赖锦, 李红斌, 张梅, 白梅梅, 赵仪迪, 范旗轩, 庞小娇, 王贵文. (2023). 非常规油气时代测井地质学研究进展* [J]. 古地理学报, 25(5): 1118-1138.
LAI Jin, LI Hongbin, ZHANG Mei, BAI Meimei, ZHAO Yidi, FAN Qixuan, PANG Xiaojiao, WANG Guiwen. (2023). Advances in well logging geology in the era of unconventional hydrocarbon resources[J]. Journal Of Palaeogeography, 25(5): 1118-1138.
Advances in well logging geology in the era of unconventional hydrocarbon resources
LAI Jin1,2, LI Hongbin2, ZHANG Mei2, BAI Meimei2, ZHAO Yidi2, FAN Qixuan2, PANG Xiaojiao2, WANG Guiwen1,2
1 National Key Laboratory of Petroleum Resource and Engineering,China University of Petroleum(Beijing),Beijing 102249,China
2 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China
About the corresponding author WANG Guiwen,born in 1966,Ph.D.,professor,doctoral supervisor,is mainly engaged in sedimentology,reservoir geology and well logging geology. E-mail: wanggw@cup.edu.cn.
About the first author LAI Jin,born in 1988,Ph.D.,associate professor,doctoral supervisor,is mainly engaged in sedimentology,reservoir geology and well logging geology. E-mail: laijin@cup.edu.cn.
Fund:Co-funded by the National Natural Science Foundation of China(Nos. 42002133,42072150),Science Foundation of China University of Petroleum,Beijing(No.2462021YXZZ003)and strategic cooperation project of PetroChina and China University of Petroleum,Beijing(No. ZLZX2020-01)
Abstract
Comprehensive and advanced demands are raised for well logging geology in the era of unconventional oil and gas resources,and new and comprehensive theory and technical systems are urgently to be developed in order to solve the problems in the well logging geology for unconventional oil and gas resources. This paper compares the differences of geological characteristics between conventional and unconventional hydrocarbon resources. Furthermore the matched well log series are introduced,and then the main contents in well log evaluation of unconventional hydrocarbon resources are summarized,in addition,the key points and processes of well log evaluation are clarified. The well log evaluation of source rocks,the related theorical and technical systems as well as their application in resource “sweet spot”optimization are summarized. The LithoScanner is used to determine the mineral content and total organic carbon(TOC)content,and the image log is used for picking out sedimentary structure such as lamina,and then the lithofacies can be determined using well logs. The evaluation of bedding parallel fractures in unconventional hydrocarbon resources is an important,and the integration of conventional well logs and image logs can pick out the fractures in a single well. The evaluation and prediction of geological “sweet spots”should pay attention to the well log responses and comprehensive evaluation of lithofacies,bedding parallel fracture and calculation of reservoir parameters. Lastly the importance of in situ stress fields and brittleness index are emphasized in terms of evaluation and prediction of engineering “sweet spots”. The integration of various resolution geological data,well log data and artificial intelligence will promote the continuous innovations on well logging geology.
Key words:
unconventional hydrocarbon resources; well logging geology; geological and engineering “sweet spots”; lithofacies; bedding parallel fractures; in situ stress
图 2 吉木萨尔凹陷芦草沟组测井储集层参数计算与流体性质识别评价Fig.2 Calculation of reservoir parameters and fluid property determination using well logs for the Lucaogou Formation in Jimusar sag
图 3 基于常规、LithoScanner以及成像测井的古龙凹陷青山口组页岩岩相测井评价Fig.3 Log evaluation of lithofacies of Gulong sag Qingshankou Formation using conventional well logs, LithoScanner and image log
图 5 基于成像测井的吉木萨尔凹陷芦草沟组层理缝、诱导缝和层理面识别与评价(J10035)Fig.5 Bedding planes, induced fracture, natural fracture picked out from image logs of the Lucaogou Formation in Jimusar sag(J10035)
图 6 苏北盆地古近系阜二段页岩现今地应力方向和大小以及脆性指数测井评价Fig.6 Well log evaluation of in situ stress direction and magnitudes as well as brittleness index of the Member 2 of Paleogene Funing Formation in Subei Basin
表 1 吉木萨尔凹陷芦草沟组页岩油地质和工程“ 甜点” 评价标准(据郭旭光等, 2019; 有修改)Table1 Standard parameter for evaluating geological and engineering “ sweet spot” of the Lucaogou Formation shale oil in Jimusar sag(modified from Guo et al., 2019)
评价内容
“ 甜点” 分级
孔隙度/%
渗透率/10-3μ m2
岩性组合特征
储集空间
地质甜点
Ⅰ
> 12
> 0.3
粉细砂岩
原生粒间孔、粒间溶孔
Ⅱ
8~12
0.3~0.1
云质粉砂岩、泥质粉砂岩
粒间溶孔、粒内溶孔
Ⅲ
5~8
< 0.1
砂屑云岩、泥晶云岩
晶间孔、粒间孔
评价内容
“ 甜点” 分级
脆性/%
水平两向应力差/MPa
泊松比
杨氏模量/GPa
工程甜点
Ⅰ
> 55
2~10
< 0.2
> 15
Ⅱ
50~55
6~10
0.2~0.25
15~10
Ⅲ
45~50
6~10
> 0.25
< 10
表 1 吉木萨尔凹陷芦草沟组页岩油地质和工程“ 甜点” 评价标准(据郭旭光等, 2019; 有修改)Table1 Standard parameter for evaluating geological and engineering “ sweet spot” of the Lucaogou Formation shale oil in Jimusar sag(modified from Guo et al., 2019)
陈义国, 贺永红, 王超, 葛新民, 马芳侠, 孟旺才, 葛云锦, 李晓路, 樊笑微. 2021. 鄂尔多斯盆地三叠系延长组8段非常规油藏成因与成藏模式: 以盆地东南部甘泉西区为例. , 42(10): 1270-1286. [Chen YG, He YH, WangC, Ge XM, Ma FX, Meng WC, Ge YJ, Li XL, Fan XW. 2021. Genesis and accumulation patterns of unconventional oil reservoir in Member 8 of Triassic Yanchang Formation: a case study of the western Ganquan area, southeastern Ordos Basin. , 42(10): 1270-1286][文内引用:1]
[2]
丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 2021. 页岩气储层可压裂性级别测井评价及展布特征: 以川南X地区五峰组—龙马溪组为例. , 33(3): 177-188. [CongP, Yan JP, JingC, Zhang JH, Tang HM, WangJ, GengB, WangM, ChaoJ. 2021. Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir: a case study from Wufeng Formation and Longmaxi Formation in X area, southern Sichuan Basin. , 33(3): 177-188][文内引用:1]
[3]
杜江民, 张小莉, 钟高润, 封从军, 郭岭, 张晓龙, 罗文行. 2016. 致密油烃源岩有机碳含量测井评价方法优选及应用: 以鄂尔多斯盆地延长组长7段烃源岩为例. , 31(6): 2526-2533. [Du JM, Zhang XL, Zhong GR, Feng CJ, GuoL, Zhang XL, Luo WX. 2016. Analysis on the optimization and application of well logs indentification methods for organic carbon content in source rocks of the tight oil: illustrated by the example of the source rocks of Chang 7 member of Yanchang Formation in Ordos Basin. , 31(6): 2526-2533][文内引用:1]
[4]
付金华, 邓秀芹, 楚美娟, 张海峰, 李士祥. 2013. 鄂尔多斯盆地延长组深水岩相发育特征及其石油地质意义. , 31(5): 928-938. [Fu JH, Deng XQ, Chu MJ, Zhang HF, Li SX. 2013. Features of deepwater lithofacies, Yanchang Formation in Ordos Basin and its petroleum significance. , 31(5): 928-938][文内引用:3]
[5]
付锁堂, 付金华, 牛小兵, 李士祥, 吴志宇, 周新平, 刘江艳. 2020. 庆城油田成藏条件及勘探开发关键技术. , 41(7): 777-795. [Fu ST, Fu JH, NiuXB, Li SX, Wu ZY, Zhou XP, Liu JY. 2020. Accumulation conditions and key exploration and development technologies in Qingcheng oilfield. , 41(7): 777-795][文内引用:1]
[6]
高岗, 向宝力, 王轩, 王熠, 周然然, 马万云, 任江铃, 赵克. 2016. 准噶尔盆地吉木萨尔凹陷芦草沟组湖相混合沉积中缝合线发育与有机质富集研究. , 27(11): 1963-1969. [GaoG, Xiang BL, WangX, WangY, Zhou RR, Ma WY, Ren JL, ZhaoK. 2016. Stylolite occurrence and organic matter enrichment of the mixed sediments in the Lucaogou Formation of the Jimusaer Sag in Junggar Basin. , 27(11): 1963-1969][文内引用:1]
[7]
郭旭光, 何文军, 杨森, 王江涛, 冯右伦, 贾希玉, 邹阳, 王霞田, 黄立良. 2019. 准噶尔盆地页岩油“甜点区”评价与关键技术应用: 以吉木萨尔凹陷二叠系芦草沟组为例. , 30(8): 1168-1179. [Guo XG, He WJ, YangS, Wang JT, Feng YL, Jia XY, ZouY, Wang XT, Huang LL. 2019. Evaluation and application of key technologies of “sweet area”of shale oil in Junggar Basin: Case study of Permian Lucaogou Formation in Jimusar Depression. , 30(8): 1168-1179][文内引用:2]
[8]
郭旭升, 胡东风, 魏祥峰, 李宇平. 2016. 四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响. , 37(6): 799-808. [Guo XS, Hu DF, Wei XF, Li YP. 2016. Main controlling factors on shale fractures and their influences on production capacity in Jiaoshiba area, the Sichuan Basin. , 37(6): 799-808][文内引用:2]
[9]
黄玉越, 王贵文, 宋连腾, 王松, 张益粼, 黄立良, 赖锦. 2022. 准噶尔盆地玛湖凹陷二叠系风城组页岩储集层裂缝测井识别与有效性分析. , 24(3): 540-555. [Huang YY, Wang GW, Song LT, WangS, Zhang YL, Huang LL, LaiJ. 2022. Fracture logging identification and effectiveness analysis of shale reservoir of the Permian Fengcheng Formation in Mahu sag, Junggar Basin. , 24(3): 540-555][文内引用:1]
[10]
何文渊, 蒙启安, 张金友. 2021. 松辽盆地古龙页岩油富集主控因素及分类评价. , 40(5): 1-12. [He WY, Meng QA, Zhang JY. 2021. Controlling factors and their classification-evaluation of Gulong shale oil enrichment in Songliao Basin. , 40(5): 1-12][文内引用:2]
[11]
焦方正. 2019. 非常规油气之“非常规”再认识. , 46(5): 803-810. [Jiao FZ. 2019. Re-recognition of “unconventional”in unconventional oil and gas. , 46(5): 803-810][文内引用:1]
[12]
焦方正, 邹才能, 杨智. 2020. 陆相源内石油聚集地质理论认识及勘探开发实践. , 47(6): 1067-1078. [Jiao FZ, Zou CN, YangZ. 2020. Geological theory and exploration & development practice of hydrocarbon accumulation inside continental source kitchens. , 47(6): 1067-1078][文内引用:1]
[13]
贾长贵, 路保平, 蒋廷学, 李真祥. 2014. DY2HF深层页岩气水平井分段压裂技术. , 42(2): 85-90. [Jia CG, Lu BP, Jiang TX, Li ZX. 2014. Multi-stage horizontal well fracturing technology in deep shale gas well DY2HF. , 42(2): 85-90][文内引用:3]
[14]
贾承造, 庞雄奇, 宋岩. 2021. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力. , 48(3): 437-452. [Jia CZ, Pang XQ, SongY. 2021. The mechanism of unconventional hydrocarbon formation: hydrocarbon self-containment and intermolecular forces. , 48(3): 437-452][文内引用:1]
[15]
姜在兴, 张文昭, 梁超, 王永诗, 刘惠民, 陈祥. 2014. 页岩油储层基本特征及评价要素. , 35(1): 184-196. [Jiang ZX, Zhang WZ, LiangC, Wang YS, Liu HM, ChenX. 2014. Characteristics and evaluation elements of shale oil reservoir. , 35(1): 184-196][文内引用:2]
[16]
蒋平, 穆龙新, 张铭, 赵文光. 2015. 中石油国内外致密砂岩气储层特征对比及发展趋势. , 26(6): 1095-1105. [JiangP, Mu LX, ZhangM, Zhao WG. 2015. Differences of reservoir characteristics between domestic and oversea tight gas of CNPC and its developing trends. , 26(6): 1095-1105][文内引用:1]
[17]
蒋裕强, 宋益滔, 漆麟, 陈雷, 陶艳忠, 甘辉, 吴佩津, 叶子亿. 2016. 中国海相页岩岩相精细划分及测井预测: 以四川盆地南部威远地区龙马溪组为例. , 23(1): 107-118. [Jiang YQ, Song YT, QiL, ChenL, Tao YZ, GanH, Wu PJ, Ye ZY. 2016. Fine lithofacies of China's marine shale and its logging prediction: a case study of the Lower Silurian Longmaxi marine shale in Weiyuan area, southern Sichuan Basin, China. , 23(1): 107-118][文内引用:2]
[18]
蒋云箭, 刘惠民, 柴春艳, 辛忠斌. 2020. 页岩油油气可动性测井响应特征分析及应用. , 27(5): 44-52. [Jiang YJ, Liu HM, Chai CY, Xin ZB. 2020. Analysis of hydrocarbon movability logging response features of shale oil and its applications. , 27(5): 44-52][文内引用:2]
[19]
金鼎, 王敬农, 张辛耘, 孙宝佃. 2007. 中国石油测井技术态势及科技发展方向. , 31(2): 95-98. [JinD, Wang JN, Zhang XY, Sun BD. 2007. Situation and direction of CNPC well logging technologies development. , 31(2): 95-98][文内引用:1]
[20]
金之钧, 朱如凯, 梁新平, 沈云琦. 2021. 当前陆相页岩油勘探开发值得关注的几个问题. , 48(6): 1276-1287. [Jin ZJ, Zhu RK, Liang XP, Shen YQ. 2021. Several issues worthy of attention in current lacustrine shale oil exploration and development. , 48(6): 1276-1287][文内引用:2]
[21]
鞠玮, 尤源, 冯胜斌, 徐浩然, 张晓丽, 王胜宇. 2020. 鄂尔多斯盆地延长组长7油层组致密砂岩储层层理缝特征及成因. , 41(3): 596-605. [JuW, YouY, Feng SB, Xu HR, Zhang XL, Wang SY. 2020. Characteristics and genesis of bedding-parallel fractures in tight sand stone reservoirs of Chang 7 oil layer, Ordos Basin. , 41(3): 596-605][文内引用:4]
[22]
匡立春, 孙中春, 欧阳敏, 常秋生, 王振林. 2013. 吉木萨尔凹陷芦草沟组复杂岩性致密油储层测井岩性识别. , 37(6): 638-642. [Kuang LC, Sun ZC, OuYangM, Chang QS, Wang ZL. 2013. Complication lithology logging identification of the Lucaogou tight oil reservoir in Jimusaer Depression. , 37(6): 638-642][文内引用:1]
[23]
匡立春, 王霞田, 郭旭光, 常秋生, 贾希玉. 2015. 吉木萨尔凹陷芦草沟组致密油地质特征与勘探实践. , 36(6): 629-634. [Kuang LC, Wang XT, Guo XG, Chang QS, Jia XY. 2015. Geological characteristics and exploration practice of tight oil of Lucaogou Formation in Jimsar sag. , 36(6): 629-634][文内引用:1]
[24]
匡立春, 刘合, 任义丽, 罗凯, 史洺宇, 苏健, 李欣. 2021. 人工智能在石油勘探开发领域的应用现状与发展趋势. , 48(1): 1-11. [Kuang LC, LiuH, Ren YL, LuoK, Shi MY, SuJ, LiX. 2021. Application and development trend of artificial intelligence in petroleum exploration and development. , 48(1): 1-11][文内引用:2]
[25]
赖锦, 王贵文, 孙思勉, 蒋晨, 周磊, 郑新华, 吴庆宽, 韩闯. 2015. 致密砂岩储层裂缝测井识别评价方法研究进展. , 30(4): 1712-1724. [LaiJ, Wang GW, Sun SM, JiangC, ZhouL, Zheng XH, Wu QK, HanC. 2015. Research advances in logging recognition and evaluation method of fractures in tight sand stone reservoirs. , 30(4): 1712-1724][文内引用:3]
[26]
赖锦, 王贵文, 范卓颖, 陈晶, 王抒忱, 周正龙, 范旭强. 2016. 非常规油气储层脆性指数测井评价方法研究进展. , 1(3): 330-341. [LaiJ, Wang GW, Fan ZY, ChenJ, Wang SC, Zhou ZL, Fan XQ. 2016. Research progress in brittleness index evaluation methods with logging data in unconventional oil and gas reservoirs. , 1(3): 330-341][文内引用:4]
[27]
赖锦, 韩能润, 贾云武, 季玉山, 王贵文, 庞小娇, 贺智博, 王松. 2018. 基于测井资料的辫状河三角洲沉积储层精细描述. , 45(2): 304-318. [LaiJ, Han NR, Jia YW, Ji YS, Wang GW, Pang XJ, He ZB, WangS. 2018. Detailed description of the sedimentary reservoir of a braided delta based on well logs. , 45(2): 304-318][文内引用:8]
[28]
赖锦, 王贵文, 庞小娇, 韩宗晏, 李栋, 赵仪迪, 王松, 江程舟, 李红斌, 黎雨航. 2021a. 测井地质学前世、今生与未来: 写在《测井地质学·第二版》出版之时. , 67(6): 1804-1828. [LaiJ, Wang GW, Pang XJ, Han ZY, LiD, Zhao YD, WangS, Jiang CZ, Li HB, Li YH. 2021a. The past, present and future of well logging geology: to celebrate the publication of second edition of “Well Logging Geology”. , 67(6): 1804-1828][文内引用:19]
[29]
赖锦, 包萌, 刘士琛, 李栋, 王松, 杨科夫, 陈旭, 王贵文, 丁修建. 2021b. 塔里木盆地深层、超深层白云岩优质储集层测井预测. , 23(6): 1225-1242. [LaiJ, BaoM, Liu SC, LiD, WangS, YangK, ChenX, Wang GW, Ding XJ. 2021b. Prediction of high quality deep and ultra-deep dolostones reservoirs in Tarim Basin by well logs. , 23(6): 1225-1242][文内引用:2]
[30]
赖锦, 凡雪纯, 黎雨航, 赵鑫, 刘士琛, 刘小平, 李栋, 庞小娇, 李红斌, 罗瑀峰. 2022a. 苏北盆地阜宁组页岩油七性关系与三品质测井评价. , 68(2): 751-768. [LaiJ, Fan XC, Li YH, ZhaoX, Liu SC, Liu XP, LiD, Pang XJ, Li HB, Luo YF. 2022a. Well logging evaluation of seven kinds of relationships and three types of properties of Paleogene Funing Formation oil shales in Subei Basin. , 68(2): 751-768][文内引用:2]
[31]
赖锦, 庞小娇, 赵鑫, 赵仪迪, 王贵文, 黄玉越, 李红斌, 黎雨航. 2022b. 测井地质学研究中的典型误区与科学思维. , 42(7): 31-44. [LaiJ, Pang XJ, ZhaoX, Zhao YD, Wang GW, Huang YY, Li HB, Li YH. 2022b. Typical misunderstand ings and scientific ideas in well logging geology research. , 42(7): 31-44][文内引用:3]
[32]
黎茂稳, 马晓潇, 金之钧, 李志明, 蒋启贵, 吴世强, 李政, 徐祖新. 2022. 中国海、陆相页岩层系岩相组合多样性与非常规油气勘探意义. , 43(1): 1-25. [Li MW, Ma XX, Jin ZJ, Li ZM, Jiang QG, Wu SQ, LiZ, Xu ZX. 2022. Diversity in the lithofacies assemblages of marine and lacustrine shale strata and significance for unconventional petroleum exploration in China. , 43(1): 1-25][文内引用:1]
[33]
李国欣, 刘国强, 赵培华. 2004. 中国石油天然气股份有限公司测井技术的定位、需求与发展. , 28(1): 1-6, 90. [Li GX, Liu GQ, Zhao PH. 2004. On Orientation, Requirements and Development for Log Evaluation Technology of PetroChina. , 28(1): 1-6, 90][文内引用:1]
[34]
李国欣, 刘国强, 侯雨庭, 赵先然, 吴金龙, 李伸专, 鲜成刚, 刘合. 2021. 陆相页岩油有利岩相优选与压裂参数优化方法. , 42(11): 1405-1416. [Li GX, Liu GQ, Hou YT, Zhao XR, Wu JL, Li SZ, Xian CG, LiuH. 2021. Optimization method of favorable lithofacies and fracturing parameter for continental shale oil. , 42(11): 1405-1416][文内引用:3]
[35]
李国欣, 朱如凯. 2020. 中国石油非常规油气发展现状、挑战与关注问题. , 25(2): 1-13. [Li GX, Zhu RK. 2020. Progress, challenges and key issues of unconventional oil and gas development of CNPC. , 25(2): 1-13][文内引用:1]
[36]
李剑浩. 2007. 用混合物电导率公式改进双水模型的公式. , 31(1): 1-3. [Li JH. 2007. An improvement in conductivity formula of dual water model with conductivity formula of mixture. , 31(1): 1-3][文内引用:1]
[37]
李浩, 刘双莲, 王丹丹, 谭承军, 赵连水. 2015. 我国测井评价技术应用中常见地质问题分析. , 30(2): 776-782. [LiH, Liu SL, Wang DD, Tan CJ, Zhao LS. 2015. The common problems analysis in logging evaluation technology application in China. , 30(2): 776-782][文内引用:1]
[38]
李宁, 闫伟林, 武宏亮, 郑建东, 冯周, 张兆谦, 王克文, 王敬岩. 2020. 松辽盆地古龙页岩油测井评价技术现状、问题及对策. , 39(3): 117-128. [LiN, Yan WL, Wu HL, Zheng JD, FengZ, Zhang ZQ, Wang KW, Wang JY. 2020. Current situation, problems and countermeasures of the well-logging evaluation technology for Gulong shale oil. , 39(3): 117-128][文内引用:7]
[39]
李宁, 徐彬森, 武宏亮, 冯周, 李雨生, 王克文, 刘鹏. 2021. 人工智能在测井地层评价中的应用现状及前景. , 42(4): 508-522. [LiN, Xu BS, Wu HL, FengZ, Li YS, Wang KW, LiuP. 2021. Application status and prospects of artificial intelligence in well logging and formation evaluation. , 42(4): 508-522][文内引用:2]
[40]
李阳, 廉培庆, 薛兆杰, 戴城. 2020. 大数据及人工智能在油气田开发中的应用现状及展望. , 44(4): 1-11. [LiY, Lian PQ, Xue ZJ, DaiC. 2020. Application status and prospect of big data and artificial intelligence in oil and gas field development. , 44(4): 1-11][文内引用:1]
[41]
梁兴, 张介辉, 张涵冰, 徐政语, 张东涛, 朱斗星. 2021. 浅层页岩气勘探重大发现与高效开发对策研究: 以太阳浅层页岩气田为例. , 26(6): 21-37. [LiangX, Zhang JH, Zhang HB, Xu ZY, Zhang DT, Zhu DX. 2021. Major discovery and high-efficiency development strategy of shallow shale gas: a case study of Taiyang shale gas field. , 26(6): 21-37][文内引用:2]
[42]
柳波, 石佳欣, 付晓飞, 吕延防, 孙先达, 巩磊, 白云风. 2018. 陆相泥页岩层系岩相特征与页岩油富集条件: 以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例. , 45(5): 828-838. [LiuB, Shi JX, Fu XF, Lü YF, Sun XD, GongL, Bai YF. 2018. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China. , 45(5): 828-838][文内引用:2]
[43]
柳波, 孙嘉慧, 张永清, 贺君玲, 付晓飞, 杨亮, 邢济麟, 赵小青. 2021. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式. , 48(3): 521-535. [LiuB, Sun JH, Zhang YQ, He JL, Fu XF, YangL, Xing JL, Zhao XQ. 2021. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling sag, southern Songliao Basin, NE China. , 48(3): 521-535][文内引用:1]
[44]
刘国强. 2021. 非常规油气勘探测井评价技术的挑战与对策. , 48(5): 891-902. [Liu GQ. 2021. Challenges and countermeasures of log evaluation in unconventional petroleum exploration. , 48(5): 891-902][文内引用:7]
[45]
刘国强, 龚仁彬, 石玉江, 王珍珍, 米兰, 袁超, 钟吉彬. 2022. 油气层测井知识图谱构建及其智能识别方法. , 49(3): 502-512. [Liu GQ, Gong RB, Shi YJ, Wang ZZ, MiL, YuanC, Zhong JB. 2022. Construction of well logging knowledge graph and intelligent identification method of hydrocarbon-bearing formation. , 49(3): 502-512][文内引用:1]
[46]
刘可禹, 刘畅. 2019. “化学—沉积相”分析: 一种研究细粒沉积岩的有效方法. , 40(3): 491-503. [Liu KY, LiuC. 2019. “Chemo-sedimentary facies”analysis: an effective method to study fine-grained sedimentary rocks. , 40(3): 491-503][文内引用:3]
[47]
刘雅慧, 王才志, 刘忠华, 王浩, 刘英明. 2021. 一种评价页岩油含油性的测井方法: 以准噶尔盆地吉木萨尔凹陷为例. , 32(7): 1084-1091. [Liu YH, Wang CZ, Liu ZH, WangH, Liu YM. 2021. A logging method for evaluating oil-bearing property of shale oil: case study of Jimsar Sag in Junggar Basin. , 32(7): 1084-1091][文内引用:4]
[48]
陆黄生. 2012. 测井技术在石油工程中的应用分析与发展思考. , 40(6): 1-7. [Lu HS. 2012. Application and development analysis of well logging information in petroleum engineering. , 40(6): 1-7][文内引用:2]
[49]
陆巧焕, 张晋言, 李绍霞. 2006. 测井资料在生油岩评价中的应用. , 30(1): 80-83, 100. [Lu QH, Zhang JY, Li SX. 2006. Application of Log Data to Oil Source Rock Evaluation. , 30(1): 80-83, 100][文内引用:1]
[50]
马永生, 黎茂稳, 蔡勋育, 徐旭辉, 胡东风, 曲寿利, 李根生, 何登发, 肖贤明, 曾义金, 饶莹, 马晓潇. 2021. 海相深层油气富集机理与关键工程技术基础研究进展. , 43(5): 737-748. [Ma YS, Li MW, Cai XY, Xu XH, Hu DF, Qu SL, Li GS, He DF, Xiao XM, Zeng YJ, RaoY, Ma XX. 2021. Advances in basic research on the mechanism of deep marine hydrocarbon enrichment and key exploitation technologies. , 43(5): 737-748][文内引用:1]
[51]
马永生, 蔡勋育, 赵培荣, 胡宗全, 刘惠民, 高波, 王伟庆, 李志明, 张子麟. 2022. 中国陆相页岩油地质特征与勘探实践. , 96(1): 155-171. [Ma YS, Cai XY, Zhao PR, Hu ZQ, Liu HM, GaoB, Wang WQ, Li ZM, Zhang ZL. 2022. Geological characteristics and exploration practices of continental shale oil in China. , 96(1): 155-171][文内引用:6]
[52]
石玉江, 刘国强, 钟吉彬, 王娟, 张文静. 2021. 基于大数据的测井智能解释系统开发与应用. , 26(2): 113-126. [Shi YJ, Liu GQ, Zhong JB, WangJ, Zhang WJ. 2021. Development and application of intelligent logging interpretation system based on big data. , 26(2): 113-126][文内引用:4]
[53]
孙建孟. 2013. 基于新“七性”关系的煤层气、页岩气测井评价. , 37(5): 457-465. [Sun JM. 2013. Coalbed methane and shale gas evaluation based on new seven related logging goals. , 37(5): 457-465][文内引用:1]
[54]
孙龙德, 邹才能, 贾爱林, 位云生, 朱如凯, 吴松涛, 郭智. 2019. 中国致密油气发展特征与方向. , 46(6): 1015-1026. [Sun LD, Zou CN, Jia AL, Wei YS, Zhu RK, Wu ST, GuoZ. 2019. Development characteristics and orientation of tight oil and gas in China. , 46(6): 1015-1026][文内引用:1]
[55]
谭锋奇, 黎宪坤, 高阳, 李映艳, 张方. 2022. 吉木萨尔凹陷陆相页岩油储层测井定量解释. , 45(3): 29-48. [Tan FQ, Li XK, GaoY, Li YY, ZhangF. 2022. Study on quantitative well logging interpretation of continental shale oil reservoir in Jimusar sag. ), 45(3): 29-48][文内引用:1]
[56]
汤天知, 李庆峰, 赵小青, 由立志, 王艳, 闫学洪, 徐洁. 2020. 基于电成像与核磁共振测井的古龙页岩油储层有效性评价. , 39(3): 129-136. [Tang TZ, Li QF, Zhao XQ, You LZ, WangY, Yan XH, XuJ. 2020. The effectiveness evaluation of Gulong shale oil reservoirs based on the electrical imaging and NMR logging. , 39(3): 129-136][文内引用:1]
[57]
唐振兴, 赵家宏, 王天煦. 2019. 松辽盆地南部致密油“甜点区(段)”评价与关键技术应用. , 30(8): 1114-1124. [Tang ZX, Zhao JH, Wang TX. 2019. Evaluation and key technology application of “sweet area”of tight oil in southern Songliao Basin. , 30(8): 1114-1124][文内引用:3]
[58]
王贵文, 朱振宇, 朱广宇. 2002. 烃源岩测井识别与评价方法研究. , 29(4): 50-52. [Wang GW, Zhu ZY, Zhu GY. 2002. Logging identification and evaluation of Cambrian-Ordovician source rocks in syneclise of Tarim Basin. , 29(4): 50-52][文内引用:2]
[59]
王华, 张雨顺. 2021. 测井资料人工智能处理解释的现状及展望. , 45(4): 345-356. [WangH, Zhang YS. 2021. Research Status and Prospect of Artificial Intelligence in Logging Data Processing and Interpretation. , 45(4): 345-356][文内引用:3]
[60]
王林生, 叶义平, 覃建华, 高阳, 邓远, 李映艳, 肖佃师. 2022. 陆相页岩油储层微观孔喉结构表征与含油性分级评价: 以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例. , 43(1): 149-160. [Wang LS, Ye YP, Qin JH, GaoY, DengY, Li YY, Xiao DS. 2022. Microscopic pore structure characterization and oil-bearing property evaluation of lacustrine shale reservoir: a case study of the Permian Lucaogou Formation in Jimsar Sag, Junggar Basin. , 43(1): 149-160][文内引用:1]
[61]
王敏, 朱家俊, 余光华, 郝运轻, 关丽, 李英英. 2013. 罗家地区泥页岩岩相特征及测井分析技术. , 37(4): 426-431. [WangM, Zhu JJ, Yu GH, Hao YQ, GuanL, Li YY. 2013. The shale lithofacies characteristics and logging analysis techniques in Luojia Area. , 37(4): 426-431][文内引用:1]
[62]
王伟, 赵延伟, 毛锐, 孙中春, 牟立伟. 2019. 页岩油储层核磁有效孔隙度起算时间的确定: 以吉木萨尔凹陷二叠系芦草沟组页岩油储层为例. , 40(3): 550-557. [WangW, Zhao YW, MaoR, Sun ZC, Mou LW. 2019. Determination of the starting time for measurement of NMR effective porosity in shale oil reservoir: a case study of the Permian Lucaogou shale oil reservoir, Jimusaer sag. , 40(3): 550-557][文内引用:4]
[63]
王小军, 杨智峰, 郭旭光, 王霞田, 冯右伦, 黄立良. 2019. 准噶尔盆地吉木萨尔凹陷页岩油勘探实践与展望. , 40(4): 402-413. [Wang XJ, Yang ZF, Guo XG, Wang XT, Feng YL, Huang LL. 2019. Practices and prospects of shale oil exploration in Jimsar sag of Junggar Basin. , 40(4): 402-413][文内引用:1]
吴鹏, 高丽军, 李勇, 吴建光, 石雪峰, 康弘男, 孔为, 吴翔. 2022. 海陆过渡相岩性频繁互层型页岩气潜力评价方法: 以鄂尔多斯盆地临兴区块下二叠统山西组为例. , 42(2): 28-39. [WuP, Gao LJ, LiY, Wu JG, Shi XF, Kang HN, KongW, WuX. 2022. An evaluation method for shale gas potential of marine-continent transitional facies with frequent interbedded lithology: a case study on the Lower Permian Shanxi Formation in Linxing Block of the Ordos Basin. , 42(2): 28-39][文内引用:3]
[67]
夏宏泉, 王瀚玮, 赵昊. 2017. 测井多参数两向量法识别页岩气地质“甜点”. , 37(11): 36-42. [Xia HQ, Wang HW, ZhaoH. 2017. Logging multi-parameter two-vector method used for identifying geological “sweet spots”of shale gas. , 37(11): 36-42][文内引用:1]
[68]
肖立志. 2007. 我国核磁共振测井应用中的若干重要问题. , 31(5): 401-407. [Xiao LZ. 2007. Some important issues for NMR logging applications in China. , 31(5): 401-407][文内引用:1]
[69]
徐风, 司兆伟, 白松涛, 马越姣, 程道解, 郭笑锴, 曾静波. 2017. 基于测井地质“四性”关系谱的储层评价方法. , 41(2): 183-188. [XuF, Si ZW, Bai ST, Ma YJ, Cheng DJ, Guo XK, Zeng JB. 2017. Reservoir evaluation based on four characters spectrum of geological logging. , 41(2): 183-188][文内引用:2]
[70]
闫建平, 罗静超, 石学文, 钟光海, 郑马嘉, 黄毅, 唐洪明, 胡钦红. 2022. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义. , 34(6): 60-71. [Yan JP, Luo JC, Shi XW, Zhong GH, Zheng MJ, HuangY, Tang HM, Hu QH. 2022. Fracture development models and significance of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area, southern Sichuan Basin. , 34(6): 60-71][文内引用:1]
[71]
闫伟林, 张兆谦, 陈龙川, 赵志伟, 王文娟. 2021. 基于核磁共振技术的古龙页岩含油饱和度评价新方法. , 40(5): 78-86. [Yan WL, Zhang ZQ, Chen LC, Zhao ZW, Wang WJ. 2021. New evaluating method of oil saturation in Gulong shale based on NMR technique. , 40(5): 78-86][文内引用:1]
[72]
姚东华, 周立宏, 王文革, 韩国猛, 蒲秀刚, 宋延杰, 许承武. 2022. 页岩油综合甜点测井评价: 以沧东凹陷孔店组二段为例. , 43(7): 912-924. [Yao DH, Zhou LH, Wang WG, Han GM, Pu XG, Song YJ, Xu CW. 2022. Logging evaluation of composite sweet spots for shale oil: a case study of Member 2 of Kongdian Formation in Cangdong sag. , 43(7): 912-924][文内引用:1]
[73]
杨小兵, 姚梦麟, 王思静, 周昊, 佟恺林, 陈维铭, 马韶光. 2022. 页岩气测井地质工程技术新需求及解决方案. , 42(2): 20-27. [Yang XB, Yao ML, Wang SJ, ZhouH, Tong KL, Chen WM, Ma SG. 2022. Shale gas logging, geology and engineering technologies: new requirements and solutions. , 42(2): 20-27][文内引用:1]
[74]
杨智, 侯连华, 陶士振, 崔景伟, 吴松涛, 林森虎, 潘松圻. 2015. 致密油与页岩油形成条件与“甜点区”评价. , 42(5): 555-565. [YangZ, Hou LH, Tao SZ, Cui JW, Wu ST, Lin SH, Pan SQ. 2015. Formation conditions and “sweet spot”evaluation of tight oil and shale oil. , 42(5): 555-565][文内引用:2]
[75]
杨智, 邹才能, 吴松涛, 潘松圻, 王岚, 庞正炼, 林森虎, 李嘉蕊. 2021. 从源控论到源储共生系统: 论源岩层系油气地质理论认识及实践. , 95(3): 618-631. [YangZ, Zou CN, Wu ST, Pan SQ, WangL, Pang ZL, Lin SH, Li JR. 2021. From source control theory to source-reservoir symbiosis system: on the theoretical understand ing and practice of source rock strata oil and gas geology in China. , 95(3): 618-631][文内引用:1]
[76]
张少龙, 闫建平, 石学文, 钟光海, 郑马嘉, 黄毅, 蔡进功, 唐洪明, 胡钦红, 梁强. 2022. 深层页岩气甜点分类的地质—工程评价指标体系及应用: 以四川盆地LZ地区五峰组—龙马溪组为例. , 53(9): 3666-3680. [Zhang SL, Yan JP, Shi XW, Zhong GH, Zheng MJ, HuangY, Cai JG, Tang HM, Hu QH, LiangQ. 2022. Geological and engineering evaluation index system for deep shale gas sweet spots classification and its application: a case of Wufeng—Longmaxi formations in LZ area, Sichuan Basin. , 53(9): 3666-3680][文内引用:2]
[77]
张鹏飞, 卢双舫, 李俊乾, 薛海涛, 李文镖, 张宇, 王思远, 冯文俊. 2019. 湖相页岩油有利甜点区优选方法及应用: 以渤海湾盆地东营凹陷沙河街组为例. , 40(6): 1339-1350. [Zhang PF, Lu SF, Li JQ, Xue HT, Li WB, ZhangY, Wang SY, Feng WJ. 2019. Identification method of sweet spot zone in lacustrine shale oil reservoir and its application: a case study of the Shahejie Formation in Dongying Sag, Bohai Bay Basin. , 40(6): 1339-1350][文内引用:2]
[78]
赵贤正, 蒲秀刚, 韩文中, 周立宏, 时战楠, 陈世悦, 肖敦清. 2017. 细粒沉积岩性识别新方法与储集层甜点分析: 以渤海湾盆地沧东凹陷孔店组二段为例. , 44(4): 492-502. [Zhao XZ, Pu XG, Han WZ, Zhou LH, Shi ZN, Chen SY, Xiao DQ. 2017. A new method for lithology identification of fine grained deposits and reservoir sweet spot analysis: a case study of Kong 2 Member in Cangdong sag, Bohai Bay Basin, China. , 44(4): 492-502][文内引用:1]
[79]
赵贤正, 周立宏, 蒲秀刚, 金凤鸣, 韩文中, 时战楠, 陈长伟, 姜文亚, 官全胜, 许静, 刘学伟, 张伟, 马建英. 2022. 湖相页岩型页岩油勘探开发理论技术与实践: 以渤海湾盆地沧东凹陷古近系孔店组为例. , 49(3): 616-626. [Zhao XZ, Zhou LH, Pu XG, Jin FM, Han WZ, Shi ZN, Chen CW, Jiang WY, Guan QS, XuJ, Liu XW, ZhangW, Ma JY. 2022. Theories, technologies and practices of lacustrine shale oil exploration and development: a case study of Paleogene Kongdian Formation in Cangdong sag, Bohai Bay Basin, China. , 49(3): 616-626][文内引用:2]
[80]
郑建东, 王春燕, 章华兵, 王晓莲, 朱建华. 2021. 松辽盆地古龙页岩油储层七性参数和富集层测井评价方法. , 40(5): 87-97. [Zheng JD, Wang CY, Zhang HB, Wang XL, Zhu JH. 2021. Logging evaluating methods of seven property parameters and enriched layers for Gulong shale oil reservoir in Songliao Basin. , 40(5): 87-97][文内引用:6]
周立宏, 蒲秀刚, 陈长伟, 杨飞, 夏君, 官全胜, 黄传炎. 2018. 陆相湖盆细粒岩油气的概念、特征及勘探意义: 以渤海湾盆地沧东凹陷孔二段为例. , 43(10): 3625-3639. [Zhou LH, Pu XG, Chen CW, YangF, XiaJ, Guan QS, Huang CY. 2018. Concept, characteristics and prospecting significance of fine-grained sedimentary oil gas in terrestrial lake basin: a case from the Second Member of Paleogene Kongdian Formation of Cangdong Sag, Bohai Bay Basin. , 43(10): 3625-3639][文内引用:1]
[83]
朱光有, 金强, 张林晔. 2003. 用测井信息获取烃源岩的地球化学参数研究. , 27(2): 104-109, 146. [Zhu GY, JinQ, Zhang LY. 2003. Using Log Information to Analyze the Geochemical Characteristics of Source Rocks in Jiyang Depression. , 27(2): 104-109, 146][文内引用:1]
[84]
朱海燕, 宋宇家, 雷征东, 唐煊赫. 2022. 致密油水平井注采储集层四维地应力演化规律: 以鄂尔多斯盆地元284区块为例. , 49(1): 136-147. [Zhu HY, Song YJ, Lei ZD, Tang XH. 2022. 4D-stress evolution of tight sand stone reservoir during horizontal wells injection and production: a case study of Yuan 284 block, Ordos Basin, NW China. , 49(1): 136-147][文内引用:1]
[85]
朱如凯, 李梦莹, 杨静儒, 张素荣, 蔡毅, 曹琰, 康缘. 2022. 细粒沉积学研究进展与发展方向. , 43(2): 251-264. [Zhu RK, Li MY, Yang JR, Zhang SR, CaiY, CaoY, KangY. 2022. Advances and trends of fine-grained sedimentology. , 43(2): 251-264][文内引用:3]
[86]
邹才能, 朱如凯, 白斌, 杨智, 吴松涛, 苏玲, 董大忠, 李新景. 2011. 中国油气储层中纳米孔首次发现及其科学价值. , 27(6): 1857-1864. [Zou CN, Zhu RK, BaiB, YangZ, Wu ST, SuL, Dong DZ, Li XJ. 2011. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value. , 27(6): 1857-1864][文内引用:1]
[87]
邹才能, 杨智, 张国生, 侯连华, 朱如凯, 陶士振, 袁选俊, 董大忠, 王玉满, 郭秋麟, 王岚, 毕海滨, 李登华, 武娜. 2014. 常规—非常规油气“有序聚集”理论认识及实践意义. , 41(1): 14-27. [Zou CN, YangZ, Zhang GS, Hou LH, Zhu RK, Tao SZ, Yuan XJ, Dong DZ, Wang YM, Guo QL, WangL, Bi HB, Li DH, WuN. 2014. Conventional and unconventional petroleum “orderly accumulation”: concept and practical significance. , 41(1): 14-27][文内引用:2]
[88]
Al-Mudhafar WJ. 2020. Integrating machine learning and data analytics for geostatistical characterization of clastic reservoirs. , 195: 107837. [文内引用:1]
[89]
Ameen MS, MacPhersonK, Almarhoon MI, RahimZ. 2012. Diverse fracture properties and their impact on performance in conventional and tight-gas reservoirs, Saudi Arabia: the Unayzah, South Haradh case study. , 96(3): 459-492. [文内引用:1]
[90]
AmosuA, SunY. 2021. Identification of thermally mature total organic carbon-rich layers in shale formations using an effective machine-learning approach. , 9(3): T735-T745. [文内引用:2]
[91]
Anovitz LM, Cole DR. 2015. Characterization and analysis of porosity and pore structures. , 80(1): 61-164. [文内引用:1]
[92]
Aplin AC, Macquaker J HS. 2011. Mudstone diversity: origin and implications for source, seal, and reservoir properties in petroleum systems. , 95(12): 2031-2059. [文内引用:1]
[93]
AvanziniA, BalossinoP, BrignoliM, SpeltaE, TarchianiC. 2016. Lithologic and geomechanical facies classification for sweet spot identification in gas shale reservoir. , 4(3): SL21-SL31. [文内引用:2]
[94]
AzizH, EhsanM, AliA, Khan HK, KhanA. 2020. Hydrocarbon source rock evaluation and quantification of organic richness from correlation of well logs and geochemical data: a case study from the Sembar formation, Southern Indus Basin, Pakistan. , 81: 103433. [文内引用:1]
[95]
Curtis ME, Cardott BJ, Sondergeld CH, Rai CS. 2012. Development of organic porosity in the Woodford Shale with increasing thermal maturity. , 103: 26-31. [文内引用:1]
[96]
Ghadeer SG, Macquaker J HS. 2011. Sediment transport processes in an ancient mud-dominated succession: a comparison of processes operating in marine offshore settings and anoxic basinal environments. , 168(5): 1121-1132. [文内引用:1]
[97]
GodfrayG, SeetharamaiahJ. 2019. Geochemical and well logs evaluation of the Triassic source rocks of the Mand awa basin, SE Tanzania: implication on richness and hydrocarbon generation potential. , 153: 9-16. [文内引用:1]
[98]
HengS, LiX, LiuX, ChenY. 2020. Experimental study on the mechanical properties of bedding planes in shale. , 76: 103161. [文内引用:1]
[99]
IqbalO, AhmadM, KadirA. 2018. Effective evaluation of shale gas reservoirs by means of an integrated approach to petrophysics and geomechanics for the optimization of hydraulic fracturing: a case study of the Permian Roseneath and Murteree Shale Gas reservoirs, Cooper Basin, Australia. , 58: 34-58. [文内引用:5]
[100]
Jarvie DM, Hill RJ, Ruble TE. 2007. Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. , 91: 475-499. [文内引用:1]
[101]
KhoshbakhtF, AzizzadehM, MemarianH, Nourozi GH, Moallemi SA. 2012. Comparison of electrical image log with core in a fractured carbonate reservoir. , 86-87: 289-296. [文内引用:1]
[102]
Kuang LC, Wang ZL, FengC, ZhaoP, MaoR, YuJ. 2020. Predicting oil saturation of shale-oil reservoirs using nuclear magnetic resonance logs. , 8(3): SL35-SL43. [文内引用:1]
[103]
KumarS, DasS, BastiaR, OjhaK. 2018. Mineralogical and morphological characterization of Older Cambay Shale from North Cambay Basin, India: implication for shale oil/gas development. , 97: 339-354. [文内引用:1]
[104]
LadevèzeP, SéjournécS, RivardC, LavoieD, LefebvreR, RouleauA. 2018. Defining the natural fracture network in a shale gas play and its cover succession: the case of the Utica Shale in eastern Canada. , 108: 157-170. [文内引用:1]
[105]
LaiJ, Wang GW. 2015. Fractal analysis of tight gas sand stones using High-Pressure Mercury Intrusion techniques. , 24: 185-196. [文内引用:1]
[106]
LaiJ, Wang GW, Huang LX, Li WL, RanY, WangD, Zhou ZL, ChenJ. 2015. Brittleness index estimation in a tight shaly sand stone reservoir using well logs. , 27: 1536-1545. [文内引用:1]
[107]
LaiJ, Wang GW, Fan ZY, ChenJ, Wang SC, Zhou ZL, Fan XQ. 2016. Insight into the pore structure of tight sand stones using NMR and HPMI measurements. , 30: 10200-10214. [文内引用:1]
[108]
LaiJ, Wang GW, Fan ZY, Wang ZY, ChenJ, Zhou ZL, Wang SC, Xiao CW. 2017. Fracture detection in oil-based drilling mud using a combination of borehole image and sonic logs. , 84: 195-214. [文内引用:1]
[109]
LaiJ, Wang GW, WangS, Cao JT, LiM, Pang XJ, HanC, Fan XQ, YangL, He ZB, Qin ZQ. 2018. A review on the applications of image logs in structural analysis and sedimentary characterization. , 95: 139-166. [文内引用:1]
[110]
LaiJ, LiD, Wang GW, Xiao CW, Hao XL, Luo QY, Lai LB, Qin ZQ. 2019. Earth stress and reservoir quality evaluation in high and steep structure: the Lower Cretaceous in the Kuqa Depression, Tarim Basin, China. , 101: 43-54. [文内引用:2]
[111]
LaiJ, Wang GW, Fan QX, Pang XJ, Li HB, ZhaoF, Li YH, ZhaoX, Zhao YD, Huang YY, BaoM, Qin ZQ, Wang QQ. 2022a. Geophysical well log evaluation in the era of unconventional hydrocarbon resources: a review on current status and prospects. , 43: 913-957. [文内引用:1]
[112]
LaiJ, Liu BC, Li HB, Pang XJ, Liu SC, BaoM, Wang GW. 2022b. Bedding parallel fractures in fine-grained sedimentary rocks: recognition, formation mechanisms, and prediction using well log. , 19(2): 554-569. [文内引用:1]
[113]
Li CH, ZhaoL, LiuB, Liu HY, Li JX, Fan ZF, Wang JC, Li WQ, Zhao WQ, SunM. 2021. Origin, distribution and implications on production of bedding-parallel fractures: a case study from the Carboniferous KT-I Formation in the NT oilfield, Precaspian Basin, Kazakhstan. , 196(2021): 107655. [文内引用:1]
[114]
Liang ML, Wang ZX, ZhangY, Greenwell CH, Li HJ, Yu YX, Liu SX. 2021. Experimental investigation on gas permeability in bedding shale with brittle and semi-brittle deformations under triaxial compression. , 196: 108049. [文内引用:1]
[115]
LiuB, Wang HL, Fu XF, Bai YF, Bai LH, Jia MC, HeB. 2019. Lithofacies and depositional setting of a highly prospective lacustrine shale oil succession from the Upper Cretaceous Qingshankou Formation in the Gulong sag, northern Songliao Basin, northeast China. , 103(2): 405-432. [文内引用:1]
[116]
Liu DD, ZhangC, Pan ZK, Huang ZX, LuoQ, SongY, Jiang ZX. 2020. Natural fractures in carbonate-rich tight oil reservoirs from the Permian Lucaogou Formation, southern Junggar Basin, NW China: insights from fluid inclusion microthermometry and isotopic geochemistry. , 119: 104500. [文内引用:1]
[117]
Loucks RG, Reed RM, Ruppel SC, Jarvie DM. 2009. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. , 79: 848-861. [文内引用:1]
[118]
Loucks RG, Reed RM, Ruppel SC, HammesU. 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. , 96: 1071-1098. [文内引用:2]
[119]
MomeniA, RostamiS, HashemiS, Mosalman-NejadH, AhmadiA. 2019. Fracture and fluid flow paths analysis of an offshore carbonate reservoir using oil-based mud images and petrophysical logs. , 109: 349-360. [文内引用:1]
[120]
Nelson PH. 2009. Pore-throat sizes in sand stones, tight sand stones, and shales. , 93(3): 329-340. [文内引用:1]
[121]
Pang XJ, Wang GW, Kuang LC, Li HB, Zhao YD, LiD, ZhaoX, Wu ST, FengZ, LaiJ. 2022. Insights into the pore structure and oil mobility in fine-grained sedimentary rocks: the Lucaogou Formation in Jimusar Sag, Junggar Basin, China. , 137: 105492. [文内引用:1]
[122]
Passey QR, CreaneyS, Kulla JB, Moretti FJ, StroudJ. 1990. A practical model for organic richness from porosity and resistivity logs. , 74: 1777-1794. [文内引用:4]
[123]
RezaeeR, SaeediA, ClennellB. 2012. Tight gas sand s permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. Journal of Petroleum Science and Engineering: 88-89, 92-99. [文内引用:2]
[124]
RybackiE, MeierT, DresenG. 2016. What controls the mechanical properties of shale rocks?Part Ⅱ: Brittleness. , 144: 39-58. [文内引用:1]
Shalaby MR, JumatN, LaiD, MalikO. 2019. Integrated TOC prediction and source rock characterization using machine learning, well logs and geochemical analysis: case study from the Jurassic source rocks in Shams Field, NW Desert, Egypt. , 176: 369-380. [文内引用:3]
[127]
StadtmullerM, Lis-ŚledzionaA, Sota-ValimM. 2018. Petrophysical and geomechanical analysis of the Lower Paleozoic shale formation, North Poland . , 6(3): SH91-SH106. [文内引用:1]
[128]
Sun BQ, Dunn KJ. 2005. Two-dimensional nuclear magnetic resonance petrophysics. , 23(2): 259-262. [文内引用:1]
[129]
Wang GW, LaiJ, Liu BC, Fan ZY, Liu SC, Shi YJ, Zhang HT, ChenJ. 2020. Fluid property discrimination in dolostone reservoirs using well logs. , 94(3): 831-846. [文内引用:1]
[130]
Wang HJ, WuW, ChenT, Dong XJ, Wang GX. 2019. An improved neural network for TOC, S1 and S2 estimation based on conventional well logs. , 176: 664-678. [文内引用:1]
[131]
WangS, Wang GW, Huang LL, Song LT, Zhang YL, LiD, Huang YY. 2021. Logging evaluation of lamina structure and reservoir quality in shale oil reservoir of Fengcheng Formation in Mahu Sag, China. , 133: 105299. [文内引用:1]
[132]
Zeng LB, Lyu WY, LiJ, ZhuL, Weng JQ, YueF, Zu KW. 2016. Natural fractures and their influence on shale gas enrichment in Sichuan Basin, China. , 30: 1-9. [文内引用:1]
[133]
ZhangC, Zhu DY, LuoQ, Liu LF, Liu DD, YanL, Zhang YZ. 2017. Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China. , 146: 279-295. [文内引用:1]
[134]
ZhaoP, MaoZ, Huang ZH, ZhangC. 2016. A new method for estimating total organic carbon content from well logs. , 100(8): 1311-1327. [文内引用:1]
[135]
Zhao XZ, Zhou LH, Pu XG, Han WZ, Jin FM, Xiao DQ, Shi ZN, DengY, ZhangW, Jiang WY. 2019. Exploration breakthroughs and geological characteristics of continental shale oil: a case study of the Kongdian Formation in the Cangdong Sag, China. , 102: 544-556. [文内引用:4]
[136]
Zoback MD, Barton CA, BrudyM, Castillo DA, FinkbeinerT, Grollimund BR, Moos DB, PeskaP, Ward CD, Wiprut DJ. 2003. Determination of stress orientation and magnitude in deep wells. , 40: 1049-1076. [文内引用:1]
[137]
Zou CN, Zhu RK, Chen ZQ, Ogg JG, Wu ST, Dong DZ, QiuZ, Wang YM, WangL, Lin SH, Cui JW, SuL, YangZ. 2019. Organic-matter-rich shales of China. , 189: 51-78. [文内引用:1]