the spatial distribution features and genesis of the karst accumulation bauxite deposit in Pingguo: Taking Jiaomei mining area as the example. Sci-Tech Information Development & Economy, 17(23): 156-158] [文内引用:1]
[16] 刘长龄, 覃志安. 1990. 中国沉积铝土矿中豆鲕粒的特征与成因. 地质找矿论丛, 5(1): 72-82.
[Liu C L, Qin Z A. 1990. Characteristics of origins of pisolites and oolites in sedimentary bauxite of China. Contributions to Geology and Mineral Resources Research, 5(1): 72-82] [文内引用:3]
[17] 刘平. 1999. 黔中—川南石炭纪铝土矿的地球化学特征. 中国区域地质, 18(2): 210-217.
[Liu P. 1999. Geochemical characteristics of Carboniferous bauxite deposits in central Guizhou-southern Sichuan. Regional Geology of China, 18(2): 210-217] [文内引用:2]
[18] 刘巽锋, 王庆生, 陈有能, 秦典燮. 1990. 黔北铝土矿成矿地质特征及成矿规律. 贵阳: 贵州人民出版社, 1-170.
[Liu X F, Wang Q S, Chen Y N. Qin D X. 1990. Bauxite ore of northern Guizhou. Guiyang: Guizhou People's Publishing House, 1-170] [文内引用:1]
[19] 刘幼平, 夏云, 王洁敏. 2010. 黔北地区铝土矿成矿特征与成矿因素研究. 矿物岩石地球化学通报, 29(4): 422-425.
[Liu Y P, Xia Y, Wang J M. 2010. Metallogenic characteristics and metallogenic factors of bauxite deposits in northern Guizhou. Bulletin of Mineralogy, Petrology and Geochemistry, 29(4): 422-425] [文内引用:2]
[20] 龙永珍. 2003. 桂西铝多金属矿矿床地质地球化学特征及综合利用研究. 中南大学博士学位论文: 1-145.
[Long Y Z. 2003. Geologic geochemical feature and multipurpose utilization of Al-polemetal deposits in western Guangxi. Doctoral dissertation of Central South University: 1-145] [文内引用:1]
[21] 鲁方康, 黄智龙, 金中国, 周家喜, 丁伟, 谷静. 2009. 黔北务—正—道地区铝土矿镓含量特征与赋存状态初探. 矿物学报, 29(3): 373-379.
[Lu F K, Huang Z L, Jin Z G, Zhou J X, Ding W, Gu J. 2019. A preliminary study on the content features and occurrence states of gallium in bauxite from the Wuchuan-Zhengan-Daozhen Area, Northern Guizhou Province, China. Acta Mineralogica Sinica, 29(3): 373-379] [文内引用:1]
[22] 吕夏. 1988. 河南省中西部石炭系铝土矿中硬水铝石的矿物学特征研究. 地质论评, 34(4): 293-301, 389-390.
[ X. 1998. The mineralogical characteristics of diaspore in carboniferous bauxite in western-central Henan Province. Geological Review, 34(4): 293-301, 389-390] [文内引用:1]
[23] 莫江平. 1991. 古岩溶对黔中铝土矿的控制作用. 轻金属, (4): 1-5.
[Mo J P. 1991. The controlling effect of ancient karst on bauxite deposit in Central Guizhou. Light Metals, (4): 1-5] [文内引用:1]
[24] 施和生, 王冠龙, 关尹文. 1989. 豫西铝土矿沉积环境初探. 沉积学报, 7(2): 89-97.
[Shi H S, Wang G L, Guan Y W. 1989. The preliminary study on the sedimentary environment of bauxite Deposits in Western Henan. Acta Sedimentological Sinica, 7(2): 89-97] [文内引用:1]
[25] 苏煜. 1985. 广西平果铝土矿沉积环境和成因初探. 桂林冶金地质学院学报, 5(4): 32-38.
[Su Y. 1985. Apreliminary study on the sedimentary environment and genesis of Pingguo bauxite deposit, Guangxi. Journal of Guilin College of Geology, 5(4): 32-38] [文内引用:1]
[26] 王庆飞, 邓军, 刘学飞, 张起钻, 李中明, 康微, 蔡书慧, 李宁. 2012. 铝土矿地质与成因研究进展. 地质与勘探, 48(3): 430-448.
[Wang Q F, Deng J, Liu X F, Zhang Q Z, Li Z M, Kang W, Cai S H, Li N. 2012. Review on research of bauxite geology and genesis in China. Geology and Exploration, 48(3): 430-448] [文内引用:2]
[27] 王焰新, 田熙科. 2016. 地学研究的新机遇: 纳米地质学. 矿物岩石地球化学通报, 35(1): 79-86.
[Wang Y X, Tian X K. 2016. New opportunities for the study of geology: Nano geology. Bulletin of Mineralogy, Petrology and Geochemistry, 35(1): 79-86] [文内引用:1]
[28] 王银喜, 李惠民, 顾连兴, 吴昌志, 柴东浩, 陈平, 王随生, 张京俊. 2003. 山西铝土矿Rb-Sr同位素定年. 地球学报, 24(6): 589-592.
[Wang Y X, Li H M, Gu L X, Wu C Z, Chai D H, Chen P, Wang S S, Zhang J J. 2003. Rb-Sr Isotope dating of bauxite deposits in Shanxi Province. Acta Geoscientica Sinica, 24(6): 589-592] [文内引用:1]
[29] 王泽中. 1997. 山西兴县铝土岩的地球化学特征. 地质地球化学, (2): 41-44.
[Wang Z Z. 1997. Geochemical characteristics of bauxite in Xingxian, Shanxi Province. Geology Geochemistry, (2): 41-44] [文内引用:1]
[30] 韦胜永, 朱永红, 罗勇, 张斌, 丁恒, 崔登伟, 王建顺. 2009. 遵义川主庙漏斗状铝土矿床地质特征及形成机理. 贵州地质, 26(3): 193-198.
[Wei S Y, Zhu Y H, Luo Y, Zhang B, Ding H, Cui D W, Wang J S. 2009. Geological character and formation mechanism of funnel bauxite deposit in Chuanzhumiao, Zunyi. Guizhou Geology, 26(3): 193-198] [文内引用:1]
[31] 吴国炎. 1997. 华北铝土矿的物质来源及成矿模式探讨. 河南地质, 15(3): 2-7.
[Wu G Y. 1997. A discussion on material source and metallogenic model of bauxite deposits in north China. Henan Geology, 15(3): 2-7] [文内引用:1]
[32] 肖金凯, 雷剑泉, 夏祥. 1994. 黔中铝土矿及其赤泥中钪的某些特征. 矿物学报, 14(4): 388-393.
[Xiao J K, Lei J Q, Xia X. 1994. Some characteristics of scand ium in bauxite from central Guizhou as well as in red mud. Acta Mineralogica Sinica, 14(4): 388-393] [文内引用:1]
[33] 杨冠群, 廖士范. 1986. 中国几个主要铝土矿床矿物的扫描电镜研究. 矿物学报, 6(4): 354-361.
[Yang G Q, Liao S F. 1986. Scanning electron microscope study of several major bauxite deposits in China. Acta Mineralogica Sinica, 6(4): 354-361] [文内引用:1]
[34] 杨军臣, 王凤玲, 李德胜, 费涌初, 王玲. 2004. 铝土矿中伴生稀有稀土元素赋存状态及走向查定. 矿冶, 13(2): 89-92.
[Yang J C, Wang F L, Li D S, Fei Y C, Wang L. 2004. Investigation on occurrence and trend of rare and rare-earth elements associated in bauxite. Mining and Metallurgy, 13(2): 89-92] [文内引用:1]
[35] 杨俊波. 2005. 铝土矿的宏观及微观特征剖析. 轻金属, (9): 8-10.
[Yang J B. 2005. Dissecting the macro and micro features of the bauxite. Light Metals, (9): 8-10] [文内引用:1]
[36] 杨毅, 周立, 钭斐昀, 孙笑丽, 刘敏, Michael F H. 2018. 纳米颗粒物: 独具特性的地球化学组成. 地球科学, 43(5): 1489-1499.
[Yang Y, Zhou L, Tou F Y, Sun X L, Liu M, Michael F H. 2018. Nanoparticles: A unique geochemical composition in environment. Earth Science, 43(5): 1489-1499] [文内引用:1]
[37] 叶霖, 潘自平, 程曾涛. 2008. 贵州修文小山坝铝土矿中镓等伴生元素分布规律研究. 矿物学报, 28(2): 105-111.
[Ye L, Pan Z P, Cheng Z T. 2008. The regularities of distribution of associated elements in Xiaoshanba. Acta Mineralogica Sinica, 28(2): 105-111] [文内引用:1]
[38] 张亚男, 张莹华, 吴慧, 丁晓英, 凌文黎, 雷志远, 翁申富, 马倩, 杜远生. 2013. 黔北务正道地区铝土矿鲕状矿石中鲕粒的微区元素地球化学特征及其成矿意义. 地质科技情报, 32(1): 62-70.
[Zhang Y N, Zhang Y H, Wu H, Ding X Y, Ling W L, Lei Z Y, Wen S F, Ma Q, Du Y S. 2013. Microscopic geochemical characteristics of oolite in oolitic bauxite ores from Wuchuan—Zheng'an—Daozhen Area in the northern Guizhou Province and their metallogenic significance. Geological Science and Technology, 32(1): 62-70] [文内引用:1]
[39] 张玉学, 何其光, 邵树勋, 张书英. 1999. 铝土矿钪的地球化学特征. 地质地球化学, 27(2): 55-62.
[Zhang Y X, He Q Q, Shao S X, Zhang S Y. 1999. Geochemical characteristics of Sc in bauxite. Geology Geochemistry, 27(2): 55-62] [文内引用:1]
[40] 赵社生, 柴东浩, 孛国良. 2001. 山西地块G层铝土矿同位素年龄及其地质意义. 轻金属, (8): 5-9.
[Zhao S S, Chai D H, Bo G L. 2001. Isotopic age bed G bauxite of Shanxi massif and its geological significance. Light Metals, (8): 5-9] [文内引用:1]
[41] 朱笑青, 章振根. 1996. 矿物、岩石对纳米金吸附作用的实验研究. 矿产与地质, 10(2): 55-59.
[Zhu X Q, Zhang Z G. 1996. Experimental study of Absorption of minerals and rocks to the nano gold in solution. Mineral Resources and Geology, 10(2): 55-59] [文内引用:1]
[42] Bárdossy G, Aleva G J J. 1990. Lateritic bauxites: Developments in Economic Geology. Amsterdam: Elsevier Scientific Publication, 1-624. [文内引用:3]
[43] Bárdossy G. 1982. Karst bauxites, bauxite deposits on carbonate rocks. Developments in Economic Geology, 14: 1-441. [文内引用:3]
[44] Calagari A A, Abedini A. 2007. Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, West-Azarbaidjan, Iran. Journal of Geochemical Exploration, 94(1-3): 1-18. [文内引用:2]
[45] Cao J J. 2009. TEM observation of geogas-carried particles from the Changkeng concealed gold deposit, Guangdong Province, South China. Journal of Geochemical Exploration, 101: 247-253. [文内引用:1]
[46] Chen T H, Xie Q Q, Xu H F, Chen J, Ji J F, Lu H Y, Balsam, W. 2010. Characteristics and formation mechanism of pedogenic hematite in Quaternary Chinese loess and paleosols. Catena, 81(3): 217-225. [文内引用:1]
[47] Ciobanu C L, Cook N J, Utsunomiya S, Kogagwa M, Green L, Gilbert S, Wade B. 2012. Gold-telluride nanoparticles revealed in arsenic-free pyrite. American Mineralogist, 97(8-9): 1515-1518. [文内引用:2]
[48] Ciobanu C L, Cook N J, Utsunomiya S, Pring A, Green L. 2011. Focussed ion beam-transmission electron microscopy applications in ore mineralogy: Bridging micro-and nanoscale observations. Ore Geology Reviews, 42(1): 6-31. [文内引用:2]
[49] D'Argenio B, Mindszenty A. 1995. Bauxites and related paleokarst: Tectonic and climatic event markers at regional unconformities. Eclogaegeologica Helvetiae, 88(3): 453-499. [文内引用:2]
[50] Dani N. 2011. Nordstrand ite in bauxite derived from Phonolite, Lages, Santa Catarina, Brazil. Clays & Clay Minerals, 49(3): 216-226. [文内引用:1]
[51] Deditius A P, Utsunomiya S, Reich M, Kesler S E, Ewing R. C, Hough R, Walshe J. 2011. Trace metal nanoparticles in pyrite. Ore Geology Reviews, 42(1): 32-46. [文内引用:3]
[52] Deng J, Wang Q, Yang S. 2010. Genetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi, China: Constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores. Journal of Asian Earth Sciences, 37(5-6): 0-424. [文内引用:2]
[53] Filimonova L G, Trubkin N V. 2008. Micro-and nanoparticles of zincite and native zinc from disseminated mineralization of metasomatic rocks in the Dukat ore field. Geology of Ore Deposits, 50(2): 135-144. [文内引用:1]
[54] Fougerouse D, Reddy S M, Saxey D W, Rickard W D A, Wagoner Riessen A, Micklethwaite S. 2016. Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration: Evidence from atom probe microscopy. American Mineralogist, 101(8): 1916-1919. [文内引用:3]
[55] Gao W Y, Cristiana L C, Nigel J C, Ashley D S, Huang F. 2019. Nanoscale study of lamellar exsolutions in clinopyroxene from olivine gabbro: Recording crystallization sequences in iron-rich layered intrusions. American Mineralogist, 104(2): 244-261. [文内引用:1]
[56] Gamaletsos P N, Godelitsas A, Kasama T, Church N S, Douvalis A P, Göttlicher J, Filippidis A. 2017. Nano-mineralogy and -geochemistry of high-grade diasporic karst-type bauxite from Parnassos-Ghiona mines, Greece. Ore Geology Reviews, 84(2): 228-244. [文内引用:1]
[57] Griffin S, Masood M I, Nasim M J, Sarfraz M, Ebokaiwe A P, Schafer K H, Keck C M, Jacob C. 2018. Natural nanoparticles: A particular matter inspired by nature. Antioxidants, 7(3): 1-24. [文内引用:1]
[58] Hochella M F Jr, Lower S K, Maurice P A, Penn R L, Sahai N, Sparks D L, Twining B S. 2008. Nanominerals, mineral nanoparticles, and earth systems. Science, 319(5870): 1631-1635 [文内引用:1]
[59] Hough R M, Noble R R P, Reich M. 2011. Natural gold nanoparticles. Ore Geology Reviews, 42(1): 55-61. [文内引用:2]
[60] Hu G, Cao J J. 2019. Metal-containing nanoparticles derived from concealed metal deposits: An important source of toxic nanoparticles in aquatic environments. Chemosphere, 224: 726-733. [文内引用:1]
[61] Koneev R I, Khalmatov R A, Mun Y S. 2010. Nanomineralogy and nanogeochemistry of ores from gold deposits of Uzbekistan. Geology of Ore Deposits, 52(8): 755-766. [文内引用:2]
[62] Laskou M, Economou-Eliopoulos M. 2007. The role of microorganisms on the mineralogical and geochemical characteristics of the Parnassos-Ghiona bauxite deposits, Greece. Journal of Geochemical Exploration, 93(2): 67-77. [文内引用:1]
[63] Liu X F, Wang Q F, Deng J, Zhang Q Z, Sun S L, Meng J Y. 2010. Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits, western Guangxi, China. Journal of Geochemical Exploration, 105(3): 137-152. [文内引用:1]
[64] Liu X, Liu R, Luo X E, Lu M Q. 2020. Natural HgS nanoparticles in sulfide minerals from the Hetai goldfield. Environmental Chemistry Letters, 18: 941-947. [文内引用:1]
[65] Mongelli G, Acquafredda P. 1999. Ferruginous concretions in a Late Cretaceous karst bauxite: Composition and conditions of formation. Chemical Geology, 158(3-4): 315-320. [文内引用:1]
[66] Öztürk H, Hein J, Hanilci N. 2002. Genesis of the Dogankuzu and Mortas bauxite deposits, Taurides, Turkey: Separation of Al, Fe, and Mn and implications for Passive Margin Metallogeny. Economic Geology, 97(5): 1063-1077. [文内引用:2]
[67] Pačevski A, Moritz R, Kouzmanov K, Marquardt K, Živković P, Cvetković L. 2012. Texture and composition of Pb-bearing pyrite from the čokamarin polymetallic deposit, serbia, controlled by nanoscale inclusions. Canadian Mineralogist, 50(1): 1-20. [文内引用:2]
[68] Reich M, Utsunomiya S, Kesler S E, Wang L, Ewing R C, Becker U. 2006. Thermal behavior of metal nanoparticles in geologic materials. Geology, 34(12): 1033-1036. [文内引用:2]
[69] Reich M, Hough M R, Deditius A, Utsunomiya S, Ciobanu, C L, Cook N J. 2011. Nanogeoscience in ore systems research: Principles, methods, and applications introduction and preface to the special issue. Ore Geology Reviews, 42(1): 1-5. [文内引用:1]
[70] Schindler M, Hochella M F. 2015. Soil memory in mineral surface coatings: Environmental processes recorded at the nanoscale. Geology, 43(5): 415-418. [文内引用:2]
[71] Schindler M, Michel S, Batcheldor D, Hochella Jr M F. 2019. A nanoscale study of the formation of Fe-(hydr)oxides in a volcanic regolith: Implications for the understand ing of soil forming processes on Earth and Mars. Geochimica et Cosmochimica Acta, 264: 43-66. [文内引用:2]
[72] Sun Y G, Xia Y N. 2002. Shape Controlled Synthesis of Gold and Silver Nanoparticles. Science, 298(5601): 2176-2179 [文内引用:1]
[73] Valeton I, Biermann M, Reche R, Rosenberg F. 1987. Genesis of nickel laterites and bauxites in Greece during the Jurassic and Cretaceous, and their relation to ultrabasic parent rocks. Ore Geology Reviews, 2(4): 359-404. [文内引用:1]
[74] Yang S J, Huang Y X, Wang Q F, Deng J, Liu X F, Wang J Q. 2019. Mineralogical and geochemical features of karst bauxites from Poci(western Henan, China), implications for parental affinity and bauxitization. Ore Geology Reviews, 105: 295-309. [文内引用:1]
[75] Yi Z B, Cao J J, Jiang T, Wang Z Y. 2019. Characterization of metal-bearing particles in groundwater from the Weilasituo Zn-Cu-Ag deposit, Inner Mongolia, China: Implications for mineral exploration. Ore Geology Reviews, 117: 103270. [文内引用:1]
[76] Yu W C, Wang R H, Zhang Q L, Du Y S, Chen Y, Liang Y P. 2014. Mineralogical and geochemical evolution of the Fusui bauxite deposit in Guangxi, South China: From the original Permian orebody to a Quarternary Salento-type deposit. Journal of Geochemical Exploration, 146: 75-88. [文内引用:1]