非常规油气时代测井地质学研究进展*
赖锦1,2, 李红斌2, 张梅2, 白梅梅2, 赵仪迪2, 范旗轩2, 庞小娇2, 王贵文1,2
1 油气资源与工程全国重点实验室,中国石油大学(北京),北京 102249
2 中国石油大学(北京)地球科学学院,北京 102249
通讯作者简介 王贵文,男,1966年生,教授,博士生导师,从事沉积储集层与测井地质学方面的教学与科研工作。E-mail: wanggw@cup.edu.cn

第一作者简介 赖锦,男,1988年生,博士,副教授,博士生导师,从事沉积储集层和测井地质学教学与研究工作。E-mail: laijin@cup.edu.cn

摘要

非常规油气时代对测井地质学研究提出了更深层次需求,亟需建立针对非常规油气的测井地质学理论与评价技术体系。通过对比常规油气与非常规油气地质特征的异同,梳理了配套的测井技术系列以及非常规油气测井评价的重点,并论述了测井储集层评价的要点和流程。归纳总结了烃源岩测井识别评价技术体系及其在资源“甜点”评价中的应用。利用 LithoScanner测井识别矿物组分和 TOC,通过成像测井拾取纹层等沉积构造,可实现岩相的测井判别。非常规储集层层理缝的识别与评价成为关键,通过常规与成像测井可拾取单井裂缝分布,非常规油气地质“甜点”优选应注重岩相、储集层参数以及层理缝的测井响应及其综合评价。最后强调测井脆性和地应力评价在非常规油气工程“甜点”识别与预测的重要性。指出不同尺度的地质、测井资料及其与人工智能的融合将推动测井地质学不断创新。

关键词: 非常规油气; 测井地质学; 地质与工程“甜点”; 岩相; 层理缝; 地应力
中图分类号:P521 文献标志码:A 文章编号:1671-1505(2023)05-1118-21
Advances in well logging geology in the era of unconventional hydrocarbon resources
LAI Jin1,2, LI Hongbin2, ZHANG Mei2, BAI Meimei2, ZHAO Yidi2, FAN Qixuan2, PANG Xiaojiao2, WANG Guiwen1,2
1 National Key Laboratory of Petroleum Resource and Engineering,China University of Petroleum(Beijing),Beijing 102249,China
2 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China
About the corresponding author WANG Guiwen,born in 1966,Ph.D.,professor,doctoral supervisor,is mainly engaged in sedimentology,reservoir geology and well logging geology. E-mail: wanggw@cup.edu.cn.

About the first author LAI Jin,born in 1988,Ph.D.,associate professor,doctoral supervisor,is mainly engaged in sedimentology,reservoir geology and well logging geology. E-mail: laijin@cup.edu.cn.

Abstract

Comprehensive and advanced demands are raised for well logging geology in the era of unconventional oil and gas resources,and new and comprehensive theory and technical systems are urgently to be developed in order to solve the problems in the well logging geology for unconventional oil and gas resources. This paper compares the differences of geological characteristics between conventional and unconventional hydrocarbon resources. Furthermore the matched well log series are introduced,and then the main contents in well log evaluation of unconventional hydrocarbon resources are summarized,in addition,the key points and processes of well log evaluation are clarified. The well log evaluation of source rocks,the related theorical and technical systems as well as their application in resource “sweet spot”optimization are summarized. The LithoScanner is used to determine the mineral content and total organic carbon(TOC)content,and the image log is used for picking out sedimentary structure such as lamina,and then the lithofacies can be determined using well logs. The evaluation of bedding parallel fractures in unconventional hydrocarbon resources is an important,and the integration of conventional well logs and image logs can pick out the fractures in a single well. The evaluation and prediction of geological “sweet spots”should pay attention to the well log responses and comprehensive evaluation of lithofacies,bedding parallel fracture and calculation of reservoir parameters. Lastly the importance of in situ stress fields and brittleness index are emphasized in terms of evaluation and prediction of engineering “sweet spots”. The integration of various resolution geological data,well log data and artificial intelligence will promote the continuous innovations on well logging geology.

Key words: unconventional hydrocarbon resources; well logging geology; geological and engineering “sweet spots”; lithofacies; bedding parallel fractures; in situ stress

随着常规油气产量的衰减以及水平井钻井和水力压裂技术的提升, 全球石油工业逐渐迈入以致密油气和页岩油气为典型代表的非常规油气时代(Curtis et al., 2012; Loucks et al., 2012; 邹才能等, 2014; 杨智等, 2021; 马永生等, 2022)。不同于常规油气找圈闭, 非常规油气勘探开发重点在“ 甜点” 优选, 综合利用地质、地震和测井资料实现地质与工程“ 甜点” 评价与预测成为非常规油气研究的重点内容(邹才能等, 2014; Iqbal et al., 2018; Zhao et al., 2019; 贾承造等, 2021; 金之钧等, 2021)。然而受到经济和技术条件的限制, 存在取心资料不全和地震资料纵向分辨率太低等现象, 而地球物理测井作为深入地下的“ 眼睛” , 蕴含丰富地质与工程信息, 将地质学与地球物理测井学二者相互交叉共融的测井地质学综合研究, 可挖掘隐含在测井资料里面的地质信息, 并在地质学理论指导下, 运用测井资料解决非常规油气勘探开发实践问题(Avanzini et al., 2016; Rybacki et al., 2016; 赖锦等, 2021a)。目前探测地层声学、电磁学、核物理等特性的地球物理测井资料以其纵向分辨率高、连续性好的特征在非常规油气勘探开发的各个环节得到广泛应用(付金华等, 2013; Iqbal et al., 2018; Shalaby et al., 2019; 蒋云箭等, 2020; 李宁等, 2020; 匡立春等, 2021; 刘国强, 2021; 赖锦等, 2021a; 张少龙等, 2022)。

测井资料地质解释是把测井信息处理成地质信息的过程, 通过选定不同测井序列, 可从测井曲线组合中综合分析和认识地层特性(徐风等, 2017; 赖锦等, 2022b)。测井地质学是以地球物理测井学和地质学的学科理论为指导, 通过不同测井序列和方法解决地质问题的交叉学科。自1927年测井学科开创以来, 在地质学理论指导下, 目前集声、电、核及核磁多种测量方法和手段于一身的测井资料在测井构造解析、测井沉积学、测井储集层评价、烃源岩测井评价、地应力测井分析等方面得到广泛应用(李国欣等, 2004; 徐风等, 2017; Lai et al., 2018; Al-Mudhafar, 2020; 赖锦等, 2021a; 李宁等, 2021)。然而近20年以来, 以致密油气、页岩油气为典型代表的非常规油气的勘探开发实践使得测井地质学综合研究面临全新挑战(李浩等, 2015; Iqbal et al., 2018; 唐振兴等, 2019; 李宁等, 2020; 匡立春等, 2021; 赖锦等, 2021a; 石玉江等, 2021)。目前测井地质学研究正处于不适应勘探开发对象的艰难时期, 这一方面是由于测井资料本身的多解性以及负载能力有限性, 使得测井地质解释需求解释专家具有丰富的地质经验(石玉江等, 2021; 王华和张雨顺, 2021), 另一方面非常规油气岩性致密、物性差、孔隙结构复杂、非均质性强, 使得常规测井形成的方法理论体系难以在非常规油气领域推广应用(赖锦等, 2021a; 刘国强, 2021)。非常规油气时代需探索与勘探目标相适应的测井地质学综合研究方法。

非常规油气涉及面广, 主要包括致密油、致密气、页岩油和页岩气(刘国强, 2021)。目前中国页岩油战略地位显著, 其发育的地质时代跨度大, 从二叠系、三叠系、侏罗系和古近系等页岩层系中均有分布(王永诗等, 2022; 朱如凯等, 2022)。作者选取典型的吉木萨尔凹陷芦草沟组、古龙凹陷青山口组、鄂尔多斯盆地延长组长7段, 苏北盆地阜宁组二段等页岩油储集层为例, 通过分析非常规油气测井评价难点, 选择采用针对性的新技术测井序列实现储集层参数计算以及流体性质判别。在此基础上归纳总结烃源岩测井识别评价方法, 指出在测井沉积学研究、测井裂缝识别以及测井地应力评价方面测井地质学研究的新征程与方向。非常规油气时代, 人工智能的融入以及不同地质、地球物理测井和新技术测井资料的多尺度数据融合, 可为非常规油气的勘探开发提供技术支撑。

1 非常规油气测井储集层评价重点

常规碎屑岩储集层原生孔隙发育, 同时可见次生溶蚀孔隙以及黏土矿物微孔隙, 孔喉尺度为微米级, 孔喉之间连通性较好(Nelson, 2009; Rezaee et al., 2012)。碳酸盐岩则发育不同类型、不同尺寸多尺度孔喉网络系统(赖锦等, 2021b)。致密储集层(覆压渗透率小于0.1× 10-3μ m2)原生孔隙发育较少, 以粒间溶蚀孔、长石岩屑颗粒粒内溶孔、黏土矿物微孔隙为主, 孔喉尺寸主要是微米级— 纳米级, 孔隙结构复杂(Anovitz and Cole, 2015; Lai and Wang, 2015; Lai et al., 2016; 孙龙德等, 2019)。页岩油气储集层覆压渗透率最低, 甚至小于0.01× 10-3μ m2, 仅存在少量粒间孔, 页岩主要储集空间为纳米级的粒内孔隙、有机质孔、晶间孔等, 孔喉连通性最差(图 1)(邹才能等, 2011; Loucks et al., 2012; Zou et al., 2019; 金之钧等, 2021)。

图 1 不同常规、致密和页岩储集层类型典型特征对比
A— 常规储集层, 渤海湾盆地南堡凹陷东营组, 细砂岩, 南堡23-2704井, 3362.0 m; B— 粒间孔和少量粒内溶孔, 铸体薄片, 南堡23-2704井, 3362.0 m; C— 原生粒间孔发育, 扫描电镜, 南堡23-2704井, 3362.0 m; D— 致密储集层, 库车坳陷巴什基奇克组, 细砂岩, 博孜3井(深度未知); E— 粒内溶蚀孔隙和少量原生粒间孔, 铸体薄片, 克深505井(深度未知); F— 黏土矿物微孔隙发育, 扫描电镜, 克深505井(深度未知); G— 页岩储层, 鄂尔多斯盆地延长组长7段, 页岩, 城96井, 2056.59~2056.72 m; H— 镜下无可见孔隙, 黏土、有机质和粉砂质纹层, 乐85井, 1589.89 m; I— 黄铁矿晶间孔, 扫描电镜, 蔡30井, 1970.05 m
Fig.1 Typical characteristic comparisons of conventional reservoir, tight reservoir and shale reservoir

非常规油气其油气富集模式多为源储一体、油气连续聚集, 油气富集机理受控于源储配置关系和储集层自身属性, 在成藏过程中以超压和扩散作用作为主要成藏动力, 油气主要富集在低能贫氧— 厌氧的深湖— 半深湖亚相(焦方正等, 2019; 朱如凯等, 2022)。而早期勘探开发为主的常规油气藏, 以圈闭成藏为理论依据, 油气富集模式多为源储分离, 富集机理受控于构造背景和沉积特征, 在成藏过程中以浮力和毛管阻力为主要动力, 油气主要富集于高能水体环境中(焦方正, 2019; 马永生等, 2021; 朱如凯等, 2022)。以致密油气和页岩油气为典型代表的非常规油气除具有源储一致或源储紧邻的特征外, 往往其岩性复杂, 储集层致密, 薄互层发育, 导致非均质性和各向异性均较强, 决定了对测井评价技术理论体系的特殊需求(赖锦等, 2021a; 刘国强, 2021; Lai et al., 2022a)。与常规储集层“ 四性关系” (岩性、物性、电性、含油气性)测井评价不同, 源储一致或紧邻的非常规油气测井评价往往要在“ 四性关系” 基础上强调烃源岩特性的评价, 且因为非常规油气无自然产能, 需求压裂才能建产, 因此更需注重脆性和地应力各向异性的分析与解释, 即“ 七性关系” 评价(孙建孟, 2013; 李国欣和朱如凯, 2020; 李国欣等, 2021; 刘国强, 2021; 赖锦等, 2021a)。非常规油气测井评价除关注储集层品质外, 还需要强调烃源岩品质并注重工程品质, 通过烃源岩品质可落实资源“ 甜点” 区/带, 通过储集层品质分类可预测地质“ 甜点” 区/带, 而根据工程品质分类可优选压裂“ 甜点” 区/带(杨智等, 2015; 张鹏飞等, 2019; 闫伟林等, 2021; 郑建东等, 2021; 赖锦等, 2021a; 杨小兵等, 2022)。

全序列测井技术包括常规测井(自然伽马、声波和电阻率等)、高分辨率阵列感应(HDIL)、自然伽马能谱测井(K, Th, U含量)、元素俘获测井(ECS)、LithoScanner、阵列声波测井(DSI等)、微电阻率成像测井(FMI等)、核磁共振测井(NMR)等(匡立春等, 2013; 蒋平等, 2015; 赖锦等, 2021a)。针对非常规油气储集层测井评价, 常规测井可判断岩石矿物组分、判别岩性、识别流体性质以及计算TOC含量等(Passey et al., 1990)。元素俘获谱测井(ECS)以及LithoScanner可获取地层中Si、Ca、Fe等元素含量, 通过进一步处理可获得组成岩石矿物含量(黏土、碳酸盐、长英质等)(王敏等, 2013)。阵列声波测井可用于岩石力学参数如杨氏模量、泊松比等测井计算, 进一步可用于脆性指数测井评价, 并可用于判别现今地应力方向(赖锦等, 2016; Lai et al., 2017)。成像测井可拾取厘米级的纹层(矿物组分)变化, 并可进一步判别沉积构造以及裂缝发育特征, 在岩相识别以及地质甜点评价中应用广泛, 同时可通过诱导缝、井壁崩落等判别地应力方向(Lai et al., 2018; 李宁等, 2020)。核磁共振测井能够反映地层岩石孔隙结构和流体信息, 且不受骨架影响, 因此在评价储集层质量以及流体性质方面具有独到的优势(Sun and Dunn, 2005; 肖立志, 2007; Wang et al., 2020)。在常规测井序列基础上, 元素俘获、核磁共振和成像测井等新方法的广泛应用, 提高了非常规油气矿物组分、孔隙结构和储集层甜点发育特征的测井识别精度(赵贤正等, 2017; 赖锦等, 2021a; 刘国强, 2021)。

2 测井储集层评价

非常规油气测井储集层评价注重“ 七性关系” 研究。测井评价的首要任务是发现和评价含油气层(金鼎等, 2007; 李剑浩, 2007), 对于非常规油气而言同样如此。测井储集层评价主要包括储集层参数(孔、渗、饱)计算以及流体性质判别(汤天知等, 2020; 刘国强, 2021; 郑建东等, 2021; 谭锋奇等, 2022)。储集层孔隙度一般情况下可以通过常规测井AC、DEN和CNL组合通过线性关系以及多元回归拟合实现孔隙度测井计算(李宁等, 2020)。核磁共振测井在页岩孔隙度计算中优势明显, 一般情况下可以3 ms为截止值计算有效孔隙度, 10 ms为截止值计算有效孔隙度(李宁等, 2020)。王伟等(2019)利用岩心核磁共振实验刻度, 确定总孔隙度核磁共振T2谱起算时间为0.3 ms(即0.3 ms以上的弛豫组分为孔隙信号, 而0.3 ms以下的弛豫组分为干黏土或者岩石骨架信号), 而有效孔隙度起算核磁时间为1.7 ms, 并采用迭代法(式1)实现了吉木萨尔地区芦草沟组储集层有效孔隙度的准确计算(王伟等, 2019; 刘雅慧等, 2021)。

φ=T2cutoffT2maxS(T)dtT2minT2maxS(T)dt×100%(1)

式中, φ 为有效孔隙度, T2cutoffT2 maxT2 min 分别为T2截止值(1.7 ms), 最大、最小横向弛豫时间, ms; S(T)为横向弛豫时间相关的孔隙度分布函数(刘雅慧等, 2021)。

渗透率的测井计算可基于核磁共振计算的总孔隙度, 再结合核磁导出的T2几何平均值以及束缚水饱和度(BVI)等参数, 通过Timur-Coats模型以及斯伦贝谢的Schlumberger Doll Research(SDR)模型实现渗透率测井评价(Rezaee et al., 2012)。

除孔隙度外, 含油气饱和度的定量计算也是优选页岩地质“ 甜点” 的重要参数之一(夏宏泉等, 2017)。同样也可以利用迭代法实现含油饱和度测井计算(Kuang et al., 2020; Pang et al., 2022), 刘雅慧等(2021)通过岩心分析含油饱和度刻度, 确定吉木萨尔凹陷芦草沟组储集层7 ms以上的组分为油信号, 并采用核磁迭代法计算了含油饱和度, 结果与岩心分析吻合较好(式2)。

So=T2cutoffT2maxS(T)dtT2minT2maxS(T)dt×100%(2)

式2中, So为含油饱和度, 计算含油饱和度时T2cutoff取值为7.0 ms。

通过CMR核磁共振测井, 分别选取1.7 ms 和7.0 ms 作为截止值, 基于核磁共振T2谱通过迭代法实现了有效孔隙度和含油饱和度测井计算, 同时通过Coats模型计算了单井渗透率, 在参数计算基础上, 进行单井流体性质的判别, 单井上识别出典型的8个油层段(图 2)。可以看到油层段电阻率不一定最高, 但深、浅电阻率往往具有一定的分异, 其T2谱形态往往较宽, 甚至存在拖尾现象, 再结合孔隙度和饱和度参数的计算, 可实现单井油层的识别(图 2)。

图 2 吉木萨尔凹陷芦草沟组测井储集层参数计算与流体性质识别评价Fig.2 Calculation of reservoir parameters and fluid property determination using well logs for the Lucaogou Formation in Jimusar sag

3 烃源岩测井评价

与源储分离的常规油气不同, 非常规油气测井评价需求实现烃源岩以及源储配置观察测井评价(钟高润等, 2016; Godfray and Seetharamaiah, 2019)。烃源岩品质决定了油气的富集程度(杜江民等, 2016)。烃源岩测井评价包括烃源岩定性识别以及TOC、S1和S2等指标测井定量计算, 目前烃源岩可根据其高GR(尤其高U)、高中子、高电阻率、高声波时差、低密度等测井响应特征进行定性识别(Passey et al., 1990; Shalaby et al., 2019; Zhao et al., 2019; 郑建东等, 2021)。而TOC含量的测井定量计算方法相对比较成熟, 目前可依据可归纳为5种方法: (1)Δ logR方法, 目前该方法相对比较成熟, 已经得到广泛推广应用(Passey et al., 1990; 王贵文等, 2002); (2)改进的Δ logR方法, 如变基线的方法, 可以消除由于岩石骨架特征变化的影响, 提高TOC计算精度(Zhao et al., 2016); (3)自然伽马能谱测井, 如利用自然伽马测井U曲线建立TOC定量计算模型(陆巧焕等, 2006); (4)多元曲线回归法, 如GR、AC、CNL和RT等测井曲线通过多元回归建立TOC测井定量计算模型(Aziz et al., 2020); (5)人工智能方法如人工神经网络、支持向量机法等, 人工智能方法的运用可提高TOC测井计算的效率(Wang et al., 2019; Amosu and Sun, 2021)。

除上述基于常规测井的TOC测井计算方法外, 新技术测井资料LithoScanner测井也可应用于TOC含量的测井计算: 首先LithoScanner测井可以获得地层中的总碳(TC)含量, 由有机碳(TOC)和无机碳(TIC)构成, 无机碳主要存在于碳酸盐矿物如方解石CaCO3和白云石CaMg(CO3)2, 利用总碳减去无机碳含量, 那么得到的就是有机碳TOC含量(图 3)。跟离散分析的岩心数据相比, 相对纵向连续性好的测井曲线可实现TOC含量、烃源岩品质的单井连续评价, 由此指导资源甜点预测等工作。

图 3 基于常规、LithoScanner以及成像测井的古龙凹陷青山口组页岩岩相测井评价Fig.3 Log evaluation of lithofacies of Gulong sag Qingshankou Formation using conventional well logs, LithoScanner and image log

4 测井沉积学

自1979年欧· 塞拉提出测井相从而搭建测井曲线和沉积解释之间的桥梁以来(Serra, 1979), 不同系列测井资料即被广泛运用于砂岩和碳酸盐岩沉积储集层特征精细描述与评价工作中(Lai et al., 2018; 赖锦等, 2018, 2021)。而非常规油气烃源岩和储集层均属于细粒沉积岩, 指粒径小于0.0625 mm的颗粒含量占50%以上的沉积岩(Aplin and Macquaker, 2011; Ghadeer and Macquaker, 2011; 周立宏等, 2018; 刘可禹和刘畅, 2019)。细粒沉积岩在全球各个盆地广泛分布, 其主要矿物成分包括黏土矿物、粉砂、碳酸盐和有机质等(Loucks et al., 2009; 姜在兴等, 2014)。细粒沉积岩沉积背景相对单一, 如海相页岩主要发育深水陆棚相, 而陆相页岩以半深湖— 深湖亚相为主(蒋裕强等, 2016), 但细粒沉积岩粒度细、矿物成分复杂。岩相是在一定沉积环境形成的岩石或岩石组合, 岩相表征细粒沉积岩粒度、矿物组成、沉积构造及有机地球化学等特征(付金华等, 2013; 蒋裕强等, 2016; Liu et al., 2019), 是页岩油等非常规储集层“ 甜点” 识别的基础, 因此岩相的地质识别与划分以及测井评价与预测工作至关重要(李国欣等, 2021; 马永生等, 2022)。

目前没有统一的岩相划分标准, 细粒沉积岩岩相划分一般可依据三级指标, 即有机质丰度— 沉积构造— 矿物成分(Liu et al., 2019; 柳波等, 2021; 黎茂稳等, 2022; 马永生等, 2022), 其中, 沉积构造反映水动力条件, 矿物成分决定储集空间, 而有机质丰度反映资源潜力与烃类聚集, 通常随着沉积环境水动力条件减弱, 黏土矿物含量以及TOC值逐渐升高(柳波等, 2018; 马永生等, 2022)。付金华等(2013)基于岩心薄片资料以及测井上可识别标志, 将鄂尔多斯盆地延长组长7段划分出油页岩岩相、暗色泥岩岩相、砂质泥岩与泥质砂岩岩相和砂岩岩相。姜在兴等(2014)基于碳酸盐、黏土矿物和有机质三端元组分, 以2%和4%作为低、中、高有机质的划分界限, 划分出中国东部湖相细粒沉积岩典型高有机质页状灰岩、高有机质页状黏土岩、中有机质页状灰岩、中有机质页状灰质黏土岩、低有机质灰泥灰岩、低有机质块状黏土岩相共6种岩相。柳波等(2018)以沉积构造特征(块状、层状和纹层状)、有机质丰度TOC值1%和2%为界限, 以及黏土矿物含量20%为界限, 将松辽盆地青山口组一段细粒沉积岩划分出中等有机质含量纹层状长英质泥岩相等7种岩相类型。

测井序列中, 常规测井对岩性、矿物成分以及流体性质响应灵敏, 但其分辨率较低, 约1.0 m, 成像测井则可连续拾取毫米级(5 mm)矿物成分以及沉积构造变化特征, 地球化学测井如元素俘获ECS以及LithoScanner测井则可提供单井连续的矿物组分(黄铁矿、黏土、长英质、碳酸盐等)变化(魏国等, 2015; 赖锦等, 2021a)。因此细粒沉积岩岩相的测井识别与评价首先可通过LithoScanner测量岩石矿物组分以及总碳(TC)、无机碳(TIC)以及有机碳TOC含量, 或者利用常规测井采用Δ logR进行TOC计算(Passey et al., 1990; 王贵文等, 2002; 朱光有等, 2003; Shalaby et al., 2019), 然后通过成像测井识别块状、层状和纹层状沉积构造(Lai et al., 2018; Wang S et al., 2021), 在此基础上即可利用测井资料连续识别与划分岩相(图 3)。

松辽盆地古龙凹陷青山口组页岩形成于深湖— 半深湖环境, 广泛发育层状和纹层状页岩, 且存在粉砂岩、介壳灰岩等夹层, 有机质丰度高, w(TOC)主要为2.0%~3.0%(何文渊等, 2021; 郑建东等, 2021)。通过岩心观察等发现古龙页岩发育云质泥岩、黏土质页岩、长英质页岩以及介壳灰岩等岩性(李宁等, 2020; 何文渊等, 2021; 郑建东等, 2021)。首先通过LithoScanner测井识别了单井连续的矿物组分(黏土、石英、长石、碳酸盐、黄铁矿等)特征(图 3), 并利用LithoScanner探测地层总碳含量, 去除无机碳含量, 剩下的即为有机碳(TOC)含量(图 3), 由此实现单井岩性的识别与划分以及TOC含量的定量计算, 在此基础上通过成像测井资料识别了纹层状、层状和块状沉积构造(图 3), 最终通过有机质丰度— 沉积构造— 矿物成分实现岩相的测井判别(图 3)。

5 裂缝识别与测井评价

常规油气储集层侧重构造裂缝评价, 不同类型和产状的构造裂缝对油气的运移和聚焦起重要控制, 目前针对砂岩、碳酸盐岩储集层裂缝测井识别与评价已经形成完善的解释方法流程(Ameen et al., 2012; Khoshbakht et al., 2012; 赖锦等, 2015; Lai et al., 2018)。而以细粒沉积岩为主的非常规油气储集层, 因为处于盆地腹地或斜坡区, 构造相对平缓, 同时岩石塑性较强, 因此构造裂缝发育较少, 而层理缝(页理缝)在非常规油气运移和聚集中扮演重要角色(Zeng et al., 2016; Ladevè ze et al., 2018; 鞠玮等, 2020; 闫建平等, 2022)。细粒沉积岩沉积纹层广泛发育, 纹层界面通常属于力学性质薄弱界面(郭旭升等, 2016; Heng et al., 2020), 层理缝是指经构造改造、流体异常压力以及成岩作用等导致岩石沿层理面发生破裂而形成的裂缝(鞠玮等, 2020), 层理缝是非常规油气储集层中最常见的裂缝类型, 当然还发育流体超压裂缝以及构造缝(郭旭升等, 2016; Zhang et al., 2017; Liu et al., 2020; Liang et al., 2021)。层理缝与沉积层理的区别在于原层理发育位置存在透入性破裂面、不存在岩石内聚力(鞠玮等, 2020)。层理缝的发育可改善储集层物性, 同时有利于油气富集(Momeni et al., 2019; 鞠玮等, 2020; Li et al., 2021)。

吉木萨尔凹陷芦草沟组形成于咸化湖盆沉积环境, 发育三角洲、滩坝等沉积相, 其岩性主要为泥岩、粉砂岩和碳酸盐岩(高岗等, 2016; 郭旭光等, 2019; 王小军等, 2019)。吉木萨尔芦草沟组岩心上层理缝常平行于层理面出现, 荧光光源照射下可观察到层理缝面较强的荧光特征(图 4)。层理缝在测井上表现为高声波时差、低电阻率的响应特征, 中子、自然伽马测井等对层理缝发育响应不灵敏(图 4)(赖锦等, 2015; Lai et al., 2022b)。成像测井在非常规油气裂缝和层理缝的定性解释与定量评价方法应用广泛(Lai et al., 2018)。高分辨率成像测井可拾取层理缝发育的形态, 其与层理的区别在于且沿层理缝面常出现后续的胶结与溶蚀, 从而使得裂缝面呈现为明暗相间不连续界面(图 4)(黄玉越等, 2022; Lai et al., 2022b)。

图 4 吉木萨尔凹陷芦草沟组层理缝测井响应特征Fig.4 Responses of bedding parallel fracture on well logs of the Lucaogou Formation in Jimusar sag

通过成像测井, 结合岩心观察刻度, 再利用常规测井序列的声波和电阻率测井, 可以识别与评价非常规储集层单井层理缝分布特征(图 4)。成像测井在非常规油气层理缝评价方面应用成效显著, 通过成像测井可以拾取岩石中沉积层理的特征, 进一步可以拾取诱导缝和井壁崩落的特征, 用以判别现今地应力方向, 在此基础上可以连续拾取单井发育的层理缝特征(图 5)。层理缝走向往往与沉积层理面的走向基本一致, 且其倾角基本小于10° , 由于倾角较低, 其张开度也较差, 且受后期溶蚀与胶结的影响, 层理缝面往往不规则, 在成像测井上表现为明暗断续的正弦曲线(图 5)(Lai et al., 2022b)。

图 5 基于成像测井的吉木萨尔凹陷芦草沟组层理缝、诱导缝和层理面识别与评价(J10035)Fig.5 Bedding planes, induced fracture, natural fracture picked out from image logs of the Lucaogou Formation in Jimusar sag(J10035)

6 地应力测井评价

非常规油气开发缺少自然产能, 需要钻水平井以及采取压裂改造等才能获得工业油流, 脆性和地应力是压裂改造中的重点评价内容, 二者决定了工程甜点的分布。脆性评价旨在优选利于规模压裂的可压裂储集层段(赖锦等, 2016), 一般有2种利用测井资料计算脆性的方法, 其一为岩石力学参数法(杨氏模量和泊松比), 其二为矿物组分比值法(石英、碳酸盐等为脆性矿物)(Jarvie et al., 2007; Lai et al., 2015; 赖锦等, 2016; Iqbal et al., 2018; Kumar et al., 2018; Zhao et al., 2019)。而地应力评价可对井网布置、钻完井设计、压裂改造、井壁稳定性分析提供指导, 因此压裂过程中现今地应力的方向和大小的评价至关重要(Iqbal et al., 2018; Stadtmuller et al., 2018; Lai et al., 2019)。

由于在压裂过程中形成的压裂裂缝易沿最大水平主应力扩展, 为了获得大体积的横切裂缝系统, 非常规油气布井时常沿最小主应力方向布置, 且水平井一般沿最小水平主应力或小于30° 夹角钻进(贾长贵等, 2014)。这一方面可以有效避免井壁失稳、井塌; 另一方面能够保证沿现今最大主应力方向压裂, 提高压裂效果, 最好的射孔方位通常也是沿着最大水平主应力方向(陆黄生, 2012; 贾长贵等, 2014)。现今地应力的方向可基于成像测井拾取诱导缝(指示最大水平主应力方向SHmax)和井壁崩落(指示最小水平主应力方向Shmin)方位获得(Lai et al., 2018), 同时阵列声波测井提取的快慢横波方位也可用于地应力方向判别, 快横波方向指示现今最大水平主应力方向(图 6)。图 6中的地层各向异性图表明, 该井SHmax总体为北东— 南西向地应力, 但随着埋深增大, SHmax方向发生偏移, 近于近东西向(赖锦等, 2021a)。

图 6 苏北盆地古近系阜二段页岩现今地应力方向和大小以及脆性指数测井评价Fig.6 Well log evaluation of in situ stress direction and magnitudes as well as brittleness index of the Member 2 of Paleogene Funing Formation in Subei Basin

除现今地应力方向外, 现今地应力大小也是决定压裂方案设计以及压裂层段优选的重要因素。通常水平方向上2个应力的差异在工程上影响着储集层改造时裂缝的形态, 2个方向上应力差异越小越易于形成复杂缝网, 这对非常规开采非常有利(朱海燕等, 2022)。相反, 水平两向应力差异越大, 形成的往往为单组裂缝(陆黄生, 2012; 贾长贵等, 2014; 马永生等, 2022)。因此页岩储集层如果具备埋深较小、脆性较强、天然裂缝发育以及水平两向应力差较小等条件时, 往往最有利于压裂改造(梁兴等, 2021; 马永生等, 2022)。现今地应力场剖面可以分解为垂向应力(Sv)、SHmax、Shmin以及孔隙流体压力(Pp)(Zoback et al., 2003; Lai et al., 2019)。在岩石力学参数如杨氏模量、泊松比确定的基础上, 经过与岩心声发射法等实测地应力数据刻度, 可通过一维岩石力学模型来计算现今应力场大小(Iqbal et al., 2018; 赖锦等, 2021a)。苏北盆地阜宁组二段地应力大小计算结果表明, 单井SHmax和Shmin随着深度增加地应力逐渐增大, 但水平两向应力差基本较为稳定, 为20 MPa左右, 通过泊松比— 杨氏模量法计算的脆性指数较高, 总体该井段有利于压裂改造(图 6)(赖锦等, 2021a)。非常规油气“ 工程甜点” 评价时除考虑现今地应力方向外, 还需注重脆性以及现今地应力大小测井计算, 以进行可压裂性分析。

7 “ 甜点” 测井预测

非常规油气测井“ 七性关系” 、“ 三品质” 评价以及测井地质学综合研究, 最终都是为了预测其“ 甜点” 区带(赖锦等, 2021a)。非常规油气“ 甜点” 包括资源“ 甜点” 区/带、地质“ 甜点” 区/带, 工程“ 甜点” 区/带(Avanzini et al., 2016; 唐振兴等, 2019; 张鹏飞等, 2019)。烃源岩品质可落实资源“ 甜点” 区/带, 地质“ 甜点” 区/带则主要通过储集层品质(孔隙度、饱和度、裂缝发育)评价, 工程“ 甜点” 区/带优选则依托基于脆性、地应力各向异性的工程品质分类评价(杨智等, 2015; 吴鹏等, 2022)。地质“ 甜点” 是指储集条件较好、源储配置优越、含油丰度相对高的区带, 因此岩性识别、TOC计算、孔隙度、饱和度等参数解释成为关键(陈义国等, 2021; 吴鹏等, 2022)。工程“ 甜点” 指可压裂性强且压裂缝开度易于保持的区带, 因此需研究脆性指数、应力参数及其压裂缝扩展方向(吴鹏等, 2022)。从开发建产角度考虑, 非常规油气需注重地质“ 甜点” 和工程“ 甜点” 的评价与优选(付锁堂等, 2020; 蒋云箭等, 2020; 丛平等, 2021; 张少龙等, 2022)。

图 7 吉木萨尔凹陷芦草沟组测井“ 七性关系” 评价与甜点预测Fig.7 Evaluation and prediction of “ sween spot” and “ seven relationships” of the Lucaogou Formation in Jimusar sag

页岩油根据其源储配置等可以划分储集层夹层型、混积型和页岩型(焦方正等, 2020; 赵贤正等, 2022)。作为混积型页岩层系代表, 吉木萨尔凹陷芦草沟组岩性复杂多样, 储集层及含油性非均质性强, 导致甜点分类评价及预测工作困难。根据岩性组合、储集空间类型及含油性以及岩石力学参数、脆性指数和水平两向应力差等分别划分出3种类型地质和工程“ 甜点” (表 1)(郭旭光等, 2019; 王林生等, 2022)。此外, 众多专家学者还针对纯页岩型(松辽盆地古龙凹陷青山口组页岩)、夹层型(鄂尔多斯盆地延长组长7段)等不同类型页岩展开了测井综合评价与甜点预测等工作(Zhao et al., 2019; 李宁等, 2020; 姚东华等, 2022; 赵贤正等, 2022)。

表 1 吉木萨尔凹陷芦草沟组页岩油地质和工程“ 甜点” 评价标准(据郭旭光等, 2019; 有修改) Table1 Standard parameter for evaluating geological and engineering “ sweet spot” of the Lucaogou Formation shale oil in Jimusar sag(modified from Guo et al., 2019)

通过核磁共振测井采用迭代法实现孔隙度和饱和度计算(1.7 ms和7 ms界限), 渗透率则根据Timur-Coats 模型来计算(王伟等, 2019; 刘雅慧等, 2021)。通过泊松比— 杨氏模量法计算脆性指数, 利用Δ logR方法计算TOC。最后采用一维岩石力学模型来计算现今三轴地应力大小, 最终建立综合“ 七性关系” 的铁柱子(赖锦等, 2021a)。然后参照表 1所建立的标准, 即可实现单井纵向上含油有利层段的优选与预测, 可以看到单井上甜点发育的非均质性, 该井发育5个含油有利层段(So> 50%)(图7), 同时毗邻优质烃源岩, 对应地质“ 甜点” 段, 其中3755.5~3761 m深度段, 经试油获得日产7.18 t原油。而工程甜点则主要优选脆性指数相对较高, 而两向应力差值较低的层段, 可以看到5个地质“ 甜点” 发育层段往往也对应脆性指数相对较高而地应力值较低层段。

非常规油气时代已经到来, 测井地质学研究唯有创新适应新形势的方法技术理论体系, 才能有新出路(Lai et al., 2022a)。要实现非常规油气“ 甜点” 综合评价预测, “ 铁柱子” 井的建立成为关键。以不同序列测井资料为基础, 不同岩心分析化验资料为刻度, 利用测井资料识别不同岩性、计算孔隙度和饱和度等参数, 实现TOC含量测井评价, 然后建立脆性和地应力测井评价, 最终建立集全非常规油气“ 七性关系” 的“ 铁柱子” 井。其中, 不同系列的常规、成像、核磁和元素扫描测井为“ 甜点” 预测提供技术手段, 岩心观察以及配套分析化验数据则为测井信息向地质信息转换提供桥梁(郑建东等, 2021)。“ 铁柱子井” 是搭建了岩心分析化验资料以及不同测井采集序列之间桥梁的标杆井, 铁柱子井上地质与工程“ 甜点” 段的优选将变得切实可行, 由此可推广至其他井的“ 甜点” 预测工作, 为非常规油气“ 甜点” 预测提供技术支撑(匡立春等, 2015; 唐振兴等, 2019)。通过常规、LithoScanner测井实现矿物组分以及TOC含量计算, 实现烃源岩品质分类评价及预测; 通过常规、成像以及核磁共振测井, 建立岩相、储集层参数以及层理缝等测井评价方法, 实现储集层品质测井评价; 最后可通过常规、阵列声波测井建立地应力和脆性的测井评价体系, 实现工程品质测井评价, 最后在“ 铁柱子” 井指导下, 实现非常规油气“ 甜点” 综合评价及预测。

非常规油气、测井地质学以及人工智能三者的碰撞激起了新的火花(赖锦等, 2021a)。不同的机器学习方法如人工神经网络, 卷积神经网络以及支持向量机的方法被广泛运用至非常规油气TOC评价(Wang et al., 2019; Amosu and Sun, 2021)、测井储集层评价(石玉江等, 2021)、有利储集层预测以及工程品质评价预测等工作中(李阳等, 2020)。大数据、机器学习以及人工智能的引入以及不同尺度的地质与地球物理测井资料的融合, 可挖掘隐藏在测井资料中更多的地质信息, 同时可将测井解释人员从繁重的、低层次解释工作中解脱出来, 从而更高效、更科学地实现非常规油气测井综合地质解释与评价(赖锦等, 2021a; 李宁等, 2021; 石玉江等, 2021; 王华和张雨顺, 2021; 刘国强等, 2022)。

目前, 针对页岩油等非常规油气测井采集技术以及配套的参数解释模型建立、三品质综合评价等方面还存在较多挑战, 但随着地球物理测井技术的推进、地质学理论的革新以及人工智能等引入, 必将使得测井地质学相关理论技术体系更好地运用至地质和工程甜点预测等工作中。

8 结论

源储一致或紧邻的非常规油气测井评价需求“ 七性关系” 与“ 三品质” 特征评价。通过常规测井计算TOC含量并进行烃源岩品质评价, 通过核磁共振测井可实现储集层参数计算及流体性质判别, 完成测井储集层评价工作。岩相可采用有机质丰度— 沉积构造— 矿物成分三级指标命名, 并通过LithoScanner测井评价TOC和矿物组分, 成像测井识别沉积构造, 实现岩相测井评价与预测。常规测井、岩心资料与成像测井相互刻度可实现层理缝识别与评价。脆性指标以及现今地应力大小的测井计算可采取常规与阵列声波测井结合的方法来实现。地质“ 甜点” 优选与预测需注重岩相、层理缝以及孔、渗、饱等储集层参数评价, 工程“ 甜点” 优选则强调脆性和地应力耦合关系评价。全系列测井资料与岩心分析化验资料相互刻度验证可建立“ 铁柱子井” , 并实现非常规油气地质与工程“ 甜点” 预测。不同尺度的地质与地球物理测井资料及其与人工智能的交叉融合将不断推动测井地质学创新。

(责任编辑 郑秀娟)

参考文献
[1] 陈义国, 贺永红, 王超, 葛新民, 马芳侠, 孟旺才, 葛云锦, 李晓路, 樊笑微. 2021. 鄂尔多斯盆地三叠系延长组8段非常规油藏成因与成藏模式: 以盆地东南部甘泉西区为例. 石油学报, 42(10): 1270-1286.
[Chen Y G, He Y H, Wang C, Ge X M, Ma F X, Meng W C, Ge Y J, Li X L, Fan X W. 2021. Genesis and accumulation patterns of unconventional oil reservoir in Member 8 of Triassic Yanchang Formation: a case study of the western Ganquan area, southeastern Ordos Basin. Acta Petrolei Sinica, 42(10): 1270-1286] [文内引用:1]
[2] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 2021. 页岩气储层可压裂性级别测井评价及展布特征: 以川南X地区五峰组—龙马溪组为例. 岩性油气藏, 33(3): 177-188.
[Cong P, Yan J P, Jing C, Zhang J H, Tang H M, Wang J, Geng B, Wang M, Chao J. 2021. Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir: a case study from Wufeng Formation and Longmaxi Formation in X area, southern Sichuan Basin. Lithologic Reservoirs, 33(3): 177-188] [文内引用:1]
[3] 杜江民, 张小莉, 钟高润, 封从军, 郭岭, 张晓龙, 罗文行. 2016. 致密油烃源岩有机碳含量测井评价方法优选及应用: 以鄂尔多斯盆地延长组长7段烃源岩为例. 地球物理学进展, 31(6): 2526-2533.
[Du J M, Zhang X L, Zhong G R, Feng C J, Guo L, Zhang X L, Luo W X. 2016. Analysis on the optimization and application of well logs indentification methods for organic carbon content in source rocks of the tight oil: illustrated by the example of the source rocks of Chang 7 member of Yanchang Formation in Ordos Basin. Progress in Geophysics, 31(6): 2526-2533] [文内引用:1]
[4] 付金华, 邓秀芹, 楚美娟, 张海峰, 李士祥. 2013. 鄂尔多斯盆地延长组深水岩相发育特征及其石油地质意义. 沉积学报, 31(5): 928-938.
[Fu J H, Deng X Q, Chu M J, Zhang H F, Li S X. 2013. Features of deepwater lithofacies, Yanchang Formation in Ordos Basin and its petroleum significance. Acta Sedimentologica Sinica, 31(5): 928-938] [文内引用:3]
[5] 付锁堂, 付金华, 牛小兵, 李士祥, 吴志宇, 周新平, 刘江艳. 2020. 庆城油田成藏条件及勘探开发关键技术. 石油学报, 41(7): 777-795.
[Fu S T, Fu J H, NiuX B, Li S X, Wu Z Y, Zhou X P, Liu J Y. 2020. Accumulation conditions and key exploration and development technologies in Qingcheng oilfield. Acta Petrolei Sinica, 41(7): 777-795] [文内引用:1]
[6] 高岗, 向宝力, 王轩, 王熠, 周然然, 马万云, 任江铃, 赵克. 2016. 准噶尔盆地吉木萨尔凹陷芦草沟组湖相混合沉积中缝合线发育与有机质富集研究. 天然气地球科学, 27(11): 1963-1969.
[Gao G, Xiang B L, Wang X, Wang Y, Zhou R R, Ma W Y, Ren J L, Zhao K. 2016. Stylolite occurrence and organic matter enrichment of the mixed sediments in the Lucaogou Formation of the Jimusaer Sag in Junggar Basin. Natural Gas Geoscience, 27(11): 1963-1969] [文内引用:1]
[7] 郭旭光, 何文军, 杨森, 王江涛, 冯右伦, 贾希玉, 邹阳, 王霞田, 黄立良. 2019. 准噶尔盆地页岩油“甜点区”评价与关键技术应用: 以吉木萨尔凹陷二叠系芦草沟组为例. 天然气地球科学, 30(8): 1168-1179.
[Guo X G, He W J, Yang S, Wang J T, Feng Y L, Jia X Y, Zou Y, Wang X T, Huang L L. 2019. Evaluation and application of key technologies of “sweet area”of shale oil in Junggar Basin: Case study of Permian Lucaogou Formation in Jimusar Depression. Natural Gas Geoscience, 30(8): 1168-1179] [文内引用:2]
[8] 郭旭升, 胡东风, 魏祥峰, 李宇平. 2016. 四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响. 石油与天然气地质, 37(6): 799-808.
[Guo X S, Hu D F, Wei X F, Li Y P. 2016. Main controlling factors on shale fractures and their influences on production capacity in Jiaoshiba area, the Sichuan Basin. Oil & Gas Geology, 37(6): 799-808] [文内引用:2]
[9] 黄玉越, 王贵文, 宋连腾, 王松, 张益粼, 黄立良, 赖锦. 2022. 准噶尔盆地玛湖凹陷二叠系风城组页岩储集层裂缝测井识别与有效性分析. 古地理学报, 24(3): 540-555.
[Huang Y Y, Wang G W, Song L T, Wang S, Zhang Y L, Huang L L, Lai J. 2022. Fracture logging identification and effectiveness analysis of shale reservoir of the Permian Fengcheng Formation in Mahu sag, Junggar Basin. Journal of Palaeogeography(Chinese Edition), 24(3): 540-555] [文内引用:1]
[10] 何文渊, 蒙启安, 张金友. 2021. 松辽盆地古龙页岩油富集主控因素及分类评价. 大庆石油地质与开发, 40(5): 1-12.
[He W Y, Meng Q A, Zhang J Y. 2021. Controlling factors and their classification-evaluation of Gulong shale oil enrichment in Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 40(5): 1-12] [文内引用:2]
[11] 焦方正. 2019. 非常规油气之“非常规”再认识. 石油勘探与开发, 46(5): 803-810.
[Jiao F Z. 2019. Re-recognition of “unconventional”in unconventional oil and gas. Petroleum Exploration and Development, 46(5): 803-810] [文内引用:1]
[12] 焦方正, 邹才能, 杨智. 2020. 陆相源内石油聚集地质理论认识及勘探开发实践. 石油勘探与开发, 47(6): 1067-1078.
[Jiao F Z, Zou C N, Yang Z. 2020. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens. Petroleum Exploration and Development, 47(6): 1067-1078] [文内引用:1]
[13] 贾长贵, 路保平, 蒋廷学, 李真祥. 2014. DY2HF深层页岩气水平井分段压裂技术. 石油钻探技术, 42(2): 85-90.
[Jia C G, Lu B P, Jiang T X, Li Z X. 2014. Multi-stage horizontal well fracturing technology in deep shale gas well DY2HF. Petroleum Drilling Techniques, 42(2): 85-90] [文内引用:3]
[14] 贾承造, 庞雄奇, 宋岩. 2021. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力. 石油勘探与开发, 48(3): 437-452.
[Jia C Z, Pang X Q, Song Y. 2021. The mechanism of unconventional hydrocarbon formation: hydrocarbon self-containment and intermolecular forces. Petroleum Exploration and Development, 48(3): 437-452] [文内引用:1]
[15] 姜在兴, 张文昭, 梁超, 王永诗, 刘惠民, 陈祥. 2014. 页岩油储层基本特征及评价要素. 石油学报, 35(1): 184-196.
[Jiang Z X, Zhang W Z, Liang C, Wang Y S, Liu H M, Chen X. 2014. Characteristics and evaluation elements of shale oil reservoir. Acta Petrolei Sinica, 35(1): 184-196] [文内引用:2]
[16] 蒋平, 穆龙新, 张铭, 赵文光. 2015. 中石油国内外致密砂岩气储层特征对比及发展趋势. 天然气地球科学, 26(6): 1095-1105.
[Jiang P, Mu L X, Zhang M, Zhao W G. 2015. Differences of reservoir characteristics between domestic and oversea tight gas of CNPC and its developing trends. Natural Gas Geoscience, 26(6): 1095-1105] [文内引用:1]
[17] 蒋裕强, 宋益滔, 漆麟, 陈雷, 陶艳忠, 甘辉, 吴佩津, 叶子亿. 2016. 中国海相页岩岩相精细划分及测井预测: 以四川盆地南部威远地区龙马溪组为例. 地学前缘, 23(1): 107-118.
[Jiang Y Q, Song Y T, Qi L, Chen L, Tao Y Z, Gan H, Wu P J, Ye Z Y. 2016. Fine lithofacies of China's marine shale and its logging prediction: a case study of the Lower Silurian Longmaxi marine shale in Weiyuan area, southern Sichuan Basin, China. Earth Science Frontiers, 23(1): 107-118] [文内引用:2]
[18] 蒋云箭, 刘惠民, 柴春艳, 辛忠斌. 2020. 页岩油油气可动性测井响应特征分析及应用. 油气地质与采收率, 27(5): 44-52.
[Jiang Y J, Liu H M, Chai C Y, Xin Z B. 2020. Analysis of hydrocarbon movability logging response features of shale oil and its applications. Petroleum Geology and Recovery Efficiency, 27(5): 44-52] [文内引用:2]
[19] 金鼎, 王敬农, 张辛耘, 孙宝佃. 2007. 中国石油测井技术态势及科技发展方向. 测井技术, 31(2): 95-98.
[Jin D, Wang J N, Zhang X Y, Sun B D. 2007. Situation and direction of CNPC well logging technologies development. Well Logging Technology, 31(2): 95-98] [文内引用:1]
[20] 金之钧, 朱如凯, 梁新平, 沈云琦. 2021. 当前陆相页岩油勘探开发值得关注的几个问题. 石油勘探与开发, 48(6): 1276-1287.
[Jin Z J, Zhu R K, Liang X P, Shen Y Q. 2021. Several issues worthy of attention in current lacustrine shale oil exploration and development. Petroleum Exploration and Development, 48(6): 1276-1287] [文内引用:2]
[21] 鞠玮, 尤源, 冯胜斌, 徐浩然, 张晓丽, 王胜宇. 2020. 鄂尔多斯盆地延长组长7油层组致密砂岩储层层理缝特征及成因. 石油与天然气地质, 41(3): 596-605.
[Ju W, You Y, Feng S B, Xu H R, Zhang X L, Wang S Y. 2020. Characteristics and genesis of bedding-parallel fractures in tight sand stone reservoirs of Chang 7 oil layer, Ordos Basin. Oil & Gas Geology, 41(3): 596-605] [文内引用:4]
[22] 匡立春, 孙中春, 欧阳敏, 常秋生, 王振林. 2013. 吉木萨尔凹陷芦草沟组复杂岩性致密油储层测井岩性识别. 测井技术, 37(6): 638-642.
[Kuang L C, Sun Z C, OuYang M, Chang Q S, Wang Z L. 2013. Complication lithology logging identification of the Lucaogou tight oil reservoir in Jimusaer Depression. Well Logging Technology, 37(6): 638-642] [文内引用:1]
[23] 匡立春, 王霞田, 郭旭光, 常秋生, 贾希玉. 2015. 吉木萨尔凹陷芦草沟组致密油地质特征与勘探实践. 新疆石油地质, 36(6): 629-634.
[Kuang L C, Wang X T, Guo X G, Chang Q S, Jia X Y. 2015. Geological characteristics and exploration practice of tight oil of Lucaogou Formation in Jimsar sag. Xinjiang Petroleum Geology, 36(6): 629-634] [文内引用:1]
[24] 匡立春, 刘合, 任义丽, 罗凯, 史洺宇, 苏健, 李欣. 2021. 人工智能在石油勘探开发领域的应用现状与发展趋势. 石油勘探与开发, 48(1): 1-11.
[Kuang L C, Liu H, Ren Y L, Luo K, Shi M Y, Su J, Li X. 2021. Application and development trend of artificial intelligence in petroleum exploration and development. Petroleum Exploration and Development, 48(1): 1-11] [文内引用:2]
[25] 赖锦, 王贵文, 孙思勉, 蒋晨, 周磊, 郑新华, 吴庆宽, 韩闯. 2015. 致密砂岩储层裂缝测井识别评价方法研究进展. 地球物理学进展, 30(4): 1712-1724.
[Lai J, Wang G W, Sun S M, Jiang C, Zhou L, Zheng X H, Wu Q K, Han C. 2015. Research advances in logging recognition and evaluation method of fractures in tight sand stone reservoirs. Progress in Geophysics, 30(4): 1712-1724] [文内引用:3]
[26] 赖锦, 王贵文, 范卓颖, 陈晶, 王抒忱, 周正龙, 范旭强. 2016. 非常规油气储层脆性指数测井评价方法研究进展. 石油科学通报, 1(3): 330-341.
[Lai J, Wang G W, Fan Z Y, Chen J, Wang S C, Zhou Z L, Fan X Q. 2016. Research progress in brittleness index evaluation methods with logging data in unconventional oil and gas reservoirs. Petroleum Science Bulletin, 1(3): 330-341] [文内引用:4]
[27] 赖锦, 韩能润, 贾云武, 季玉山, 王贵文, 庞小娇, 贺智博, 王松. 2018. 基于测井资料的辫状河三角洲沉积储层精细描述. 中国地质, 45(2): 304-318.
[Lai J, Han N R, Jia Y W, Ji Y S, Wang G W, Pang X J, He Z B, Wang S. 2018. Detailed description of the sedimentary reservoir of a braided delta based on well logs. Geology in China, 45(2): 304-318] [文内引用:8]
[28] 赖锦, 王贵文, 庞小娇, 韩宗晏, 李栋, 赵仪迪, 王松, 江程舟, 李红斌, 黎雨航. 2021a. 测井地质学前世、今生与未来: 写在《测井地质学·第二版》出版之时. 地质论评, 67(6): 1804-1828.
[Lai J, Wang G W, Pang X J, Han Z Y, Li D, Zhao Y D, Wang S, Jiang C Z, Li H B, Li Y H. 2021a. The past, present and future of well logging geology: to celebrate the publication of second edition of “Well Logging Geology”. Geological Review, 67(6): 1804-1828] [文内引用:19]
[29] 赖锦, 包萌, 刘士琛, 李栋, 王松, 杨科夫, 陈旭, 王贵文, 丁修建. 2021b. 塔里木盆地深层、超深层白云岩优质储集层测井预测. 古地理学报, 23(6): 1225-1242.
[Lai J, Bao M, Liu S C, Li D, Wang S, Yang K, Chen X, Wang G W, Ding X J. 2021b. Prediction of high quality deep and ultra-deep dolostones reservoirs in Tarim Basin by well logs. Journal of Palaeogeography(Chinese Edition), 23(6): 1225-1242] [文内引用:2]
[30] 赖锦, 凡雪纯, 黎雨航, 赵鑫, 刘士琛, 刘小平, 李栋, 庞小娇, 李红斌, 罗瑀峰. 2022a. 苏北盆地阜宁组页岩油七性关系与三品质测井评价. 地质论评, 68(2): 751-768.
[Lai J, Fan X C, Li Y H, Zhao X, Liu S C, Liu X P, Li D, Pang X J, Li H B, Luo Y F. 2022a. Well logging evaluation of seven kinds of relationships and three types of properties of Paleogene Funing Formation oil shales in Subei Basin. Geological Review, 68(2): 751-768] [文内引用:2]
[31] 赖锦, 庞小娇, 赵鑫, 赵仪迪, 王贵文, 黄玉越, 李红斌, 黎雨航. 2022b. 测井地质学研究中的典型误区与科学思维. 天然气工业, 42(7): 31-44.
[Lai J, Pang X J, Zhao X, Zhao Y D, Wang G W, Huang Y Y, Li H B, Li Y H. 2022b. Typical misunderstand ings and scientific ideas in well logging geology research. Natural Gas Industry, 42(7): 31-44] [文内引用:3]
[32] 黎茂稳, 马晓潇, 金之钧, 李志明, 蒋启贵, 吴世强, 李政, 徐祖新. 2022. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义. 石油与天然气地质, 43(1): 1-25.
[Li M W, Ma X X, Jin Z J, Li Z M, Jiang Q G, Wu S Q, Li Z, Xu Z X. 2022. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China. Oil & Gas Geology, 43(1): 1-25] [文内引用:1]
[33] 李国欣, 刘国强, 赵培华. 2004. 中国石油天然气股份有限公司测井技术的定位、需求与发展. 测井技术, 28(1): 1-6, 90.
[Li G X, Liu G Q, Zhao P H. 2004. On Orientation, Requirements and Development for Log Evaluation Technology of PetroChina. Well Logging Technology, 28(1): 1-6, 90] [文内引用:1]
[34] 李国欣, 刘国强, 侯雨庭, 赵先然, 吴金龙, 李伸专, 鲜成刚, 刘合. 2021. 陆相页岩油有利岩相优选与压裂参数优化方法. 石油学报, 42(11): 1405-1416.
[Li G X, Liu G Q, Hou Y T, Zhao X R, Wu J L, Li S Z, Xian C G, Liu H. 2021. Optimization method of favorable lithofacies and fracturing parameter for continental shale oil. Acta Petrolei Sinica, 42(11): 1405-1416] [文内引用:3]
[35] 李国欣, 朱如凯. 2020. 中国石油非常规油气发展现状、挑战与关注问题. 中国石油勘探, 25(2): 1-13.
[Li G X, Zhu R K. 2020. Progress, challenges and key issues of unconventional oil and gas development of CNPC. China Petroleum Exploration, 25(2): 1-13] [文内引用:1]
[36] 李剑浩. 2007. 用混合物电导率公式改进双水模型的公式. 测井技术, 31(1): 1-3.
[Li J H. 2007. An improvement in conductivity formula of dual water model with conductivity formula of mixture. Well Logging Technology, 31(1): 1-3] [文内引用:1]
[37] 李浩, 刘双莲, 王丹丹, 谭承军, 赵连水. 2015. 我国测井评价技术应用中常见地质问题分析. 地球物理学进展, 30(2): 776-782.
[Li H, Liu S L, Wang D D, Tan C J, Zhao L S. 2015. The common problems analysis in logging evaluation technology application in China. Progress in Geophysics, 30(2): 776-782] [文内引用:1]
[38] 李宁, 闫伟林, 武宏亮, 郑建东, 冯周, 张兆谦, 王克文, 王敬岩. 2020. 松辽盆地古龙页岩油测井评价技术现状、问题及对策. 大庆石油地质与开发, 39(3): 117-128.
[Li N, Yan W L, Wu H L, Zheng J D, Feng Z, Zhang Z Q, Wang K W, Wang J Y. 2020. Current situation, problems and countermeasures of the well-logging evaluation technology for Gulong shale oil. Petroleum Geology & Oilfield Development in Daqing, 39(3): 117-128] [文内引用:7]
[39] 李宁, 徐彬森, 武宏亮, 冯周, 李雨生, 王克文, 刘鹏. 2021. 人工智能在测井地层评价中的应用现状及前景. 石油学报, 42(4): 508-522.
[Li N, Xu B S, Wu H L, Feng Z, Li Y S, Wang K W, Liu P. 2021. Application status and prospects of artificial intelligence in well logging and formation evaluation. Acta Petrolei Sinica, 42(4): 508-522] [文内引用:2]
[40] 李阳, 廉培庆, 薛兆杰, 戴城. 2020. 大数据及人工智能在油气田开发中的应用现状及展望. 中国石油大学学报(自然科学版), 44(4): 1-11.
[Li Y, Lian P Q, Xue Z J, Dai C. 2020. Application status and prospect of big data and artificial intelligence in oil and gas field development. Journal of China University of Petroleum(Edition of Natural Science), 44(4): 1-11] [文内引用:1]
[41] 梁兴, 张介辉, 张涵冰, 徐政语, 张东涛, 朱斗星. 2021. 浅层页岩气勘探重大发现与高效开发对策研究: 以太阳浅层页岩气田为例. 中国石油勘探, 26(6): 21-37.
[Liang X, Zhang J H, Zhang H B, Xu Z Y, Zhang D T, Zhu D X. 2021. Major discovery and high-efficiency development strategy of shallow shale gas: a case study of Taiyang shale gas field. China Petroleum Exploration, 26(6): 21-37] [文内引用:2]
[42] 柳波, 石佳欣, 付晓飞, 吕延防, 孙先达, 巩磊, 白云风. 2018. 陆相泥页岩层系岩相特征与页岩油富集条件: 以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例. 石油勘探与开发, 45(5): 828-838.
[Liu B, Shi J X, Fu X F, Lü Y F, Sun X D, Gong L, Bai Y F. 2018. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China. Petroleum Exploration and Development, 45(5): 828-838] [文内引用:2]
[43] 柳波, 孙嘉慧, 张永清, 贺君玲, 付晓飞, 杨亮, 邢济麟, 赵小青. 2021. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式. 石油勘探与开发, 48(3): 521-535.
[Liu B, Sun J H, Zhang Y Q, He J L, Fu X F, Yang L, Xing J L, Zhao X Q. 2021. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling sag, southern Songliao Basin, NE China. Petroleum Exploration and Development, 48(3): 521-535] [文内引用:1]
[44] 刘国强. 2021. 非常规油气勘探测井评价技术的挑战与对策. 石油勘探与开发, 48(5): 891-902.
[Liu G Q. 2021. Challenges and countermeasures of log evaluation in unconventional petroleum exploration. Petroleum Exploration and Development, 48(5): 891-902] [文内引用:7]
[45] 刘国强, 龚仁彬, 石玉江, 王珍珍, 米兰, 袁超, 钟吉彬. 2022. 油气层测井知识图谱构建及其智能识别方法. 石油勘探与开发, 49(3): 502-512.
[Liu G Q, Gong R B, Shi Y J, Wang Z Z, Mi L, Yuan C, Zhong J B. 2022. Construction of well logging knowledge graph and intelligent identification method of hydrocarbon-bearing formation. Petroleum Exploration and Development, 49(3): 502-512] [文内引用:1]
[46] 刘可禹, 刘畅. 2019. “化学—沉积相”分析: 一种研究细粒沉积岩的有效方法. 石油与天然气地质, 40(3): 491-503.
[Liu K Y, Liu C. 2019. “Chemo-sedimentary facies”analysis: an effective method to study fine-grained sedimentary rocks. Oil & Gas Geology, 40(3): 491-503] [文内引用:3]
[47] 刘雅慧, 王才志, 刘忠华, 王浩, 刘英明. 2021. 一种评价页岩油含油性的测井方法: 以准噶尔盆地吉木萨尔凹陷为例. 天然气地球科学, 32(7): 1084-1091.
[Liu Y H, Wang C Z, Liu Z H, Wang H, Liu Y M. 2021. A logging method for evaluating oil-bearing property of shale oil: case study of Jimsar Sag in Junggar Basin. Natural Gas Geoscience, 32(7): 1084-1091] [文内引用:4]
[48] 陆黄生. 2012. 测井技术在石油工程中的应用分析与发展思考. 石油钻探技术, 40(6): 1-7.
[Lu H S. 2012. Application and development analysis of well logging information in petroleum engineering. Petroleum Drilling Techniques, 40(6): 1-7] [文内引用:2]
[49] 陆巧焕, 张晋言, 李绍霞. 2006. 测井资料在生油岩评价中的应用. 测井技术, 30(1): 80-83, 100.
[Lu Q H, Zhang J Y, Li S X. 2006. Application of Log Data to Oil Source Rock Evaluation. Well Logging Technology, 30(1): 80-83, 100] [文内引用:1]
[50] 马永生, 黎茂稳, 蔡勋育, 徐旭辉, 胡东风, 曲寿利, 李根生, 何登发, 肖贤明, 曾义金, 饶莹, 马晓潇. 2021. 海相深层油气富集机理与关键工程技术基础研究进展. 石油实验地质, 43(5): 737-748.
[Ma Y S, Li M W, Cai X Y, Xu X H, Hu D F, Qu S L, Li G S, He D F, Xiao X M, Zeng Y J, Rao Y, Ma X X. 2021. Advances in basic research on the mechanism of deep marine hydrocarbon enrichment and key exploitation technologies. Petroleum Geology & Experiment, 43(5): 737-748] [文内引用:1]
[51] 马永生, 蔡勋育, 赵培荣, 胡宗全, 刘惠民, 高波, 王伟庆, 李志明, 张子麟. 2022. 中国陆相页岩油地质特征与勘探实践. 地质学报, 96(1): 155-171.
[Ma Y S, Cai X Y, Zhao P R, Hu Z Q, Liu H M, Gao B, Wang W Q, Li Z M, Zhang Z L. 2022. Geological characteristics and exploration practices of continental shale oil in China. Acta Geologica Sinica, 96(1): 155-171] [文内引用:6]
[52] 石玉江, 刘国强, 钟吉彬, 王娟, 张文静. 2021. 基于大数据的测井智能解释系统开发与应用. 中国石油勘探, 26(2): 113-126.
[Shi Y J, Liu G Q, Zhong J B, Wang J, Zhang W J. 2021. Development and application of intelligent logging interpretation system based on big data. China Petroleum Exploration, 26(2): 113-126] [文内引用:4]
[53] 孙建孟. 2013. 基于新“七性”关系的煤层气、页岩气测井评价. 测井技术, 37(5): 457-465.
[Sun J M. 2013. Coalbed methane and shale gas evaluation based on new seven related logging goals. Well Logging Technology, 37(5): 457-465] [文内引用:1]
[54] 孙龙德, 邹才能, 贾爱林, 位云生, 朱如凯, 吴松涛, 郭智. 2019. 中国致密油气发展特征与方向. 石油勘探与开发, 46(6): 1015-1026.
[Sun L D, Zou C N, Jia A L, Wei Y S, Zhu R K, Wu S T, Guo Z. 2019. Development characteristics and orientation of tight oil and gas in China. Petroleum Exploration and Development, 46(6): 1015-1026] [文内引用:1]
[55] 谭锋奇, 黎宪坤, 高阳, 李映艳, 张方. 2022. 吉木萨尔凹陷陆相页岩油储层测井定量解释. 西南石油大学学报(自然科学版), 45(3): 29-48.
[Tan F Q, Li X K, Gao Y, Li Y Y, Zhang F. 2022. Study on quantitative well logging interpretation of continental shale oil reservoir in Jimusar sag. Journal of Southwest Petroleum University(Science & Technology Edition), 45(3): 29-48] [文内引用:1]
[56] 汤天知, 李庆峰, 赵小青, 由立志, 王艳, 闫学洪, 徐洁. 2020. 基于电成像与核磁共振测井的古龙页岩油储层有效性评价. 大庆石油地质与开发, 39(3): 129-136.
[Tang T Z, Li Q F, Zhao X Q, You L Z, Wang Y, Yan X H, Xu J. 2020. The effectiveness evaluation of Gulong shale oil reservoirs based on the electrical imaging and NMR logging. Petroleum Geology & Oilfield Development in Daqing, 39(3): 129-136] [文内引用:1]
[57] 唐振兴, 赵家宏, 王天煦. 2019. 松辽盆地南部致密油“甜点区(段)”评价与关键技术应用. 天然气地球科学, 30(8): 1114-1124.
[Tang Z X, Zhao J H, Wang T X. 2019. Evaluation and key technology application of “sweet area”of tight oil in southern Songliao Basin. Natural Gas Geoscience, 30(8): 1114-1124] [文内引用:3]
[58] 王贵文, 朱振宇, 朱广宇. 2002. 烃源岩测井识别与评价方法研究. 石油勘探与开发, 29(4): 50-52.
[Wang G W, Zhu Z Y, Zhu G Y. 2002. Logging identification and evaluation of Cambrian-Ordovician source rocks in syneclise of Tarim Basin. Petroleum Exploration and Development, 29(4): 50-52] [文内引用:2]
[59] 王华, 张雨顺. 2021. 测井资料人工智能处理解释的现状及展望. 测井技术, 45(4): 345-356.
[Wang H, Zhang Y S. 2021. Research Status and Prospect of Artificial Intelligence in Logging Data Processing and Interpretation. Well Logging Technology, 45(4): 345-356] [文内引用:3]
[60] 王林生, 叶义平, 覃建华, 高阳, 邓远, 李映艳, 肖佃师. 2022. 陆相页岩油储层微观孔喉结构表征与含油性分级评价: 以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例. 石油与天然气地质, 43(1): 149-160.
[Wang L S, Ye Y P, Qin J H, Gao Y, Deng Y, Li Y Y, Xiao D S. 2022. Microscopic pore structure characterization and oil-bearing property evaluation of lacustrine shale reservoir: a case study of the Permian Lucaogou Formation in Jimsar Sag, Junggar Basin. Oil & Gas Geology, 43(1): 149-160] [文内引用:1]
[61] 王敏, 朱家俊, 余光华, 郝运轻, 关丽, 李英英. 2013. 罗家地区泥页岩岩相特征及测井分析技术. 测井技术, 37(4): 426-431.
[Wang M, Zhu J J, Yu G H, Hao Y Q, Guan L, Li Y Y. 2013. The shale lithofacies characteristics and logging analysis techniques in Luojia Area. Well Logging Technology, 37(4): 426-431] [文内引用:1]
[62] 王伟, 赵延伟, 毛锐, 孙中春, 牟立伟. 2019. 页岩油储层核磁有效孔隙度起算时间的确定: 以吉木萨尔凹陷二叠系芦草沟组页岩油储层为例. 石油与天然气地质, 40(3): 550-557.
[Wang W, Zhao Y W, Mao R, Sun Z C, Mou L W. 2019. Determination of the starting time for measurement of NMR effective porosity in shale oil reservoir: a case study of the Permian Lucaogou shale oil reservoir, Jimusaer sag. Oil & Gas Geology, 40(3): 550-557] [文内引用:4]
[63] 王小军, 杨智峰, 郭旭光, 王霞田, 冯右伦, 黄立良. 2019. 准噶尔盆地吉木萨尔凹陷页岩油勘探实践与展望. 新疆石油地质, 40(4): 402-413.
[Wang X J, Yang Z F, Guo X G, Wang X T, Feng Y L, Huang L L. 2019. Practices and prospects of shale oil exploration in Jimsar sag of Junggar Basin. Xinjiang Petroleum Geology, 40(4): 402-413] [文内引用:1]
[64] 王永诗, 李政, 王民, 包友书, 朱日房, 刘军, 吴连波, 于利民. 2022. 渤海湾盆地济阳坳陷陆相页岩油吸附控制因素. 石油与天然气地质, 43(3): 489-498.
[Wang Y S, Li Z, Wang M, Bao Y S, Zhu R F, Liu J, Wu L B, Yu L M. 2022. Factors controlling lacustrine shale oil adsorption in the Jiyang Depression, Bohai Bay Basin. Oil & Gas Geology, 43(3): 489-498] [文内引用:1]
[65] 魏国, 张审琴, 侯淞译. 2015. 岩性扫描测井技术在青海油田的应用. 测井技术, 39(2): 213-216.
[Wei G, Zhang S Q, Hou S Y. 2015. Application of LithoScanner Logging technology in Qinghai Oilfield. Well Logging Technology, 39(2): 213-216] [文内引用:1]
[66] 吴鹏, 高丽军, 李勇, 吴建光, 石雪峰, 康弘男, 孔为, 吴翔. 2022. 海陆过渡相岩性频繁互层型页岩气潜力评价方法: 以鄂尔多斯盆地临兴区块下二叠统山西组为例. 天然气工业, 42(2): 28-39.
[Wu P, Gao L J, Li Y, Wu J G, Shi X F, Kang H N, Kong W, Wu X. 2022. An evaluation method for shale gas potential of marine-continent transitional facies with frequent interbedded lithology: a case study on the Lower Permian Shanxi Formation in Linxing Block of the Ordos Basin. Natural Gas Industry, 42(2): 28-39] [文内引用:3]
[67] 夏宏泉, 王瀚玮, 赵昊. 2017. 测井多参数两向量法识别页岩气地质“甜点”. 天然气工业, 37(11): 36-42.
[Xia H Q, Wang H W, Zhao H. 2017. Logging multi-parameter two-vector method used for identifying geological “sweet spots”of shale gas. Natural Gas Industry, 37(11): 36-42] [文内引用:1]
[68] 肖立志. 2007. 我国核磁共振测井应用中的若干重要问题. 测井技术, 31(5): 401-407.
[Xiao L Z. 2007. Some important issues for NMR logging applications in China. Well Logging Technology, 31(5): 401-407] [文内引用:1]
[69] 徐风, 司兆伟, 白松涛, 马越姣, 程道解, 郭笑锴, 曾静波. 2017. 基于测井地质“四性”关系谱的储层评价方法. 测井技术, 41(2): 183-188.
[Xu F, Si Z W, Bai S T, Ma Y J, Cheng D J, Guo X K, Zeng J B. 2017. Reservoir evaluation based on four characters spectrum of geological logging. Well Logging Technology, 41(2): 183-188] [文内引用:2]
[70] 闫建平, 罗静超, 石学文, 钟光海, 郑马嘉, 黄毅, 唐洪明, 胡钦红. 2022. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义. 岩性油气藏, 34(6): 60-71.
[Yan J P, Luo J C, Shi X W, Zhong G H, Zheng M J, Huang Y, Tang H M, Hu Q H. 2022. Fracture development models and significance of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area, southern Sichuan Basin. Lithologic Reservoirs, 34(6): 60-71] [文内引用:1]
[71] 闫伟林, 张兆谦, 陈龙川, 赵志伟, 王文娟. 2021. 基于核磁共振技术的古龙页岩含油饱和度评价新方法. 大庆石油地质与开发, 40(5): 78-86.
[Yan W L, Zhang Z Q, Chen L C, Zhao Z W, Wang W J. 2021. New evaluating method of oil saturation in Gulong shale based on NMR technique. Petroleum Geology & Oilfield Development in Daqing, 40(5): 78-86] [文内引用:1]
[72] 姚东华, 周立宏, 王文革, 韩国猛, 蒲秀刚, 宋延杰, 许承武. 2022. 页岩油综合甜点测井评价: 以沧东凹陷孔店组二段为例. 石油学报, 43(7): 912-924.
[Yao D H, Zhou L H, Wang W G, Han G M, Pu X G, Song Y J, Xu C W. 2022. Logging evaluation of composite sweet spots for shale oil: a case study of Member 2 of Kongdian Formation in Cangdong sag. Acta Petrolei Sinica, 43(7): 912-924] [文内引用:1]
[73] 杨小兵, 姚梦麟, 王思静, 周昊, 佟恺林, 陈维铭, 马韶光. 2022. 页岩气测井地质工程技术新需求及解决方案. 天然气工业, 42(2): 20-27.
[Yang X B, Yao M L, Wang S J, Zhou H, Tong K L, Chen W M, Ma S G. 2022. Shale gas logging, geology and engineering technologies: new requirements and solutions. Natural Gas Industry, 42(2): 20-27] [文内引用:1]
[74] 杨智, 侯连华, 陶士振, 崔景伟, 吴松涛, 林森虎, 潘松圻. 2015. 致密油与页岩油形成条件与“甜点区”评价. 石油勘探与开发, 42(5): 555-565.
[Yang Z, Hou L H, Tao S Z, Cui J W, Wu S T, Lin S H, Pan S Q. 2015. Formation conditions and “sweet spot”evaluation of tight oil and shale oil. Petroleum Exploration and Development, 42(5): 555-565] [文内引用:2]
[75] 杨智, 邹才能, 吴松涛, 潘松圻, 王岚, 庞正炼, 林森虎, 李嘉蕊. 2021. 从源控论到源储共生系统: 论源岩层系油气地质理论认识及实践. 地质学报, 95(3): 618-631.
[Yang Z, Zou C N, Wu S T, Pan S Q, Wang L, Pang Z L, Lin S H, Li J R. 2021. From source control theory to source-reservoir symbiosis system: on the theoretical understand ing and practice of source rock strata oil and gas geology in China. Acta Geologica Sinica, 95(3): 618-631] [文内引用:1]
[76] 张少龙, 闫建平, 石学文, 钟光海, 郑马嘉, 黄毅, 蔡进功, 唐洪明, 胡钦红, 梁强. 2022. 深层页岩气甜点分类的地质—工程评价指标体系及应用: 以四川盆地LZ地区五峰组—龙马溪组为例. 中南大学学报(自然科学版), 53(9): 3666-3680.
[Zhang S L, Yan J P, Shi X W, Zhong G H, Zheng M J, Huang Y, Cai J G, Tang H M, Hu Q H, Liang Q. 2022. Geological and engineering evaluation index system for deep shale gas sweet spots classification and its application: a case of Wufeng—Longmaxi formations in LZ area, Sichuan Basin. Journal of Central South University(Science and Technology), 53(9): 3666-3680] [文内引用:2]
[77] 张鹏飞, 卢双舫, 李俊乾, 薛海涛, 李文镖, 张宇, 王思远, 冯文俊. 2019. 湖相页岩油有利甜点区优选方法及应用: 以渤海湾盆地东营凹陷沙河街组为例. 石油与天然气地质, 40(6): 1339-1350.
[Zhang P F, Lu S F, Li J Q, Xue H T, Li W B, Zhang Y, Wang S Y, Feng W J. 2019. Identification method of sweet spot zone in lacustrine shale oil reservoir and its application: a case study of the Shahejie Formation in Dongying Sag, Bohai Bay Basin. Oil & Gas Geology, 40(6): 1339-1350] [文内引用:2]
[78] 赵贤正, 蒲秀刚, 韩文中, 周立宏, 时战楠, 陈世悦, 肖敦清. 2017. 细粒沉积岩性识别新方法与储集层甜点分析: 以渤海湾盆地沧东凹陷孔店组二段为例. 石油勘探与开发, 44(4): 492-502.
[Zhao X Z, Pu X G, Han W Z, Zhou L H, Shi Z N, Chen S Y, Xiao D Q. 2017. A new method for lithology identification of fine grained deposits and reservoir sweet spot analysis: a case study of Kong 2 Member in Cangdong sag, Bohai Bay Basin, China. Petroleum Exploration and Development, 44(4): 492-502] [文内引用:1]
[79] 赵贤正, 周立宏, 蒲秀刚, 金凤鸣, 韩文中, 时战楠, 陈长伟, 姜文亚, 官全胜, 许静, 刘学伟, 张伟, 马建英. 2022. 湖相页岩型页岩油勘探开发理论技术与实践: 以渤海湾盆地沧东凹陷古近系孔店组为例. 石油勘探与开发, 49(3): 616-626.
[Zhao X Z, Zhou L H, Pu X G, Jin F M, Han W Z, Shi Z N, Chen C W, Jiang W Y, Guan Q S, Xu J, Liu X W, Zhang W, Ma J Y. 2022. Theories, technologies and practices of lacustrine shale oil exploration and development: a case study of Paleogene Kongdian Formation in Cangdong sag, Bohai Bay Basin, China. Petroleum Exploration and Development, 49(3): 616-626] [文内引用:2]
[80] 郑建东, 王春燕, 章华兵, 王晓莲, 朱建华. 2021. 松辽盆地古龙页岩油储层七性参数和富集层测井评价方法. 大庆石油地质与开发, 40(5): 87-97.
[Zheng J D, Wang C Y, Zhang H B, Wang X L, Zhu J H. 2021. Logging evaluating methods of seven property parameters and enriched layers for Gulong shale oil reservoir in Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 40(5): 87-97] [文内引用:6]
[81] 钟高润, 张小莉, 杜江民, 郑茜, 李航, 李宁, 王鹏. 2016. 鄂尔多斯盆地延长组长7段致密油源储配置关系测井评价. 地球物理学进展, 31(5): 2285-2291.
[Zhong G R, Zhang X L, Du J M, Zheng Q, Li H, Li N, Wang P. 2016. Source-reservoir configuration of logging evaluation for tight oil in Chang 7 member, Yanchang formation, Ordos Basin. Progress in Geophysics, 31(5): 2285-2291] [文内引用:1]
[82] 周立宏, 蒲秀刚, 陈长伟, 杨飞, 夏君, 官全胜, 黄传炎. 2018. 陆相湖盆细粒岩油气的概念、特征及勘探意义: 以渤海湾盆地沧东凹陷孔二段为例. 地球科学, 43(10): 3625-3639.
[Zhou L H, Pu X G, Chen C W, Yang F, Xia J, Guan Q S, Huang C Y. 2018. Concept, characteristics and prospecting significance of fine-grained sedimentary oil gas in terrestrial lake basin: a case from the Second Member of Paleogene Kongdian Formation of Cangdong Sag, Bohai Bay Basin. Earth Science, 43(10): 3625-3639] [文内引用:1]
[83] 朱光有, 金强, 张林晔. 2003. 用测井信息获取烃源岩的地球化学参数研究. 测井技术, 27(2): 104-109, 146.
[Zhu G Y, Jin Q, Zhang L Y. 2003. Using Log Information to Analyze the Geochemical Characteristics of Source Rocks in Jiyang Depression. Well Logging Technology, 27(2): 104-109, 146] [文内引用:1]
[84] 朱海燕, 宋宇家, 雷征东, 唐煊赫. 2022. 致密油水平井注采储集层四维地应力演化规律: 以鄂尔多斯盆地元284区块为例. 石油勘探与开发, 49(1): 136-147.
[Zhu H Y, Song Y J, Lei Z D, Tang X H. 2022. 4D-stress evolution of tight sand stone reservoir during horizontal wells injection and production: a case study of Yuan 284 block, Ordos Basin, NW China. Petroleum Exploration and Development, 49(1): 136-147] [文内引用:1]
[85] 朱如凯, 李梦莹, 杨静儒, 张素荣, 蔡毅, 曹琰, 康缘. 2022. 细粒沉积学研究进展与发展方向. 石油与天然气地质, 43(2): 251-264.
[Zhu R K, Li M Y, Yang J R, Zhang S R, Cai Y, Cao Y, Kang Y. 2022. Advances and trends of fine-grained sedimentology. Oil & Gas Geology, 43(2): 251-264] [文内引用:3]
[86] 邹才能, 朱如凯, 白斌, 杨智, 吴松涛, 苏玲, 董大忠, 李新景. 2011. 中国油气储层中纳米孔首次发现及其科学价值. 岩石学报, 27(6): 1857-1864.
[Zou C N, Zhu R K, Bai B, Yang Z, Wu S T, Su L, Dong D Z, Li X J. 2011. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value. Acta Petrologica Sinica, 27(6): 1857-1864] [文内引用:1]
[87] 邹才能, 杨智, 张国生, 侯连华, 朱如凯, 陶士振, 袁选俊, 董大忠, 王玉满, 郭秋麟, 王岚, 毕海滨, 李登华, 武娜. 2014. 常规—非常规油气“有序聚集”理论认识及实践意义. 石油勘探与开发, 41(1): 14-27.
[Zou C N, Yang Z, Zhang G S, Hou L H, Zhu R K, Tao S Z, Yuan X J, Dong D Z, Wang Y M, Guo Q L, Wang L, Bi H B, Li D H, Wu N. 2014. Conventional and unconventional petroleum “orderly accumulation”: concept and practical significance. Petroleum Exploration and Development, 41(1): 14-27] [文内引用:2]
[88] Al-Mudhafar W J. 2020. Integrating machine learning and data analytics for geostatistical characterization of clastic reservoirs. Journal of Petroleum Science and Engineering, 195: 107837. [文内引用:1]
[89] Ameen M S, MacPherson K, Almarhoon M I, Rahim Z. 2012. Diverse fracture properties and their impact on performance in conventional and tight-gas reservoirs, Saudi Arabia: the Unayzah, South Haradh case study. AAPG Bulletin, 96(3): 459-492. [文内引用:1]
[90] Amosu A, Sun Y. 2021. Identification of thermally mature total organic carbon-rich layers in shale formations using an effective machine-learning approach. Interpretation, 9(3): T735-T745. [文内引用:2]
[91] Anovitz L M, Cole D R. 2015. Characterization and analysis of porosity and pore structures. Reviews in Mineralogy and Geochemistry, 80(1): 61-164. [文内引用:1]
[92] Aplin A C, Macquaker J H S. 2011. Mudstone diversity: origin and implications for source, seal, and reservoir properties in petroleum systems. AAPG Bulletin, 95(12): 2031-2059. [文内引用:1]
[93] Avanzini A, Balossino P, Brignoli M, Spelta E, Tarchiani C. 2016. Lithologic and geomechanical facies classification for sweet spot identification in gas shale reservoir. Interpretation, 4(3): SL21-SL31. [文内引用:2]
[94] Aziz H, Ehsan M, Ali A, Khan H K, Khan A. 2020. Hydrocarbon source rock evaluation and quantification of organic richness from correlation of well logs and geochemical data: a case study from the Sembar formation, Southern Indus Basin, Pakistan. Journal of Natural Gas Science and Engineering, 81: 103433. [文内引用:1]
[95] Curtis M E, Cardott B J, Sondergeld C H, Rai C S. 2012. Development of organic porosity in the Woodford Shale with increasing thermal maturity. International Journal of Coal Geology, 103: 26-31. [文内引用:1]
[96] Ghadeer S G, Macquaker J H S. 2011. Sediment transport processes in an ancient mud-dominated succession: a comparison of processes operating in marine offshore settings and anoxic basinal environments. Journal of the Geological Society, 168(5): 1121-1132. [文内引用:1]
[97] Godfray G, Seetharamaiah J. 2019. Geochemical and well logs evaluation of the Triassic source rocks of the Mand awa basin, SE Tanzania: implication on richness and hydrocarbon generation potential. Journal of African Earth Sciences, 153: 9-16. [文内引用:1]
[98] Heng S, Li X, Liu X, Chen Y. 2020. Experimental study on the mechanical properties of bedding planes in shale. Journal of Natural Gas Science and Engineering, 76: 103161. [文内引用:1]
[99] Iqbal O, Ahmad M, Kadir A. 2018. Effective evaluation of shale gas reservoirs by means of an integrated approach to petrophysics and geomechanics for the optimization of hydraulic fracturing: a case study of the Permian Roseneath and Murteree Shale Gas reservoirs, Cooper Basin, Australia. Journal of Natural Gas Science and Engineering, 58: 34-58. [文内引用:5]
[100] Jarvie D M, Hill R J, Ruble T E. 2007. Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91: 475-499. [文内引用:1]
[101] Khoshbakht F, Azizzadeh M, Memarian H, Nourozi G H, Moallemi S A. 2012. Comparison of electrical image log with core in a fractured carbonate reservoir. Journal of Petroleum Science and Engineering, 86-87: 289-296. [文内引用:1]
[102] Kuang L C, Wang Z L, Feng C, Zhao P, Mao R, Yu J. 2020. Predicting oil saturation of shale-oil reservoirs using nuclear magnetic resonance logs. Interpretation, 8(3): SL35-SL43. [文内引用:1]
[103] Kumar S, Das S, Bastia R, Ojha K. 2018. Mineralogical and morphological characterization of Older Cambay Shale from North Cambay Basin, India: implication for shale oil/gas development. Marine and Petroleum Geology, 97: 339-354. [文内引用:1]
[104] Ladevèze P, Séjournéc S, Rivard C, Lavoie D, Lefebvre R, Rouleau A. 2018. Defining the natural fracture network in a shale gas play and its cover succession: the case of the Utica Shale in eastern Canada. Journal of Structural Geology, 108: 157-170. [文内引用:1]
[105] Lai J, Wang G W. 2015. Fractal analysis of tight gas sand stones using High-Pressure Mercury Intrusion techniques. Journal of Natural Gas Science and Engineering, 24: 185-196. [文内引用:1]
[106] Lai J, Wang G W, Huang L X, Li W L, Ran Y, Wang D, Zhou Z L, Chen J. 2015. Brittleness index estimation in a tight shaly sand stone reservoir using well logs. Journal of Natural Gas Science and Engineering, 27: 1536-1545. [文内引用:1]
[107] Lai J, Wang G W, Fan Z Y, Chen J, Wang S C, Zhou Z L, Fan X Q. 2016. Insight into the pore structure of tight sand stones using NMR and HPMI measurements. Energy & Fuels, 30: 10200-10214. [文内引用:1]
[108] Lai J, Wang G W, Fan Z Y, Wang Z Y, Chen J, Zhou Z L, Wang S C, Xiao C W. 2017. Fracture detection in oil-based drilling mud using a combination of borehole image and sonic logs. Marine and Petroleum Geology, 84: 195-214. [文内引用:1]
[109] Lai J, Wang G W, Wang S, Cao J T, Li M, Pang X J, Han C, Fan X Q, Yang L, He Z B, Qin Z Q. 2018. A review on the applications of image logs in structural analysis and sedimentary characterization. Marine and Petroleum Geology, 95: 139-166. [文内引用:1]
[110] Lai J, Li D, Wang G W, Xiao C W, Hao X L, Luo Q Y, Lai L B, Qin Z Q. 2019. Earth stress and reservoir quality evaluation in high and steep structure: the Lower Cretaceous in the Kuqa Depression, Tarim Basin, China. Marine and Petroleum Geology, 101: 43-54. [文内引用:2]
[111] Lai J, Wang G W, Fan Q X, Pang X J, Li H B, Zhao F, Li Y H, Zhao X, Zhao Y D, Huang Y Y, Bao M, Qin Z Q, Wang Q Q. 2022a. Geophysical well log evaluation in the era of unconventional hydrocarbon resources: a review on current status and prospects. Surveys in Geophysics, 43: 913-957. [文内引用:1]
[112] Lai J, Liu B C, Li H B, Pang X J, Liu S C, Bao M, Wang G W. 2022b. Bedding parallel fractures in fine-grained sedimentary rocks: recognition, formation mechanisms, and prediction using well log. Petroleum Science, 19(2): 554-569. [文内引用:1]
[113] Li C H, Zhao L, Liu B, Liu H Y, Li J X, Fan Z F, Wang J C, Li W Q, Zhao W Q, Sun M. 2021. Origin, distribution and implications on production of bedding-parallel fractures: a case study from the Carboniferous KT-I Formation in the NT oilfield, Precaspian Basin, Kazakhstan. Journal of Petroleum Science and Engineering, 196(2021): 107655. [文内引用:1]
[114] Liang M L, Wang Z X, Zhang Y, Greenwell C H, Li H J, Yu Y X, Liu S X. 2021. Experimental investigation on gas permeability in bedding shale with brittle and semi-brittle deformations under triaxial compression. Journal of Petroleum Science and Engineering, 196: 108049. [文内引用:1]
[115] Liu B, Wang H L, Fu X F, Bai Y F, Bai L H, Jia M C, He B. 2019. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong sag, northern Songliao Basin, northeast China. AAPG Bulletin, 103(2): 405-432. [文内引用:1]
[116] Liu D D, Zhang C, Pan Z K, Huang Z X, Luo Q, Song Y, Jiang Z X. 2020. Natural fractures in carbonate-rich tight oil reservoirs from the Permian Lucaogou Formation, southern Junggar Basin, NW China: insights from fluid inclusion microthermometry and isotopic geochemistry. Marine and Petroleum Geology, 119: 104500. [文内引用:1]
[117] Loucks R G, Reed R M, Ruppel S C, Jarvie D M. 2009. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79: 848-861. [文内引用:1]
[118] Loucks R G, Reed R M, Ruppel S C, Hammes U. 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96: 1071-1098. [文内引用:2]
[119] Momeni A, Rostami S, Hashemi S, Mosalman-Nejad H, Ahmadi A. 2019. Fracture and fluid flow paths analysis of an offshore carbonate reservoir using oil-based mud images and petrophysical logs. Marine and Petroleum Geology, 109: 349-360. [文内引用:1]
[120] Nelson P H. 2009. Pore-throat sizes in sand stones, tight sand stones, and shales. AAPG Bulletin, 93(3): 329-340. [文内引用:1]
[121] Pang X J, Wang G W, Kuang L C, Li H B, Zhao Y D, Li D, Zhao X, Wu S T, Feng Z, Lai J. 2022. Insights into the pore structure and oil mobility in fine-grained sedimentary rocks: the Lucaogou Formation in Jimusar Sag, Junggar Basin, China. Marine and Petroleum Geology, 137: 105492. [文内引用:1]
[122] Passey Q R, Creaney S, Kulla J B, Moretti F J, Stroud J. 1990. A practical model for organic richness from porosity and resistivity logs. AAPG Bulletin, 74: 1777-1794. [文内引用:4]
[123] Rezaee R, Saeedi A, Clennell B. 2012. Tight gas sand s permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. Journal of Petroleum Science and Engineering: 88-89, 92-99. [文内引用:2]
[124] Rybacki E, Meier T, Dresen G. 2016. What controls the mechanical properties of shale rocks?Part Ⅱ: Brittleness. Journal of Petroleum Science and Engineering, 144: 39-58. [文内引用:1]
[125] Serra O, Sodeke T, Souhaite P, Trassard J, Wittmann M. 1979. Schlumberger Well Evaluation Conference, Algeria, Services Techniques Schlumberger, Paris. [文内引用:1]
[126] Shalaby M R, Jumat N, Lai D, Malik O. 2019. Integrated TOC prediction and source rock characterization using machine learning, well logs and geochemical analysis: case study from the Jurassic source rocks in Shams Field, NW Desert, Egypt. Journal of Petroleum Science and Engineering, 176: 369-380. [文内引用:3]
[127] Stadtmuller M, Lis-Śledziona A, Sota-Valim M. 2018. Petrophysical and geomechanical analysis of the Lower Paleozoic shale formation, North Poland . Interpretation, 6(3): SH91-SH106. [文内引用:1]
[128] Sun B Q, Dunn K J. 2005. Two-dimensional nuclear magnetic resonance petrophysics. Magnetic Resonance Imaging, 23(2): 259-262. [文内引用:1]
[129] Wang G W, Lai J, Liu B C, Fan Z Y, Liu S C, Shi Y J, Zhang H T, Chen J. 2020. Fluid property discrimination in dolostone reservoirs using well logs. Acta Geologica Sinica(English Edition), 94(3): 831-846. [文内引用:1]
[130] Wang H J, Wu W, Chen T, Dong X J, Wang G X. 2019. An improved neural network for TOC, S1 and S2 estimation based on conventional well logs. Journal of Petroleum Science and Engineering, 176: 664-678. [文内引用:1]
[131] Wang S, Wang G W, Huang L L, Song L T, Zhang Y L, Li D, Huang Y Y. 2021. Logging evaluation of lamina structure and reservoir quality in shale oil reservoir of Fengcheng Formation in Mahu Sag, China. Marine and Petroleum Geology, 133: 105299. [文内引用:1]
[132] Zeng L B, Lyu W Y, Li J, Zhu L, Weng J Q, Yue F, Zu K W. 2016. Natural fractures and their influence on shale gas enrichment in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 30: 1-9. [文内引用:1]
[133] Zhang C, Zhu D Y, Luo Q, Liu L F, Liu D D, Yan L, Zhang Y Z. 2017. Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China. Journal of Asian Earth Sciences, 146: 279-295. [文内引用:1]
[134] Zhao P, Mao Z, Huang Z H, Zhang C. 2016. A new method for estimating total organic carbon content from well logs. AAPG Bulletin, 100(8): 1311-1327. [文内引用:1]
[135] Zhao X Z, Zhou L H, Pu X G, Han W Z, Jin F M, Xiao D Q, Shi Z N, Deng Y, Zhang W, Jiang W Y. 2019. Exploration breakthroughs and geological characteristics of continental shale oil: a case study of the Kongdian Formation in the Cangdong Sag, China. Marine and Petroleum Geology, 102: 544-556. [文内引用:4]
[136] Zoback M D, Barton C A, Brudy M, Castillo D A, Finkbeiner T, Grollimund B R, Moos D B, Peska P, Ward C D, Wiprut D J. 2003. Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40: 1049-1076. [文内引用:1]
[137] Zou C N, Zhu R K, Chen Z Q, Ogg J G, Wu S T, Dong D Z, Qiu Z, Wang Y M, Wang L, Lin S H, Cui J W, Su L, Yang Z. 2019. Organic-matter-rich shales of China. Earth-Science Reviews, 189: 51-78. [文内引用:1]