渤海湾西岸CZ01钻孔沉积物粒度端元分析及其气候—海平面变化响应*
王婷1, 邹春辉2, 毛龙江1, 周玉龙1, 莫多闻3
1 南京信息工程大学海洋科学学院,江苏南京 210044
2 南京信息工程大学科学技术史研究院,江苏南京 210044
3 北京大学城市与环境学院,北京 100871
通讯作者简介 邹春辉,男,1992年生,博士研究生,环境考古专业。 E-mail: 991899875@qq.com。毛龙江,男,1976年生,教授,主要从事环境演变与环境考古、海洋沉积过程与环境等方面的研究。 E-mail: mlj1214@163.com

第一作者简介 王婷,女,1997年生,硕士研究生,海洋科学专业。 E-mail: 17864261091@163.com

摘要

沧州地区位于海陆交互的渤海湾西岸,易受到海平面变化和极端气候事件的影响,对于全球气候变化的响应十分敏感。应用非参数化端元分析模型将沧州地区CZ01钻孔中更新世晚期以来的沉积物粒度划分出6个端元并分析其物源,结合已有地质记录,揭示不同时间尺度下各端元对气候—海平面变化的响应。结果表明: (1)EM1(5.01 μm)主要为远源的风尘输入,EM2(13.18 μm)和EM3(39.81 μm)为古黄河所携带的沉积物,EM4(69.18 μm)和EM5(138.04 μm)为海相沉积物,EM6(275.42 μm)可能指示古洪水等极端气候事件。(2)深海氧同位素(MIS)Ⅰ 阶段,气候温暖湿润,EM4+5含量指示渤海海平面整体呈波动上升的趋势并逐渐接近现代海平面。该阶段内由于11.5 ka BP左右的新仙女木事件以及5.1 ka BP左右冷干事件的发生,渤海海平面在稳定上升状态后出现停滞或小幅下降的现象; 而在9.5 ka BP、7.5 ka BP、5.8 ka BP和1.7 ka BP左右,东亚夏季风增强导致降水增加,渤海海平面升高。(3)MIS Ⅵ阶段北半球气候冷干,150~132 ka BP左右因喜马拉雅运动减弱造成的区域沉降中心转移致使渤海海面升高。MIS Ⅴ 阶段气候波动剧烈: 在间冰期暖期(5a、5c和5e)气候暖湿,渤海海平面上升; 而MIS5b和5d时期渤海海面高度较低。MIS Ⅳ 阶段较MIS5a末期海平面突然下降后趋于稳定,期间出现若干次小规模海侵事件,可能与东亚夏季风频繁变化有关。MIS Ⅲ 阶段至末次冰盛期海平面大幅度下降且存在周期性升降变化,并在46 ka BP左右出现大规模海侵事件。MIS Ⅱ阶段较MIS Ⅲ 阶段海平面出现小幅度下降,为低海平面时期; 伴随15 ka BP左右冰盛期的结束,东亚夏季风增强,海平面开始上升。渤海海平面180 ka BP以来的变化记录与北半球乃至全球范围内的地质记录存在一致性,与太阳辐射波动引起的冰川消融及东亚夏季风变化密切相关。

关键词: 粒度; 端元分析; 物源; 气候—海平面; 渤海湾西岸
中图分类号:P532;P563;P941.78 文献标志码:A 文章编号:1671-1505(2022)06-1224-14
Sediment grain size end-member analysis and its response to climate and sea-level changes in CZ01 borehole on west coast of Bohai Bay
WANG Ting1, ZOU Chunhui2, MAO Longjiang1, ZHOU Yulong1, MO Duowen3
1 College of Marine Science,Nanjing University of Information Science and Technology,Nanjing 210044,China
2 Institute of the History of Science and Technology,Nanjing University of Information Science and Technology,Nanjing 210044,China
3 College of Urban and Environmental Sciences,Peking University,Beijing 100871,China
About the corresponding authors ZOU Chunhui,born in 1992,is a doctoral candidate. He majors in environmental archaeology. E-mail: 991899875@qq.com. MAO Longjiang,born in 1976,professor,is mainly engaged in environmental evolution and environmental archaeology,marine sedimentation process and environment. E-mail: mlj1214@163.com.

About the first author WANG Ting,born in 1997,is a master degree candidate. She majors in marine science. E-mail: 17864261091@163.com.

Abstract

Located on the west coast of the Bohai Bay where land and sea interact,the Cangzhou region is vulnerable to sea level changes and extreme weather events and is very sensitive to the response to global climate change. A non-parametric end-member analysis model was applied to classify the sediment grain size of CZ01 borehole in Cangzhou region into six end-members since the late Mid-Pleistocene and analyze their sources,and to reveal the response of each end-members to climate and sea-level changes at different time scales in conjunction with the existing geological record. The results show that: (1)EM1(5.01 μm)is mainly a remote wind-dust input,EM2(13.18 μm)and EM3(39.81 μm)are sediments carried by the ancient Yellow River,EM4(69.18 μm)and EM5(138.04 μm)are marine sediments,EM6(275.42 μm)may indicate extreme climate events such as paleofloods. (2)During the Marine Oxygen Isotope Stages(MIS)Ⅰ,the climate is warm and humid,and the EM4+5 indicates that the sea-level of the Bohai Sea is wavelike rising and gradually reaches the modern sea level. During this period,the Bohai Sea level stagnates or decreases slightly after a steady state of rise due to the Younger Dryas impact hypothesis around 11.5 ka BP and a dry-cold climate event around 5.1 ka BP,while around 9.5 ka BP,7.5 ka BP,5.8 ka BP and 1.7 ka BP,the Bohai Sea level rises due to increased precipitation caused by strengthening East Asian summer monsoon. (3)The cold and dry climate in the Northern Hemisphere in MIS Ⅵstage,and the regional subsidence center transfer caused by the weakening of Himalayaorogeny around 150~132 ka BP resulted in the increase of Bohai Sea surface. In MIS Ⅴ stage,the climate fluctuated dramatically: during the warm period of interglacial period(5a,5c and 5e),the climate was warm and humid,and the sea-level of Bohai Sea rose, and the sea level height of the Bohai Sea during MIS5b and 5d is lower. Compared with the end of MIS5a,the sea-level in MIS Ⅳ decreased suddenly and then tended to be stable. Several small-scale transgression events occurred during the period,which may be related to the frequent changes of East Asian summer monsoon. From the MIS Ⅲ stage to the Last Glacial Maximum,the sea-level decreased significantly with periodic fluctuations,and a large-scale transgression occurred at about 46 ka BP. MIS Ⅱstage showed a slight decreased sea-level compared with MIS Ⅲ stage,which was a low sea-level period. Due the termination of the glacier period around 15 ka BP,and the strengthened East Asian summer monsoon, sea-level began to rise again. The sedimentary records of the Bohai Sea since 180 ka BP are consistent with the geological records in the northern hemisphere and even worldwide,which are closely related to the glacier melts caused by solar radiation fluctuation and the change of East Asian summer monsoon.

Keyword: grain size; end-member analysis; provenance; climate and sea-level; west coast of Bohai Bay
1 概述

河口—三角洲的环境变化以及陆海相互作用区的源-汇过程是当今海岸带研究的热门话题。多源河流将风化产物从不同源区搬运输送到三角洲和海洋(Latrubesse et al., 2005), 而对这些河流系统及其三角洲的研究可确定整个流域的物质来源、剥蚀作用和沉积动态的具体模式(Sawakuchi et al., 2018)。河口—三角洲的气候—海面变化与全球气候环境演变密切相关, 沉积中心的转移、沉积速率突然性变化及生物显著的层位变化等特征记录了气候的冷暖波动过程及相应的海平面变化(Yi and Yang, 2006; Zhang et al., 2013; Bolikhovskaya et al., 2018; 刘大为等, 2018)。渤海湾西岸地区更新世以来经历了多次冷暖干湿变迁及3次较大的海侵(对应于暖期), 且全新世期间的相对海平面与冰川融化造成的全球eustatic海面(即the ice-equivalent sea level)变化趋势较为一致(李建芬, 2010; 陈永胜, 2012; 王永明, 2015; 王中波等, 2020)。因此, 河口—三角洲成为研究海平面升降与全球气候变化的理想地区/体系(Maselli et al., 2014; Korus and Fielding, 2015; Mateo and Siringan, 2016)。

作为沉积学研究中最常规的指标之一, 沉积物的粒度包含有关其运移和埋藏的多重信息, 对于揭示区域沉积动力学、沉积物输运过程和沉积环境演化模式具有显著的指示意义(Hails, 1967; Friedman, 1979)。端元模型能准确地描述沉积物粒度组分变化, 在物源示踪、古气候重建和古洪水识别等领域取得了显著成效(王可等, 2008)。近年来, 国内外学者利用该模型对长江口及其邻近海域沉积物(张晓东等, 2006)、广西南流江河口水下三角洲表层沉积物(林镇坤等, 2019)以及镇江大港下蜀黄土(刘梦慧等, 2021)等区域进行沉积物物源研究, 揭示了相应沉积物的物源位置与性质及沉积体系。此外, 也有学者在地中海黎凡特海和中国江西玉华山地区进行沉积物粒度端元研究, 重建了区域内气候演变历史并识别出若干次古洪水事件(Hamann et al., 2008; 尚广春等, 2020)。

沧州地区位于海陆交互作用显著的渤海湾西岸, 极易受到海平面升降和极端气候事件的影响, 对全球气候环境变化的响应十分敏感, 是研究第四纪环境演变和海平面变化的理想区域(陈望和和倪明云, 1987; 付强, 2013)。20世纪以来, 许多学者已开展对沧州地区第四纪地质的研究, 主要集中于渤海海侵事件的定年分析(赵松龄等, 1978; 汪品先等, 1981; 王强和李凤林, 1983; Yi et al., 2015)以及利用孢粉等资料重建古气候环境演变(杨子赓等, 1979; Yi et al., 2012), 尚缺乏第四纪以来流域物源示踪和海平面升降等方面的研究。因此, 作者对渤海湾西岸CZ01钻孔中更新世晚期以来的沉积物进行粒度端元分解及解释对应的物源变化, 结合前人研究所得地质记录, 进一步揭示不同时间尺度下各端元对气候及海平面变化的响应。

2 区域概况及样品情况
2.1 区域概况

CZ01钻孔位于渤海湾西岸沧州市运河区, 沧州市地处河北省东南部, 东临渤海, 南依山东, 西部与保定市、衡水市接壤, 北与天津市、廊坊市相邻, 拥有129.7 km长的海岸线(陈望和和倪明云, 1987)。沧州地区属暖温带大陆性季风气候, 气温和降水季节性差异显著; 年平均气温为12.5 ℃, 年平均降水达581 mm(张可义等, 2010)。 市区内河流主要有子牙河、小白河和黑龙港河等季节性河流(图1), 以及贯穿全境的漳卫南运河下游河道, 并且在沿海区域存在多处河流入海口(刘振东等, 2007; 秦同春, 2010)。

图1 渤海湾西岸沧州市及CZ01钻孔位置Fig.1 Location of Cangzhou city and CZ01 borehole on west coast of Bohai Bay

2.2 样品采集与处理

CZ01钻孔(38°19.721'N, 116°49.898'E)深度201.2 m。采样中为确保每个层位均有样品, 每米钻孔岩心取1~2个环境样品, 每层采1~2个测年样品。最终共采集到沉积物粒度样224件, 光释光(OSL)测年样品20件。

采用光释光(OSL)测年法对采集到的20件测年样品进行测试。根据标准的前处理方法进行细粒(直径4~11 μ m)混合矿物样品的制备(Roberts and Wintle, 2003), 样品预热、辐射和测定均采用RisøTL/OSL-DA-15型释光断代仪。具体实验流程如下(卢演俦, 1990): (1)在无曝光的环境下进行样品的前处理; (2)依次加入25%的HCl溶液和6%的H2O2溶液; (3)采用静水沉降法分离出4~11 μ m的混合矿物样品; (4)称取样品湿重及干重, 进行含水量测定; (5)对样品进行预热、辐射和激发等步骤, 测量混合矿物样品的天然OSL强度, 建立其OSL生长曲线, 并测量等效剂量; (6)检验等效剂量; (7)计算各样品的年龄。

采用Mastersizer 2000型激光粒度分析仪对224个沉积物粒度样品进行分析。该仪器的粒径测量范围为0.02~2000 μ m, 粒径间隔为0.25ϕ , 粒度分辨率为0.1ϕ , 重复测量的相对误差小于2%。具体操作步骤如下: (1)取1 g样品, 依次加入10 mL H2O2溶液和10 mL HCl溶液, 加热去除有机质及碳酸钙; (2)加入蒸馏水后静置, 用吸管吸出中上部清液; (3)加入10 mL 0.5%的(NaPO3)6溶液, 在超声波清洗器中振荡10 min左右, 得到高分散悬浮液; (4)使用激光粒度分析仪测量粒度。

3 结果
3.1 年代测定结果

中更新世以来渤海湾西岸CZ01钻孔沉积连续无间断, 符合进行光释光测年的要求。在CZ01钻孔整段, 共取得20个OSL测年数据, 其与深度呈现很好的线性关系(R2=0.939)(图2)。结合渤海湾西岸年代与深度的关系以及前人的研究方法(Aitken, 1998; Wintle, 2008), 得到CZ01钻孔岩心沉积物20个年代与深度的对应关系, 并建立了渤海湾西岸沉积物年代的线性回归方程。其他未测层位的年代则根据已获得的年代利用沉积速率进行推算, 得到MIS1~6阶段的年代划分界限分别为12 ka、23 ka、60 ka、74 ka和130 ka, MIS5a至MIS5e间各阶段年代划分界限分别为72.5 ka、92 ka、108.5 ka和115 ka; 此外, 得到岩心顶部年代为1.259 ka, 岩心底部年代为178.837 ka, 由此建立了渤海湾西岸岩心精确的年代框架。

图2 渤海湾西岸CZ01钻孔年代—深度模式Fig.2 Age-depth model of CZ01 borehole on west coast of Bohai Bay

3.2 粒度端元分析结果

在Matlab环境中使用Paterson and Heslop(2015)提供的AnalySize程序包, 对CZ01钻孔的沉积物粒度数据进行分析。在非参数化端元分解过程中, 调整端元数量以获得更好的分解效果, 可供评价的指标如下: (1)端元相关性(EM R2): 表征各端元之间的相关性; (2)角度偏差(θ ): 表征端元数据与原粒度分布曲线之间的偏离程度; (3)线性相关性(R2): 表征端元数据与粒度数据之间的相关性。评估端元分解效果时, 需要尽量保证相关性指标在0.9以上, 角度偏差小于5°, 同时选择尽可能少的端元个数。最终, 采用非参数化方法将粒度数据分解为6个端元, 其拟合特性的各项评价指标如图3所示, 当端元个数为6时, 端元相关性EM R2为0.1026, 线性相关性R2为0.994, 角度偏差θ 为3.8°, 且数值趋向于稳定, 拟合效果较好。

图3 渤海湾西岸CZ01钻孔沉积物粒度端元间的线性相关性(左图)和角度偏差(右图)Fig.3 Linear correlation between end-members(left)and angular deviation(right)of sediments from CZ01 borehole on west coast of Bohai Bay

本研究采用Udden-Wentworth粒度分级法, 该方法划分规则如下: <3.9 μ m(黏土)、3.9~63 μ m(粉砂)、>63 μ m(砂)。CZ01钻孔的6个粒度端元均呈现出多峰分布形态, 众数粒径分别为: EM1为 5.01 μ m(极细粉砂)、EM2为13.18 μ m(细粉砂)、EM3为39.81 μ m(粗粉砂)、EM4为68.18 μ m(极细砂)、EM5为138.04 μ m(细砂)、EM6为275.42 μ m(中砂)(图4)。

图4 渤海湾西岸CZ01钻孔沉积物非参数化端元分析众数粒径与含量分布曲线Fig.4 Non-parametric end-member plural particle size and content distribution curves of sediments from CZ01 borehole on west coast of Bohai Bay

CZ01钻孔岩心沉积物中黏土、粉砂和砂含量随深度的变化显著(图5)。其中, 黏土含量在0%~51.56%之间波动, 均值为20.09%; 粉砂含量的变化范围在0.23%~88.60%, 均值达63.16%; 而砂含量均值为16.75%。EM1含量平均值为24.49%, 且多段占比达50%以上; EM2含量平均值为28.46%, 在整个深度内变化幅度均较大, 且出现多个占比超过70%的极大值; EM3含量平均值为20.99%, 其上半部端元含量变化幅度较大, 并于40 m左右出现最大值, 下半部变化幅度较小; EM4含量平均值为14.08%, 在50 m以上深度范围内变化较为剧烈并出现多个峰值, 50 m以下仅在160 m和180 m左右占比超过40%; EM5含量平均值为9.02%, 于75 m、130 m和150 m左右出现极值, 占比最高达80%; EM6含量在较长的深度范围内含量均在5%以下, 峰值仅出现在190 m左右, 包含占比超过40%的若干次峰值。

图5 渤海湾西岸CZ01钻孔沉积物各端元含量随深度变化曲线Fig.5 Variation curves of percentages of sediment end-members with depth of CZ01 borehole on west coast of Bohai Bay

4 讨论
4.1 CZ01钻孔各端元组分指示的物质来源

沉积物粒度端元的性质通常受沉积物来源和不同沉积环境的动力学过程的影响, 如沉积物岩性、沉积物运移机制和水动力条件的变化(Weltje, 1997; Dietze et al., 2014)。因此, 沉积物粒度分布中每个端元所指示的物源分析可解释如下。

EM1的平均粒径和众数粒径分别为3.42 μ m和5.01 μ m, 属极细粉砂粒级, 其中黏土占比52.22%, 粉砂占比47.77%。在温带季风气候条件下, 冬季亚洲高压中心所主导的冬季风能够为EM1所揭示的极细粉砂粒级的长距离输运提供动力。已有研究表明, 10 μ m以下的细粒组分被风起动后极易被抬升到高层大气中并保持悬浮, 在长距离的输运后最终被气流带至下风区域; 而粒径范围为2~8 μ m的细粒组分则可被解释为高空西风气流输送的远源产物(Pye, 1987; Sun, 2004; Sun et al., 2008)。此外, 研究表明黄土的形成分布与冬季风突出时期密切相关, 且很少受到风化侵蚀作用的影响(安芷生等, 1991)。据此可判断EM1主要为远源的风尘输入。

EM2的众数粒径为13.18 μ m, 属于细粉砂粒级; EM3的众数粒径为39.81 μ m, 属于粗粉砂粒级, 且二者均以含量超过85%粉砂为主。在黄河沉积物中, 其众数粒径多出现在11 μ m和38 μ m, 平均粒径在15~28 μ m(冯秀丽等, 2015), 与EM2和EM3的粒径相近。此外, 早更新世黄河就已流入并贯通华北平原, 沧州地区的沉积环境易受到黄河流域影响, 河流相沉积分布广泛(杨守业等, 2001)。因此, 可以推断EM2和EM3主要来源于古黄河。

EM4的平均粒径为51.98 μ m, 众数粒径为69.18 μ m, 属于极细砂粒级, 主要以粉砂(49.06%)和砂(44.22%)为主; 而EM5的平均粒径为81.93 μ m, 众数粒径为138.04 μ m, 属于细砂, 主要以砂(75.05%)为主。渤海湾西岸表层沉积物主要为分选良好的细砂和砂质粉砂, 中值粒径在2.083~3.087ϕ 间不等, 与EM4和EM5粒径相近(雷坤等, 2006; 王中波等, 2016)。同时, 自更新世以来沧州地区海面升降频繁并在MIS Ⅰ 、MIS Ⅲ 和MIS Ⅴ 时期发生过3次较大规模的海侵事件(林景星, 1977; 杨子赓等, 1979)。据此可推测EM4和EM5来源于海相沉积物。

EM6的平均粒径为231.89 μ m, 众数粒径为275.42 μ m, 属于中砂, 以砂为主。该端元组分不易被风力搬运, 其存在需要较强的水动力条件。与江西玉华山泥炭地以及淮河上游黄土剖面中表征洪水的端元粒径结果(200 μ m左右)相似, 以中砂为主的EM6可能代表极端气候事件引起的洪水等突发性的事件(王兆夺等, 2017; 尚广春等, 2020)。

4.2 粒度端元揭示的沧州地区中更新世晚期以来的气候—海平面变化

第四纪全球气候显著变冷, 冰期与间冰期频繁交替, 极端气候事件多次发生, 该时期气候的显著变化引起全球范围内海平面剧烈波动。根据指示海相沉积的EM4+5敏感组分特征分析, 探讨沧州地区中更新世晚期(180 ka BP)以来的气候—海平面变化。

4.2.1 全新世气候—海平面响应 在12~11.1 ka BP, EM4+5组分含量整体较小, 且出现多次波动升降(图6)。该阶段对应于冰消期后期气温频繁波动且缓慢升高的时期, 海平面较低(Lambeck, 2014; Zhang et al., 2021)。11.5 ka BP左右北半球新仙女木事件导致气温迅速下降, 渤海海平面在全新世早期持续上升的情况下出现短暂的停滞现象(Tian et al., 2017; Praetorius et al., 2020)。此外, 在11~8.4 ka BP, 海相沉积物含量处于极不稳定的状态, 在9.4 ka BP前出现大幅度增大, 随后又快速减小(图6); 推测该时期强盛的东亚夏季风带来大量降水, 使得渤海相对海平面不断上升(Li et al., 2021); 至9.4 ka BP左右, 冷干气候的强烈影响使研究区由滨海浅海相沉积或海陆过渡相沉积过渡为晚更新世末期的陆相沉积(杨达源, 1984; 杨仲康, 2019; Walczak et al., 2020)。

图6 全新世渤海湾西岸CZ01钻孔沉积物EM4+5含量的时间序列记录与其他气候记录的比较
a—全球大气二氧化碳记录(Köhler et al., 2017); b—董哥洞氧同位素记录(Dykoski et al., 2005); c—北大西洋冰筏碎屑记录(Lisiecki and Stern, 2016); d—格陵兰NGRIP的氧同位素记录(Andersen et al., 2004); e—65°N太阳辐射(Laskar et al., 2004); f—模型预测的渤海相对平均海平面(Li et al., 2021); g—白洋淀乔木+灌木占比(Li et al., 2019); h、i—分别为基于岱海孢粉记录反演的年平均温度和年平均降水量(Xu et al., 2010); j—白洋淀干旱指数(申改慧等, 2018)
Fig.6 Comparison of the Holocene EM4+5 time series record of sediments from CZ01 borehole on west coast of Bohai Bay with other climate records

在11.1~5 ka BP, EM4+5含量整体呈上升趋势, 在7.5和5.8 ka BP左右出现极大值, 在6.8 ka BP左右出现最小值。该变化与北格陵兰NGRIP的 δ18O 记录、董哥洞 δ18O 变化、渤海西岸孢粉证据以及白洋淀干旱指数的变化情况相吻合(图6-b, 6-d, 6-g, 6-j), 指示在东亚夏季风增强的影响下, 区域气候环境由干凉逐渐向暖湿过渡, 渤海海平面波动性上升。此外, EM4+5含量的极大值表明在7.5 ka BP左右渤海湾西岸存在大规模海侵事件发生。中全新世以来, 海平面上升速率有明显下降, 直至在5.8 ka BP冷事件影响下渤海相对海平面逐渐趋近于现代海平面的高度(杨达源, 1984; Xu et al., 2010; Cheng et al., 2016; Walczak et al., 2020)。

5.0 ka BP之后, EM4+5含量无显著峰值出现且含量不足50%, 整体增长幅度不大(图6)。渤海西岸生物地层学记录和敦德冰心 δ18O 值显示该时期受西周寒冷期及东亚季风减弱的影响, 气候趋于冷干, 海平面逐渐下降, 河流相沉积占据主导地位(Cheng et al., 2016; Li et al., 2021)。晚全新世, 受东亚夏季风影响, 沧州地区的气候从温湿转向凉干, 此时EM4+5含量仍保持在较低水平, 仅在1.7 ka BP左右气温升高的阶段出现1次较小的峰值。在风暴潮和地震的作用下, 渤海湾西岸部分地区在此时发生过海侵事件, 但海面上升速率持续走低或小范围低于现今海面高度, 直至0.6 ka BP左右渤海海平面开始保持相对稳定, 与现代海平面相近(Boulay et al., 2007; Lambeck et al., 2014; Praetorius et al., 2020; Sicre et al., 2021)。

4.2.2 中更新世晚期至12 ka BP间气候—海平面响应 中更新世晚期至12 ka BP对应深海氧同位素(MIS)Ⅵ~Ⅱ阶段。受冰期—间冰期交替影响, 渤海湾地区垂向地层序列中海相和陆相沉积发生多次更迭, 海平面升降幅度较大。在夏季风和冬季风的强烈作用下, 寒冷干燥及温暖湿润性气候也往复出现(陈吉余等, 1989; 马雪龙, 2020)。180 ka BP以来, EM4+5含量变化与气候周期性波动以及极端气候事件密切相关, 可反映渤海海平面的升降及陆—海相沉积的更替变化(Spratt and Lisiecki, 2016)。

MIS Ⅵ阶段, EM4+5含量在168 ka BP左右出现了极大值, 高达96%, 这与东亚夏季风的强盛期和三宝洞石笋 δ18O 记录的低值相吻合(图7-g)。该时期全球和渤海均处于低海面阶段, 与此对应的EM4+5含量在该阶段内均值较低, 且多次出现零值。150~132 ka BP期间, EM4+5含量与渤海海面变化趋势相似, 但与全球海平面下降、深海 δ18O 以及三宝洞石笋的 δ18O 出现的低值记录相反(图7- c, 7-e, 7-g)。究其原因, 中更新世晚期渤海已由古湖泊完全发展成为内陆架海, 海面高度持续上升; 此外, 在喜马拉雅运动大幅度减弱的影响下, 渤海湾西岸的区域沉降沉积中心发生转移, 使得部分地区发生海侵, 导致海相沉积物含量增加(Yi et al., 2015; Spratt and Lisiecki, 2016; 陈江欣等, 2018)。

图7 中更新世晚期至12 ka BP期间EM4+5的时间序列记录与其他气候记录的比较
a—冰心的CO2记录曲线(Petit et al., 1999); b—全球海水表面温度变化曲线(Shakun et al., 2015); c—全球海平面记录(Spratt and Lisiecki, 2016); d—38°N太阳辐射变化记录(Laskar et al., 2004); e—深海氧同位素记录(张唯唯, 2013); f—北格陵兰岛NGRIP冰心氧同位素记录(Wolff et al., 2010); g—三宝洞石笋氧同位素记录(Wang et al., 2008); h—渤海相对海平面变化曲线(Yi et al., 2015)。
红色虚线为MIS阶段划分界线
Fig.7 Comparison of the time series record of EM4+5 with other climate records during the late Middle Pleistocene to 12 ka BP

MIS Ⅴ 阶段, EM4+5含量在间冰期暖期(MIS5a、5c和5e)出现较大的峰值且近于100%, 与渤海海平面变化、北大西洋冰筏碎屑以及亚洲季风记录相吻合, 反映间冰期暖期的高海平面和暖湿气候(Yi et al., 2015; Li et al., 2019; Pascal and Paul, 2022)。此外南极Vostok 冰心CO2和全球SST记录也出现高值(图7-a, 7-b), 与EM4+5表征的渤海相对海平面与全球海平面变化记录(图7-c, 7-h)一致。与此相反, 在MIS5b和5d时期, EM4+5含量普遍出现中低值, 且平均值在50%左右, 指示区域海相沉积作用较弱以及河流输入增强的特征。与间冰期暖期相比, MIS5b和5d阶段气候寒冷, 渤海相对海平面较低。在MIS5d阶段内, 仅108 ka BP左右出现极大值, 与格陵兰岛冰心和三宝洞石笋的 δ18O 记录的极小值相对应, 指示该时期出现的高海平面主要是受到东亚夏季风增强的影响, 降水增加, 海面高度出现小幅度上升(Wang et al., 2008; Wolff et al., 2010; 张唯唯, 2013)。

在MIS Ⅳ 阶段, EM4+5含量由MIS5a末期的高值发生大幅下降后趋于稳定, 出现了4次较为明显的极值(图7)。结合渤海西岸沉积记录、全球海表温度(SST)、太阳辐射及全球海面变化记录可以发现, 该阶段内全球气候冷干, 降水减少。此外, 渤海海平面升降趋势与北格陵兰岛冰心以及三宝洞 δ18O 曲线变化特征相似(Petit et al., 1999; Wang et al., 2008; 张唯唯, 2013; Yi et al., 2015; Spratt and Lisiecki, 2016)。EM4+5含量出现的多个极大值指示该阶段渤海湾西岸的海平面下降过程中可能出现若干次小规模海侵事件, 推测与东亚夏季风强度频繁波动有关。

MIS Ⅲ 阶段, EM4+5含量先升后降, 并在46 ka BP左右出现最大值。该阶段降水量小于MIS Ⅳ 和Ⅰ 时期, 渤海相对海平面出现突然性下降, 海面高度低于现今海平面120 m(liu et al., 2009; 仇建东等, 2012; Yi et al., 2015)。已有地质记录显示, 研究区在40 ka BP左右存在大规模海侵事件发生, 并且赵松龄等(1978)推算出39~23 ka BP期间渤海发生了第2次海侵事件。但也有一些学者通过相关钻孔记录定量重建了渤海相对海面高度, 认为受埋藏沉积物暴露影响, 渤海西海岸部分地区钻孔记录无法指示大规模海侵事件的发生(Yan et al., 2006; Yi et al., 2012, 2015)。该阶段内EM4+5含量的变化以及在46 ka BP左右出现的极大值与赵松龄等(1978)学者的观点相符, 但具体的海侵时间与极大值出现的年代存在出入。对比该时期的全球及渤海相对海平面变化记录, 可以发现EM4+5含量在58~24 ka BP左右的高值与海平面升高趋势相吻合, 表明该阶段渤海海面在下降的过程中确有可能发生大规模海侵事件, 推断与渤海海侵(65~53 ka BP)和献县海侵(39~22 ka BP)等事件密切相关(赵松龄等, 1978; Liu et al., 2009; Yi et al., 2015)。

MIS Ⅱ阶段, EM4+5含量波动幅度较大, 整体以陆相沉积为主, 但海相沉积物含量也存在突然性增加的情况。与末次冰盛期后期的寒冷干燥的气候相对应, 该阶段处于低海面时期; 伴随15 ka BP左右冰盛期的结束, 气温逐渐升高且东亚夏季风增强, 渤海海面开始升高, 并在13 ka BP左右达到最高海面(图7-c, 7-h)。这与全球海平面以及渤海相对海平面的升降变化存在相似性, 推测渤海湾西岸在13 ka BP左右发生了大规模海侵(图7)(Yi et al., 2015; Spratt and Lisiecki, 2016)。

5 结论

1)利用非参数化端元模型将渤海湾西岸沧州地区CZ01钻孔沉积物分解得到6个粒度端元: EM1(5.01 μ m)指示远源的风尘输入; EM2(13.18 μ m)和EM3(39.81 μ m)来源于古黄河; EM4(69.18 μ m)和EM5(138.04 μ m)指示为海相沉积; EM6(275.42 μ m)指示极端气候事件如古洪水。

2)全新世(MIS Ⅰ )渤海处于高海面时期并逐渐接近现代海平面, 气候暖湿。该阶段内海面变化特征记录了在11.5 ka BP左右北半球新仙女木事件的发生及在5.1 ka BP左右出现的冷干事件, 渤海海平面在稳定上升状态后出现停滞或小幅下降; 而在9.5 ka BP、7.5 ka BP、5.8 ka BP和1.7 ka BP左右, 东亚夏季风加强, 渤海海平面升高。渤海海平面全新世变化记录与北半球及全球范围内的地质气候记录存在一致性, 与冰川消融、太阳辐射波动及东亚季风变化密切相关。

3)MIS Ⅵ阶段北半球气候冷干, 渤海因区域差异性沉降活动影响在150~132 ka BP左右海面升高, 与全球变化记录相反。MIS Ⅴ 阶段间冰期与冰期频繁交替, 气候波动剧烈: 其中, 在间冰期(5a、5c和5e)气候向暖湿转变, 渤海海平面上升; 在冰期(5b和5d)全球气温下降且东亚夏季风减弱, 渤海海平面下降。MIS Ⅳ 阶段较MIS5a时期海平面突然下降但幅度不大, 且期间也出现若干次小规模海侵事件; MIS Ⅲ 阶段至末次冰盛期海平面发生较大幅度下降并存在周期性升降变化, 与全球气候波动记录相近, 在46 ka BP有大规模海侵事件的发生。MIS Ⅱ阶段受末次冰盛期后期寒冷干燥气候的影响, 海面较MIS Ⅲ 阶段出现小幅度下降; 伴随15 ka BP左右冰盛期的结束, 东亚夏季风增强, 海面开始上升。渤海海平面在180~12 ka BP间的变化与全球冰期与间冰期的交替导致的气温频繁波动密切相关, 而喜马拉雅运动与东亚夏季风的强度变化也使得渤海海平面升降存在区域性差异。

(责任编辑 李新坡; 英文审校 徐 杰)

参考文献
[1] 安芷生, 吴锡浩, 汪品先, 王苏民, 董光荣, 孙湘君, 张德二, 卢演俦, 郑绍华, 赵松龄. 1991. 最近130 ka中国的古季风-Ⅰ. 古季风记录. 中国科学(B辑化学生命科学地学), (10): 1076-1081.
[An Z S, Wu X H, Wang P X, Wang S M, Dong G R, Sun X J, Zhang D E, Lu Y F, Zheng S H, Zhao S L. 1991. Paleomonsoon in China during the last 130 ka-Ⅰ. Paleomonsoon records. Chinese Science(Series B)Chemistry Life Sciences Geology, (10): 1076-1081] [文内引用:1]
[2] 陈吉余, 王宝灿, 虞志英. 1989. 中国海岸发育过程和演变规律. 上海: 上海科学技术出版社, 76-89.
[Chen J Y, Wang B C, Yu Z Y. 1989. Development and Evolution of China Coast. Shanghai: Shanghai Scientific & Technical Publishers, 76-89] [文内引用:1]
[3] 陈江欣, 侯方辉, 李日辉, 温珍河. 2018. 渤海海域中西部新构造运动特征. 海洋地质与第四纪地质, 38(4): 83-91.
[Chen J X, Hou F H, Li R H, Wen Z H. 2018. Neotectonics in the western and central Bohai Sea. Marine Geology & Quaternary Geology, 38(4): 83-91] [文内引用:1]
[4] 陈望和, 倪明云. 1987. 河北第四纪地质. 北京: 地质出版社, 22-56.
[Chen W H, Ni M Y. 1987. Quaternary Geology in HeBei Province. Beijing: Geological Publishing House, 22-56] [文内引用:2]
[5] 陈永胜. 2012. 渤海湾西岸中更新世晚期以来的海相地层与沉积环境演化. 吉林大学博士学位论文: 63-84.
[Chen Y S. 2012. Marine beds and sedimentary environment since the Late Mid-Pleistocene in the West Coast of Bohai Bay. Doctoral dissertation of China Jilin University: 63-84] [文内引用:1]
[6] 冯秀丽, 魏飞, 刘杰, 刘潇, 徐芳. 2015. 渤海湾西部表层沉积物粒度及黏土矿物特征分析. 海洋科学, 39(8): 70-77.
[Feng X L, Wei F, Liu J, Liu X, Xu F. 2015. The sediment grain size characteristics and analysis of sources in the western Bohai Bay. Marine Sciences, 39(8): 70-77] [文内引用:1]
[7] 付强, 毛龙江, 尤惠川, 杨维, 莫多闻. 2013. 沧州地区CZ01孔岩心沉积物粒度特征及其环境意义. 土壤通报, 44(4): 807-813.
[Fu Q, Mao L J, You H C, Yang W, Mo D W. 2013. Grain-size characteristics and their paleo-environmental significance of CZ01 core sediments in Cangzhou. Chinese Journal of Soil Science, 44(4): 807-813] [文内引用:1]
[8] 雷坤, 孟伟, 郑丙辉, 张雷, 秦延文. 2006. 渤海湾西岸潮间带沉积物粒度分布特征. 海洋通报, 25(1): 54-61.
[Lei K, Meng W, Zheng B H, Zhang L, Qin Y W. 2006. Grain size distributions of sediments in the intertidal zone on the west coast of the Bohai Bay. Marine Scinece Bulletin, 25(1): 54-61] [文内引用:1]
[9] 李建芬. 2010. 渤海湾西部现代有孔虫种群分布特征及对地质环境的记录. 中国地质大学(北京)博士学位论文: 116-120.
[Li J F. 2010. Distribution characteristics of the modern foraminifera assemblages and their geoenvironmental records in the west Bohai Bay. Doctoral dissertation of China University of Geosciences: 116-120] [文内引用:1]
[10] 林景星. 1977. 华北平原第四纪海进海退现象的初步认识. 地质学报, 51(2): 109-116.
[Lin J X. 1977. Preliminary notes on Quaternary transgressions and regressions in N. China Plain. Acta Geologica Sinica, 51(2): 109-116] [文内引用:1]
[11] 林镇坤, 王爱军, 叶翔. 2019. 南流江河口水下三角洲表层沉积物端元分析及其沉积动力环境意义. 沉积学报, 37(1): 124-134.
[Lin Z K, Wang A J, Ye X. 2019. End-member analysis for surficial sediment of Nanliujiang River subaqueous delta and associated sediment dynamic environmental significance. Acta Geologica Sinica, 37(1): 124-134] [文内引用:1]
[12] 刘大为, 张可欣, 裴艳东, 王永明, 胡克, 赵雪. 2018. 渤海湾西岸QG01钻孔沉积物黏土矿物分布及古气候替代指标研究. 海洋学研究, 36(3): 28-36.
[Liu D W, Zhang K X, Pei Y D, Wang Y M, Hu K, Zhao X. 2018. The study of clay mineral assemblages and paleoclimatic proxies of borehole QG01 in the western coast of Bohai Bay, China. Journal of Marine Science, 36(3): 28-36] [文内引用:1]
[13] 刘梦慧, 李徐生, 韩志勇, 陈英勇, 汪雨辰, 苑晓康, 任翌成. 2021. 下蜀黄土参数化粒度端元分析及其物源示踪. 地球环境学报, 12(5): 510-525.
[Liu M H, Li X S, Han Z Y, Chen Y Y, Wang Y C, Yuan X K, Ren Y C. 2021. Parametric end-member analysis of the grain size distribution of the Xiashu loess and its provenance tracing. Journal of Earth Environment, 12(5): 510-525] [文内引用:1]
[14] 刘振东, 付学功, 董小丽, 张立新. 2007. 沧州市河流系统的演进与人的实践. 水利科技与经济, 13(10): 757-759.
[Liu Z D, Fu X G, Dong X L, Zhang L X. 2007. The evolution of river systems and human practices in Cangzhou. Water Conservancy Science and Technology and Economy, 13(10): 757-759] [文内引用:1]
[15] 卢演俦. 1990. 沉积物的光释光(OSL)测年简介. 地球与环境, (1): 36-40.
[Lu Y C. 1990. A brief introduction to optically stimulated luminescence(OSL)dating of sediments. Earth and Environment, (1): 36-40] [文内引用:1]
[16] 马雪龙. 2020. 河北怀来盆地晚更新世以来的古气候变迁. 中国地质大学(北京)硕士学位论文: 11-15.
[Ma X L. 2020. Paleoclimate change since late Pleistocene in Huailai basin from Hebei Province. Master's dissertation of China University of Geosciences(Beijing): 11-15] [文内引用:1]
[17] 秦同春. 2010. 沧州地区地下水开采与地面沉降的关系. 水土保持应用技术, 133(1): 39-41.
[Qin T C. 2010. The relationship between groundwater exploitation and land subsidence in the Cangzhou area. Technology of Soil and Water Conservation, 133(1): 39-41] [文内引用:1]
[18] 仇建东, 刘健, 白伟明. 2012. 深海氧同位素第3阶段古气候—海平面变化研究进展. 海洋地质前沿, 28(11): 12-16.
[Qiu J D, Liu J, Bai W M. 2012. Progress of the studies of paleoclimate and sea level changes in the marine oxygen isotope stage 3. Marine Geology Frontiers, 28(11): 12-16] [文内引用:1]
[19] 尚广春, 李亮, 马春梅, 弋双文, 赵琳, 崔安宁. 2020. 赣中玉华山泥炭地沉积来源的粒度端元法分析与2000 a BP以来气候环境重建. 海洋地质与第四纪地质, 40(2): 165-173.
[Shang G C, Li L, Ma C M, Yi S W, Zhao L, Cui A N. 2020. Climatic and environmental changes since 2 ka BP by End Member Modeling analysis on grain size data from a peat core of Yuhua Mountain, Jiangxi Province. Marine Geology & Quaternary Geology, 40(2): 165-173] [文内引用:2]
[20] 申改慧, 丁国强, 阳小兰, 张茹春, 李月丛, 李冰. 2018. 白洋淀地区全新世以来的气候环境变化. 第四纪研究, 38(3): 756-768.
[Shen G H, Ding G Q, Yang X L, Zhang R C, Li Y C, Li B. 2018. Holocene climate and environmental change in the Baiyangdian area. Quaternary Sciences, 38(3): 756-768] [文内引用:1]
[21] 汪品先, 闵秋宝, 卞云华, 成鑫荣. 1981. 我国东部第四纪海侵地层的初步研究. 地质学报, (1): 1-13.
[Wang P X, Min Q B, Bian Y H, Cheng X R. 1981. Preliminary study on Quaternary transgression strata in eastern China. Acta Geologica Sinica, (1): 1-13] [文内引用:1]
[22] 王可, 郑洪波, Maarten Prins, 郑妍. 2008. 东海内陆架泥质沉积反映的古环境演化. 海洋地质与第四纪地质, 28(4): 1-10.
[Wang K, Zheng H B, Maarten P, Zheng Y. 2008. High-resolution paleoenvironmental record of the mud sediments of the east China sea inner shelf. Marine Geology and Quaternary Geology, 28(4): 1-10] [文内引用:1]
[23] 王强, 李凤林. 1983. 渤海湾西岸第四纪海陆变迁. 海洋地质与第四纪地质, 3(4): 83-89.
[Wang Q, Li F L. 1983. The changes of marine-continental conditions in the West coast of the Bohai gulf during Quaternary. Marine Geology & Quaternary Geology, 3(4): 83-89] [文内引用:1]
[24] 王永明. 2015. 渤海湾西岸QG01孔全新世早中期古气候环境演化研究. 中国地质大学(北京)硕士学位论文: 48-58.
[Wang Y M. 2015. The stady on change of paleoclimatic environment in Early-Middle Holocene revealed by Borehole QG01 in the western coast of Bohai Bay, China. Master's dissertation of China University of Geosciences(Beijing): 48-58] [文内引用:1]
[25] 王兆夺, 黄春长, 庞奖励, 周亚利, 查小春. 2017. 淮河上游桐柏县卢庄SWD粒度端元分析. 兰州大学学报(自然科学版), 53(6): 720-726.
[Wang Z D, Huang C C, Pang J L, Zhou Y L, Zha X C. 2017. SWD end member analysis of grain-size of Luzhuang Village in Tongbai County in the upper Huaihe River. Journal of Lanzhou University: Natural Sciences, 53(6): 720-726] [文内引用:1]
[26] 王中波, 李日辉, 张志珣, 张训华, 张剑, 陈珊珊, 梅西. 2016. 渤海及邻近海区表层沉积物粒度组成及沉积分区. 海洋地质与第四纪地质, 36(6): 101-109.
[Wang Z B, Li R H, Zhang Z X, Zhang X H, Zhang J, Chen S S, Mei X. 2016. Grain size composition and distribution pattrn of seafloor sediments in Bohai Bay and adjacent areas. Marine Geology & Quaternary Geology, 36(6): 101-109] [文内引用:1]
[27] 王中波, 张江勇, 梅西, 陈晓辉, 赵利, 张勇, 张志珣, 李学杰, 李日辉, 陆凯, 孙荣涛, 杨守业. 2020. 中国陆架海MIS5(74~128 ka)以来地层及其沉积环境. 中国地质, 47(5): 1370-1394.
[Wang Z B, Zhang J Y, Mei X, Chen X H, Zhao L, Zhang Y, Zhang Z X, Li X J, Li R H, Lu K, Sun R T, Yang S Y. 2020. The stratigraphy and depositional environments of China' s sea shelves since MIS5(74~128 ka). Geology in China, 47(5): 1370-1394] [文内引用:1]
[28] 杨达源. 1984. 中国东部全新世海面变化的研究. 海洋科学, (2): 59-62.
[Yang D Y. 1984. On basic features of climate and environment in Quaternary glacial period in eastern China. Marine Sciences, (2): 59-62] [文内引用:2]
[29] 杨守业, 蔡进功, 李从先, 邓兵. 2001. 黄河贯通时间的新探索. 海洋地质与第四纪地质, 21(2): 15-20.
[Yang S Y, Cai J G, Li C X, Deng B. 2001. New discussion about the run-through time of the Yellow River. Marine Geology & Quaternary Geology, 21(2): 15-20] [文内引用:1]
[30] 杨仲康. 2019. 南北极与中国近海典型地区全新世气候变化与环境事件研究. 中国科学技术大学博士学位论文: 27-35.
[Yang Z K. 2019. Holocene climatic changes and environmental events in typical areas of Arctic, Antarctic and coastal China regions. Doctoral dissertation of University of Science and Technology of China: 27-35] [文内引用:1]
[31] 杨子赓, 李幼军, 丁秋玲, 何宝成. 1979. 试论河北平原东部第四纪地质几个基本问题. 地质学报, (4): 263-279, 363-364.
[Yang Z G, Li Y J, Ding Q L, He B C. 1979. Some basic problems of Quaternary geology in eastern Hebei Plain. Acta Geologica Sinica, (4): 263-279, 363-364] [文内引用:2]
[32] 张可义, 张传河, 张雷. 2010. 沧州市水文特性分析. 水利科技与经济, 16(11): 1211-1212.
[Zhang K Y, Zhang C H, Zhang L. 2010. Analysis of hydrological characteristics in Cangzhou city. Water Conservancy Science and Technology and Economy, 16(11): 1211-1212] [文内引用:1]
[33] 张唯唯. 2013. 苏北盆地36万年以来古气候环境变化研究. 南京师范大学硕士学位论文: 56-61.
[Zhang W W. 2013. Study on the environmental and climatic change of Subei Basin since 36 million years. Master's dissertation of Nanjing Normal University: 56-61] [文内引用:2]
[34] 张晓东, 许淑梅, 翟世奎, 张怀静. 2006. 东海内陆架沉积气候信息的端元分析模型反演. 海洋地质与第四纪地质, 26(2): 25-32.
[Zhang X D, Xu S M, Zhai S K, Zhang H J. 2006. The inversion of climate information from the sediments of inner shelf of East China sea using end member model. Marine Geology & Quaternary Geology, 26(2): 25-32] [文内引用:1]
[35] 赵松龄, 杨光复, 苍树溪, 张宏才, 黄庆福, 夏东兴, 王永吉, 刘福寿, 刘成福. 1978. 关于渤海湾西岸海相地层与海岸线问题. 海洋与湖沼, 9(1): 15-25.
[Zhao S L, Yang G F, Cang S X, Zhang H C, Huang Q F, Xia D X, Wang Y J, Liu F S, Liu C F. 1978. On the marine stratigrahy and coastlines of the western coast of the gulf of Bohai. Oceanologia et Limnologia Sinica, 9(1): 15-25] [文内引用:4]
[36] Aitken M J. 1998. An introduction to optical dating. New York: London Oxford University Press, 22-63. [文内引用:1]
[37] Andersen K K, Azuma N, Barnola J M, Bigler M, Biscaye P, White J W C. 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431(7005): 147-151. [文内引用:1]
[38] Bolikhovskaya N S, Porotov А V, Richards K, Kaitamba M D, Faustov S S, Korotaev V N. 2018. Detailed reconstructions of Holocene climate and environmental changes in the Taman Peninsula(Kuban River delta region)and their correlation with rapid sea-level fluctuations of the Black Sea. Quaternary International, 465: 22-36. [文内引用:1]
[39] Boulay S, Colin C, Trentesaux A, Clain S, Liu Z, Lauer-Leredde C. 2007. Sedimentary responses to the Pleistocene climatic variations recorded in the South China Sea. Quaternary Research, 68(1): 162-172. [文内引用:1]
[40] Cheng H, Edwards R, Sinha A. Spötl C, Yi L, Chen S, Kelly M, Kathayat G, Wang X F, Li X L, Kong X G, Wang Y J, Ning Y F, Zhang H W. 2016. The Asian monsoon over the past 640 000 years and ice age terminations. Nature, 534: 640-646. [文内引用:1]
[41] Dietze E, Maussion F, Ahlborn M, Diekmann B, Hartmann K, Henkel K, Kasper T, Lockot G, Opitz S, Haberzettl T. 2014. Sediment transport processes across the tibetan plateau inferred from robust grain-size end members in lake sediments. Climate of the Past, 10(1): 91-106. [文内引用:1]
[42] Dykoski C A, Edwards R L, Cheng H, Yuan D X, Cai Y J, Zhang M L, Lin Y S, Qing J M, An Z S, Revenaugh J. 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters, 233(1-2): 71-86. [文内引用:1]
[43] Friedman G M. 1979. Differences in size distributions of populations of particles among sand s of various origins: addendum to IAS Presidential Address. Sedimentology, 26(6): 859-862. [文内引用:1]
[44] Hails J R. 1967. Significance of statistical parameters for distinguishing sedimentary environments in New South Wales, Australia. Journal of Sedimentary Research, 37(4): 1059-1069. [文内引用:1]
[45] Hamann Y, Ehrmann W, Schmiedl G, Krüger S F, Stuut J B, Kuhnt T J. 2008. Sedimentation processes in the Eastern Mediterranean Sea during the Late Glacial and Holocene revealed by end-member modelling of the terrigenous fraction in marine sediments. Marine Geology, 248(1-2): 97-114. [文内引用:1]
[46] Köhler P, Nehrbass-Ahles C, Schmitt J, Stocker T, Fischer H. 2017. A 156 kyr smoothed history of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing. Earth System Science Data, 9(1): 363-387. [文内引用:1]
[47] Korus J T, Fielding C R. 2015. Asymmetry in Holocene river deltas: Patterns, controls, and stratigraphic effects. Earth-Science Reviews, 150: 219-242. [文内引用:1]
[48] Lambeck K, Rouby H, Purcell A, Sun Y Y, Sambridge M. 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences, 111(43): 15296-15303. [文内引用:1]
[49] Laskar J, Robutel P, Joutel F, Gastineau M, Correia A, Levrard B A. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428(1): 261-285. [文内引用:1]
[50] Latrubesse E M, Stevauxs J C, Sinha R. 2005. Tropical rivers. Geomorphology, 70: 187-206. [文内引用:1]
[51] Li J, Yang S X, Shu J W, Li R H, Chen X H, Meng Y K, Ye S Y, He L. 2019. Vegetation history and environment changes since MIS5 recorded by pollen assemblages in sediments from the western Bohai Sea, Northern China. Journal of Asian Earth Sciences, 187: 104085. [文内引用:1]
[52] Li J F, Shang Z W, Wang F, Chen Y S, Tian L Z, Jiang X Y, Yu Q. 2021. Holocene sea level trend on the west coast of Bohai Bay, China: reanalysis and stand ardization. Acta Oceanologica Sinica, 40: 198-248. [文内引用:2]
[53] Lisiecki L E, Stern J V. 2016. Regional and global benthic δ18O stacks for the last glacial cycle. Paleoceanography, 31(10): 1368-1394. [文内引用:1]
[54] Liu J, Saito Y, Wang H, Zhou L Y, Yang Z G. 2009. Stratigraphic development during the Late Pleistocene and Holocene offshore of the Yellow River delta, Bohai Sea. Journal of Asian Earth Sciences, 36(4-5): 318-331. [文内引用:2]
[55] Maselli V, Trincardi F, Asioli A, Ceregato A, Rizzetto F, Taviani M. 2014. Delta growth and river valleys: the influence of climate and sea level changes on the south Adriatic shelf(Mediterranean Sea). Quaternary Science Reviews, 99: 146-163. [文内引用:1]
[56] Mateo Z R P, Siringan F P. 2016. Morphological and sedimentological signatures of Late Holocene prodelta lobes in Lingayen Gulf, Philippines. Journal of Coastal Research, 32(2): 354-364. [文内引用:1]
[57] Pascal K, Paul J H. 2022. The Whale Point Formation: a stratigraphic record of high-frequency climate and sea-level fluctuations in the Bahamas during Marine Isotope Stage 5a(ca. 80 ka BP). Sedimentary Geology, 432: 106107. [文内引用:1]
[58] Paterson G A, Heslop D. 2015. New methods for unmixing sediment grain size data. Geochemistry, Geophysics, Geosystems, 16(12): 4494-4506. [文内引用:1]
[59] Petit J R, Jouzel J, Raynaud D, Barkov N I, Barnola J M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov V M, Legrand M, Lipenkov V Y, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M. 1999. Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica. Nature, 399: 429-436. [文内引用:1]
[60] Praetorius S K, Condron A, Mix A C, Walczak M H, McKay J L, Du J. 2020. The role of Northeast Pacific meltwater events in deglacial climate change. Science Advances, 6(9): eaay2915. [文内引用:2]
[61] Pye K. 1987. Aeolian Dust and Dust Deposits. London: Academic Press, 1-256. [文内引用:1]
[62] Roberts H M, Wintle A G. 2003. Luminescence sensitivity changes of polymineral fine grains during IRSL and [post-IR]OSL measurements. Radiation Measurements, 37(6): 661-671. [文内引用:1]
[63] Sawakuchi A O, Jain M, Mineli T D, Nogueira L Jr, Bertassoli D J, Häggi C, Sawakuchi H O, Pupim F N, Grohmann C H, Chiessi C M, Zabel M, Mulitza S, Mazoca C E M, Cunha D F. 2018. Luminescence of quartz and feldspar fingerprints provenance and correlates with the source area denudation in the Amazon River Basin. Earth and Planetary Science Letters, 492: 152-162. [文内引用:1]
[64] Shakun J D, Lea D W, Lisiecki L E, Raymo M. 2015. An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling. Earth and Planetary Science Letters, 426: 58-68. [文内引用:1]
[65] Sicre M A, Jalali B, Eiríksson J, Knudsen K L, Klein V, Pellichero V. 2021. Trends and centennial-scale variability of surface water temperatures in the North Atlantic during the Holocene. Quaternary Science Reviews, 265: 107033. [文内引用:1]
[66] Spratt R M, Lisiecki L E. 2016. A Late Pleistocene sea level stack. Climate of the Past, 12(4): 1079-1092. [文内引用:4]
[67] Sun D, Su R, Bloemendal J, Lu H Y. 2008. Grain-size and accumulation rate records from Late Cenozoic aeolian sequences in northern China: implications for variations in the East Asian winter monsoon and westerly atmospheric circulation. Palaeogeography, Palaeoclimatology, Palaeoecology, 264(1-2): 39-53. [文内引用:1]
[68] Sun D H. 2004. Monsoon and westerly circulation changes recorded in the late Cenozoic aeolian sequences of Northern China. Global and Planetary Change, 41(1): 63-80. [文内引用:1]
[69] Tian L Z, Chen Y P, Jiang X Y, Wang F, Pei Y D, Chen Y S, Shang Z W, Li J F, Li Y, Wang H. 2017. Post-glacial sequence and sedimentation in the western Bohai Sea, China, and its linkage to global sea-level changes. Marine Geology, 388: 12-24. [文内引用:1]
[70] Walczak M H, Mix A C, Cowan E A, Fallon S, Fifield L K, Alder J R, Du J H, Haley B, Hobern T, Padman J, Praetorius S K, Schmittner A, Stoner J S, Zellers S D. 2020. Phasing of millennial-scale climate variability in the Pacific and Atlantic Oceans. Science, 370(6517): 716-720. [文内引用:2]
[71] Wang Y, Cheng H, Edwards R L, Kong X, Shao X H, Chen S, Wu J Y, Jiang X Y, Wang X F, An Z S. 2008. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224 000 years. Nature, 451(7182): 1090-1093. [文内引用:2]
[72] Weltje G J. 1997. End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. Mathematical Geology, 29(4): 503-549. [文内引用:1]
[73] Wintle A. 2008. Luminescence dating of Quaternary sediments-Introduction. Boreas, 37(4): 469-470. [文内引用:1]
[74] Wolff E W, Chappellaz J, Blunier T, Rasmussen S, Svensson A. 2010. Millennial-scale variability during the last glacial: the ice core record. Quaternary Science Reviews, 29(21-22): 2828-2838. [文内引用:1]
[75] Xu Q, Xiao J, Li Y, Tian F, Nakagawa T. 2010. Pollen-based quantitative reconstruction of Holocene climate changes in the Daihai Lake area, Inner Mongolia, China. Journal of Climate, 23(11): 2856-2868. [文内引用:1]
[76] Yan Y, Wang H, Li F, Li J. Zhao C, Lin F. 2006. Sedimentary environment and sea-level fluctuations revealed by Borehole BQ1 on the west coast of the Bohai Bay, China. Geological Bulletin of China, 25: 264-279. [文内引用:1]
[77] Yi L, Yu H J, Ortiz J D, Xu X Y, Ge J Y, Hao Q Z, Yao J, Shi X F, Peng S Z. 2012. Late Quaternary linkage of sedimentary records to three astronomical rhythms and the Asian monsoon, inferred from a coastal borehole in the south Bohai Sea, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 329: 101-117. [文内引用:2]
[78] Yi L, Deng C, Xu X, Yu H J, Qiang X K, Jiang X Y, Chen Y P, Su Q, Chen G Q, Li P, Ge J Y, Li Y. 2015. Paleo-megalake termination in the Quaternary: paleomagnetic and water-level evidence from south Bohai Sea, China. Sedimentary Geology, 319: 1-12. [文内引用:7]
[79] Yi S, Saito Y, Yang D Y. 2006. Palynological evidence for Holocene environmental Change in the Changjiang(Yangtze River)Delta, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 241(1): 103-117. [文内引用:1]
[80] Zhang J, Tomczak M, Witkowski A, Liang K, Harff J, Li C, Wang B. 2021. A diatom-based Holocene record of sedimentary and oceanographic environmental changes within the Beibu Gulf, NW South China Sea. Marine Geology, 432: 106395. [文内引用:1]
[81] Zhang P, Miao Y F, Zhang Z Y, Lu S M, Zhang Y J, Chen H G, Li X Q, Miao Q Y, Feng W L, Ou J, Gong X L, Jiang B, Li W. 2013. Late Cenozoic sporopollen records in the Yangtze River Delta, East China and implications for East Asian summer monsoon evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 388(6): 153-165. [文内引用:1]