西秦岭卓尼地区晚三叠世细粒重力流沉积过程及成因机制研究*
孙浩南1, 谈明轩1, 付亦霖1, 崔浩楠1,2, 陈绵培1
1 河海大学海洋学院海洋地质研究所,江苏南京 210098
2 中国地质调查局青岛海洋地质研究所,山东青岛 266071
通讯作者简介 谈明轩,男,1990年生,河海大学海洋学院讲师,博士,主要从事沉积学、层序地层学教学与科研工作。E-mail: mxtan@hhu.edu.cn

第一作者简介 孙浩南,男,1998年生,河海大学海洋学院硕士研究生,从事沉积学研究。E-mail: 211311040017@hhu.edu.cn

摘要

细粒重力流沉积具有重要的古地理和古气候指示意义。细粒沉积物的成因机制及分布规律对古环境恢复等研究至关重要,但其沉积过程相较于粗粒沉积物重力流更为复杂。精细的露头研究表明,西秦岭卓尼地区上三叠统卡车组主要发育细粒重力流沉积。卓尼地区细粒重力流沉积分为4种岩相类型,对应2种深水沉积成因(细粒异重流与细粒浊流)。细粒异重流沉积以悬浮载荷的粉砂岩、泥质粉砂岩为主(单期沉积厚度为0.05~0.60 m),发育2类细粒异重岩。Ⅰ型细粒异重岩受风暴流的扰动,垂向上发育丘状交错层理; Ⅱ型细粒异重岩在沉积过程中受到黏性颗粒影响,发育过渡流性质的泥质低角度交错层理。细粒浊积岩在研究区亦有发育(单期沉积厚度为0.05~0.2 m),整体表现为鲍马层序Ta、Tc或Ta、Te段特征。研究区所发育的2类深水沉积过程构成了复杂的深水重力流沉积体系,对西秦岭卓尼地区活动型大陆边缘浅海窄陆架—上斜坡细粒重力流沉积学具有重要指示意义。

关键词: 异重流; 浊流; 西秦岭; 三叠系卡车组; 沉积过程; 细粒重力流
中图分类号:P512.2 文献标志码:A 文章编号:1671-1505(2023)06-1315-15
Sedimentary processes and genetic mechanisms of the Late Triassic fine-grained gravity flows in Zhuoni area of West Qinling orogenic belt
SUN Haonan1, TAN Mingxuan1, FU Yilin1, CUI Haonan1,2, CHEN Mianpei1
1 College of Oceanography,Hohai University,Nanjing 210098,China
2 Qingdao Institute of Marine Geology of China Geological Survey,Shandong Qingdao 266071,China
About the corresponding author TAN Mingxuan,born in 1990,is a lecturer at Hohai University. He is engaged in sedimentology and sequence stratigraphy. E-mail: mxtan@hhu.edu.cn.

About the first author SUN Haonan,born in 1998,is a master degree candidate at Hohai University. He is engaged in sedimentology. E-mail: 211311040017@hhu.edu.cn.

Abstract

Fine-grained gravity flow deposists have some important implications for palaeogeography and palaeoclimate. The genetic mechanism and distribution of fine-grained sediments are crucial to palaeoenvironment reconstruction and stable carbon cyde, but their deposits processes are more complicated than that of coarse-grained gravity flow sediments. Detailed outcrop study shows that fine-grained gravity flow deposits are mainly devebpem in the Upper Triassic Kache Formation in the Zhuoni area of the West Qinling orogenic belt. Fine-grained gravity flow deposits of the Kache Formation in the study area can be divided into four lithofacies,corresponding to two deep-water sedimentary processes( i.e. fine-grained turbidity current and fine-grained hyperpycnal flow). Among them,fine-grained hyperpycnite is dominated by siltstone and argillaceous siltstone with suspended load(single-stage sedimentary thickness is 0.05-0.60 m),current ripple and argillaceous transitional ripple(type I)or current ripple and hummocky cross-stratification(type Ⅱ)appear alternately in the vertical direction,showing the overlapping characteristics of multi-stage positive rhythm and composite rhythm in the vertical direction. Fine-grained turbidites are also developed in the study area(single-stage sedimentary thickness is 0.05-0.2 m),which is generally characterized by Ta,Te or Ta,Tc of Bouma sequence. The two important sedimentary processes developed in the study area constitute a complex gravity flow sedimentary system,which has important implications for the sedimentology of fine-grained gravity flows in the shallow-water narrow continental shelf-upper slope of active continental margin of the Zhuoni area in the West Qinling orogenic belt.

Key words: hyperpycnal flow; turbidity current; West Qinling; Triassic Kache Formation; sedimentary process; fine-grained gravity flow
1 概述

细粒沉积物是指粒径小于62.5 μm的黏土级和粉砂级沉积物颗粒, 广泛分布于全球范围内(Aplin and Macquaker, 2011)。细粒沉积物成因机制及分布规律研究的不断深入, 为古地理、古气候(Arthur and Sageman, 1994; 邹才能等, 2022)、深水细粒沉积物搬运过程(Macquaker et al., 2010; Schieber, 2016; Mutti et al., 2019; 邱振和邹才能, 2020)及深水油气勘探与开发(Yang et al., 2017a; Xian et al., 2018; 于兴河等, 2022)等研究提供了新视角。传统观点认为细粒沉积物主要通过悬浮沉降形成于静水环境中, 无法对沉积动力及沉积环境等研究提供指示意义, 因此忽略了对其沉积特征及成因模式的精细研究(Stow and Shanmugam, 1980; Mutti et al., 2019)。随着以泥页岩、致密粉砂岩为代表的非常规储集层研究的发展, 细粒沉积物的特殊沉积过程、成因模式才逐渐成为深水沉积学、非常规油气沉积学的研究热点(邹才能等, 2015; 朱筱敏等, 2016)。近年来, 部分学者逐渐意识到细粒沉积物的沉积场所除静水环境外还包括发育底床载荷的牵引流及重力流的强水动力环境。目前这一沉积机制已成为了对细粒沉积物探讨的新认识(Talling et al., 2012; 杨仁超等, 2017; Hizzett et al., 2018)。国内学者普遍关注海相细粒沉积物中泥页岩的储集层特性, 而忽视了细粒沉积物的搬运及输送过程(邹才能等, 2015)。国外学者则对细粒沉积物的输送方式进行了大量研究, 并总结出低密度浊流、细粒异重流及异轻流等3种重要的搬运方式(Hizzett et al., 2018; Mutti et al., 2019)。细粒重力流沉积物内部富含不同类型黏土矿物, 使其搬运过程、沉积特征与粗粒重力流相比具有较大差异(Baas et al., 2009, 2016a, 2016b; Sumner et al., 2009; Craig et al., 2020)。

海相环境作为细粒重力流发育的重要场所, 以发育细粒浊流、异轻流、泥质异重流、泥质碎屑流及混合型重力流沉积物为特征(Haughton et al., 2003, 2009; Talling et al., 2004, 2012; Kane et al., 2017; Pierce et al., 2018)。目前国内中东部陆域的海相沉积时代通常较老, 后期经历多次构造运动, 能够完整保存的海相重力流沉积露头十分有限。由于西秦岭出露多套古生代—早中生代海相重力流沉积, 因而被视为国内研究海相重力流沉积的重点区域之一(杜远生, 1995; 李永军等, 2003; 黄文奥等, 2020)。前人对西秦岭卓尼地区中—上三叠统的研究聚焦于砂质沉积物为主体的重力流沉积特征和成因模式(晋慧娟和李育慈, 1995; Weislogel et al., 2006; 孟庆任等, 2007), 却整体忽略了研究区以泥质沉积为主体的细粒重力流沉积发育模式。本研究立足于重力流沉积学理论前沿, 通过野外踏勘、剖面实测以及沉积过程分析, 对研究区细粒重力流沉积的岩相特征、重力流沉积类型展开系统性研究, 明确研究区晚三叠世细粒重力流的成因机制与沉积发育模式。该研究将为海相细粒重力流沉积学以及非常规油气沉积学研究提供新方向。

2 区域地质背景

秦岭造山带作为中国中央造山带的重要组成单元, 是中国大陆动力学研究不可或缺的一部分(张国伟等, 2001), 西秦岭造山带系秦岭造山带的西延部分(图 1-a)。晚古生代古秦岭洋向北俯冲, 随即扬子板块开始与华北板块逐渐拼合, 华北板块、扬子板块及其中间的秦岭微地块, 沿勉略和商丹2条缝合带俯冲消减, 于中三叠世经历陆内造山和隆升形成如今的秦岭(张国伟, 1988; 张国伟等, 2001; 冯益民等, 2003; 梁国冰, 2019)。卓尼地区地处西秦岭造山带东南部洮河复向斜北翼, 北接中祁连造山带, 南邻松潘甘孜复合体(图 1-b)(张国伟等, 2004)。

图 1 西秦岭卓尼地区区域地质简图与地层分布综合柱状图
a—西秦岭构造单元图(据张国伟等, 2001; 有修改), S-商丹缝合带; M-勉略缝合带; Ⅰ -临夏—天水逆冲推覆构造带; Ⅱ-夏河—礼县逆冲推覆构造带; F1-临潭—宕昌—凤县酒奠梁断裂带; F2-迭山—舟曲—谈家庄—江口断裂; F3白龙江断裂; b—西秦岭卓尼地区区域地质简图及古流向方位图, 古水流为东南流向(1︰25万甘肃省合作市地质图、1︰25万岷县地质图修改, 甘肃省地质调查院, 2007); c—西秦岭三叠系地层柱状图(据孟庆任等, 2007; 有修改)
Fig.1 Regional geological diagram and comprehensive histogram of stratigraphic distribution in Zhuoni area of West Qinling orogenic belt

西秦岭三叠系是由早—中三叠世浅海台地相碳酸盐岩和中三叠世拉丁期—晚三叠世深水-浅水硅质碎屑岩组成(王志鹏, 2009)。前人将西秦岭上三叠统自下而上划分为纳鲁组、卡车组和卓尼组, 但其年代划分界限并不明确(图 1-c)(孟庆任等, 2007)。整体呈活动陆缘浅海窄陆架—深海平原的沉积背景(梁国冰, 2019)。其中, 纳鲁组主要岩性为灰色或褐色薄层细砂岩和黑色泥岩, 表现为半深海到深海快速堆积环境(李晋僧, 1994)。卡车组主要岩性为灰色、绿灰色薄层至中厚层钙质粉砂岩和粉砂质泥岩, 表现为水体相对较浅的半深海—浅海沉积特征(晋慧娟和李育慈, 1995)。卓尼组主要岩性为灰色、深灰色、灰绿色及灰黄色中厚至厚层粗粒、中到细粒岩屑长石砂岩, 灰色、灰黄色薄层粉砂岩及灰色、灰绿色薄层质中厚层泥岩, 逐渐向浅海沉积环境过渡(殷鸿福等, 1992)。

3 细粒重力流岩相特征

依据卓尼县城剖面及大峪沟剖面出露的上三叠统卡车组的岩石学特征并结合Pickering等(1986)岩相划分方案及Tucker(1982)层厚划分方案, 对露头剖面进行精细描述(图 2; 图 3)。研究区内共划分出4种岩相类型: 块状粉砂岩相(LF1)、交错层理粉砂岩相(LF2)、低角度交错层理泥质粉砂岩相(LF3)及水平层理泥岩相(LF4)。大峪沟剖面发育厚层块状粉砂岩相、低角度交错层理泥质粉砂岩相及水平层理泥岩相; 卓尼县城剖面发育薄层块状粉砂岩相、交错层理粉砂岩相及水平层理泥岩相。

图 2 西秦岭卓尼地区上三叠统卡车组剖面典型岩相特征
a和c—大峪沟卡车组剖面野外露头; b—为卓尼县城剖面野外露头; d—块状粉砂岩(LF1); e—丘状交错层理粉砂岩(LF2); f—低角度交错层理泥质粉砂岩(LF3); g—水平层理泥岩(LF4)
Fig.2 Typical lithofacies characteristics of the Upper Triassic Kache Formation profile in Zhuoni area of West Qinling orogenic belt

图 3 西秦岭卓尼地区大峪沟剖面上三叠统卡车组沉积序列综合解释图
图中(a)、(b)、(c)分别为大峪沟剖面不同深度(底部、中部、顶部)所发育的细粒浊积岩
Fig.3 Comprehensive interpretation of lithology column of the Upper Triassic Kache Formation in Dayugou section of Zhuoni area of West Qinling orogenic belt

3.1 块状粉砂岩相(LF1)

该岩相为深灰色薄—厚层粉砂岩, 多发育在大峪沟剖面中部及卓尼县城剖面底部, 其中大峪沟剖面可见厚层(整体层厚50~60 cm)块状粉砂岩; 而卓尼县城剖面发育薄层(整体层厚2~5 cm)块状粉砂岩(图 2-a)。整体以块状结构为特征, 与上覆泥岩及下伏泥岩呈突变接触(图 2-a, 2-e)。块状粉砂岩底部的火焰构造及整体的块状结构指示了细粒沉积物的快速沉积作用(李林等, 2011; Shanmugam, 2013)。

3.2 交错层理粉砂岩相(LF2)

该岩相为灰色中厚层粉砂岩, 整体层厚10~20 cm, 以发育交错层理(爬升波痕层理及丘状交错层理)为特征(图 2-e)。卓尼县剖面中部发育中型丘状交错层理(层系厚10~12 cm, 波长10~15 cm, 波高3~5 cm)。丘状交错层理粉砂岩底部与下伏泥岩呈突变接触并发育侵蚀面(图 2-b), 其主要由细粒异重流受风暴流扰动作用所形成(Basilici et al., 2012; Wilson and Schieber, 2014)。爬升波痕交错层理粉砂岩发育于大峪沟剖面上部, 以发育高角度爬升波纹为特征, 对应于鲍马序列的Tc段。爬升波痕交错层理由细粒浊流中的悬浮粉砂质颗粒在低沉积速率下所形成(Jobe et al., 2012; Talling et al., 2014)。

3.3 低角度交错层理泥质粉砂岩相(LF3)

该岩相为灰色至深灰色中层泥质粉砂岩, 整体层厚15~20 cm, 以低角度交错层理为特征, 主要发育于大峪沟剖面中部(图 2-c)。这类单向流水成因的低角度交错层理的波痕迁移角度小于正常爬升波痕(Harms, 1975)。随着泥质含量的增加, 垂向上依次发育砂质流水波痕、大型流水波痕及低幅床波(图 2-f), 构成不同类型的泥质低角度交错层理。这类低角度交错层理是在高泥质含量下由流体减速形成的非湍流态过渡性波痕在垂向上叠置所形成(Stevenson et al., 2020)。

3.4 水平层理泥岩相(LF4)

该岩相为灰色薄层泥岩, 单层厚度3~5 mm, 以发育水平层理为特征, 广泛分布于大峪沟剖面及卓尼县剖面顶部及底部 (图 2-c, 2-g)。水平层理泥岩相与上、下层段呈突变接触并发育有侵蚀面。水平层理泥岩相对应于鲍马序列Te段, 可能由细粒浊流尾端泥质颗粒所形成或形成于羽状流的悬浮沉降(Lowe et al., 1982; Mutti, 2019)。

4 细粒重力流沉积类型

依据卓尼地区上三叠统卡车组岩相组合规律的观察分析, 识别出研究区共发育2类细粒重力流沉积类型: 细粒浊流沉积和细粒异重流沉积。在此基础上, 系统阐述研究区细粒重力流的沉积特征, 进而对其沉积过程展开详细解释。

4.1 细粒浊流沉积

研究区主要发育2类细粒浊积岩的岩相组合, 分别为块状粉砂岩(LF1)和水平层理泥岩(LF4)叠置的Ⅰ 型细粒浊积岩; 块状粉砂岩(LF1)与低角度交错层理泥质粉砂岩(LF3)叠置的Ⅱ型细粒浊积岩(图 4)。细粒浊积岩整体厚度为70~90 cm(单期沉积厚度为5~20 cm), 广泛发育于大峪沟剖面及卓尼县城剖面, 以正韵律层为特征, 底部偶见微弱的侵蚀作用。块状粉砂岩与下伏泥岩之间存在冲刷界面, 部分块状粉砂岩底部可见火焰构造; 低角度交错层理泥质粉砂岩层段内发育过渡性波痕(图 4)。Ⅰ 型细粒浊积岩的垂向组合表现为与鲍马序列Ta、Te相似的沉积序列, 为多期低密度浊流形成的砂—泥互层组合(Talling, 2012)。Ⅱ型细粒浊积岩则具有鲍马序列Ta、Tc段特征, 表现为块状粉砂岩与低角度交错层理泥质粉砂岩垂向叠置。其中泥质低角度交错层理的发育指示了细粒浊流的湍流性质受泥质含量的影响, 并在垂向上逐渐向过渡性流体转化(Baas and Best, 2002)。

图 4 西秦岭卓尼地区上三叠统卡车组细粒重力流沉积特征对比Fig.4 Fine-grained gravity flow sediments correlation of the Upper Triassic Kache Formation in Zhuoni area of West Qinling orogenic belt

4.2 细粒异重流沉积

异重流是一种密度大于周围水体、以递变悬浮作用搬运细粒沉积物沿盆底流动的重力流(Bates, 1953; Mulder and Syvitski, 1995)。异重流沉积进一步划分为粗粒异重岩及细粒异重岩, 其中细粒异重岩在全球范围内广泛分布, 其认可度也相对更高(Zavala et al., 2011; Talling, 2014)。研究区发育的细粒异重流沉积基于其岩相组合差异可划分为2种类型: Ⅰ 型异重岩, 发育丘状交错层理与爬升波纹交错层理的组合; Ⅱ型异重岩, 以发育泥质低角度交错层理为特征。

4.2.1 Ⅰ 型细粒异重岩 Ⅰ 型细粒异重岩包括灰色薄层粉砂岩、泥质粉砂岩及灰色中厚层泥岩。主要出露于卓尼县城剖面, 以发育与洪水作用相关的复合韵律层为特征(Mulder et al., 2003), 并在垂向上表现出爬升波痕交错层理、波状交错层理与丘状交错层理组合(图 4; 图 5-a)。其下部泥质粉砂岩、粉砂岩中发育的反韵律层指示了流量增强的半旋回, 而上部泥岩中发育的正韵律层则指示了流量减弱的半旋回(Zavala et al., 2011)。卓尼县城剖面的复合韵律层中丘状交错层理发育, 其层系厚5~8 cm, 属于中型丘状交错层理, 波长13~17 cm, 波高3~5 cm(图 5-b, 5-c)。指示了洪水型细粒异重流被搬运至浅海陆架并受到陆架内风暴流的改造, 形成丘状交错层理(Basilici et al., 2012; 李志扬, 2021)。

图 5 西秦岭卓尼县城剖面上三叠统卡车组风暴作用相伴生的Ⅰ 型细粒异重岩
a—卓尼剖面发育的丘状交错层理沉积构造; b和c—a中放大区域; d和e—分别为b和c中丘状交错层理素描图, 垂向上表现为丘状交错层理与爬升波痕交错层理相互叠置
Fig.5 Type Ⅰ fine-grained hyperpycnal flow associated with storm action of the Upper Triassic Kache Formation in Zhuoni area of West Qinling orogenic belt

4.2.2 Ⅱ型细粒异重岩 Ⅱ型细粒异重岩包括浅灰色的中厚层泥质粉砂岩、灰色厚层块状粉砂岩及灰色薄层泥岩, 整体厚度50~60 cm。大峪沟剖面在垂向上整体发育复合韵律特征(图 4), 其中反韵律结构表明细粒异重流流量增强阶段, 并发育低角度交错层理泥质粉砂岩; 而正韵律结构则反映了流量衰减阶段, 其沉积构造序列与经典浊积岩垂向上相似(Zavala et al., 2011; 谈明轩等, 2015; 孙福宁等, 2016)。随着垂向上泥质含量的增加, 依次发育砂质流水波痕、大型流水波痕及低幅床波(图 6-d, 6-e, 6-g), 这些泥质过渡性波痕在垂向上构成了低角度交错层理泥质粉砂岩(Stevenson et al., 2020), 整体反映了流体内部湍流性质与过渡流性质的垂向演化特征(Baker and Baas, 2020)。

图 6 西秦岭大峪沟剖面上三叠统卡车组细粒浊积岩与异重岩垂向韵律层及过渡性波痕的发育特征
a—低密度浊流中发育的大型流水波痕及低幅床波; b—细粒异重流中发育的大型流水波痕及低幅床波; c—细粒异重流中发育的砂质流水波痕; d、e、f和g—图中白色部分放大区域; (h)、(i)、(j)分别为大型流水波痕、低幅床波、砂质流水波痕的模式图(据Baker and Baas, 2020)
Fig.6 Vertical rhythmic changes of fine-grained turbidites with hyperpycnites and developmental characteristics of internal transitional ripples in the Upper Triassic Kache Formation in Dayugou section of West Qinling orogenic belt

5 沉积模式分析与讨论

通过岩相类型及岩相组合分析, 卓尼县城剖面的岩相组合(LF1、LF3及LF4)主要发育具有丘状交错层理的Ⅰ 型细粒异重流沉积及细粒浊流沉积, 而大峪沟剖面的岩相组合(LF1、LF2及LF3)主要发育具有过渡性波痕的Ⅱ型细粒异重流沉积及细粒浊流沉积。研究区所发育的多套正韵律层及复合韵律层反映了细粒浊流和细粒异重流交互发育的特征(图 3; 图 5-b, 5-c)。前人对研究区细粒异重流触发机制及成因模式的研究鲜有涉猎(孟庆任等, 2007)。通过分析细粒重力流的触发机制及流体转化模式, 对研究区细粒重力流的沉积过程展开进一步讨论与分析。

5.1 细粒异重流触发机制探讨

前人研究表明, 西秦岭地区晚三叠世整体呈陆源浅海窄陆架—深海平原的沉积背景(梁国冰, 2019)。卓尼县城剖面大量丘状交错层理的发育也进一步证实了其沉积背景可能为风暴浪基面之上的浅海窄陆架环境, 并根据前人所提出的岩相古地理分布推测距卓尼县城剖面南方向约15 km的大峪沟剖面可能为斜坡沉积环境(Tan et al., 2022)。Sun等(2019)基于孢粉分析证实了卡尼期洪泛事件(Carnian Pluvial Event)存在于古特提斯洋东北缘及其内陆地区(如鄂尔多斯盆地)也有一定的沉积响应。研究区周边同期地层中发育的牙形石(Mosherella praebudaensis和“Misikellalongidentata)及碳同位素垂向变化推测研究区可能受到该事件的影响(Li et al., 2021)。因此, 卡尼期的多期强降雨为秦岭残留洋盆中海相异重流的触发提供了有利的气候条件。

大峪沟剖面发育的Ⅰ 型异重岩中存在大量丘状交错层理, 这些丘状交错层理是由多期强降雨形成的洪水型细粒异重流被搬运至浅海窄陆架时, 受到同期风暴流改造而形成(Wilson and Schieber, 2014; Basilici et al., 2012)。Ⅰ 型异重岩中丘状交错层理的成因机制与传统风暴岩中的丘状交错层理截然不同。传统风暴岩由风暴流触发的涌浪所形成, 以正韵律和丘状交错层理为主要标志(朱筱敏, 2008); Ⅰ 型异重岩由洪水触发形成, 整体保留了异重流的复合韵律特征(Zavala et al., 2011), 部分层段受风暴流改造并发育丘状交错层理。风暴流的扰动作用使得再悬浮沉积物对细粒异重流进行补给并进一步维持其负浮力状态。

5.2 细粒异重流过渡性流体特征探讨

前人在水槽实验中证实了黏土矿物对流体从湍流态向层流态转化过程中的影响, 并发现在此过程中能够产生过渡性流体(Baas and Best, 2002)。过渡性流体以近底高湍流强度及上部塞流区无湍流或弱湍流为特征, 并发育含有泥质过渡性波痕的低角度交错层理(Stevenson et al., 2020)。与前人所提出的仅在细粒浊积岩中所发育的过渡性波痕不同(Baker and Baas, 2020), 研究区内的过渡性波痕不仅分布于细粒浊积岩中, 而且在细粒异重岩中也广泛发育。通过对大峪沟剖面细粒重力流沉积中的波痕进行校正测量和统计, 并将其与Baas等(2016)所提出的过渡性波痕划分方案进行类比分析, 主要识别出3种过渡性波痕类型(即砂质流水波痕、大型流水波痕、低幅床波)。其中, 砂质流水波痕波高为12.8~17.6 mm, 波长为83.1~117 mm, 波高/波长为0.138~0.183, 多发育于大峪沟剖面底部, 具有不对称形状, 对应发育低角度纹层(图 6-g)。大型流水波痕波高为11.3~36.6 mm, 波长为160~367 mm, 波高/波长为0.098~0.114, 多发育于大峪沟剖面底、中部, 其波高、波长明显大于砂质流水波痕但波高与波长比值相似。大峪沟剖面的大型流水波痕表现为低角度爬升波痕(图 6-d)。

低幅床波波高为9.1~52.4 mm, 波长为144.9~619.8 mm, 波高与波长比值为0.055~0.097, 多发育于大峪沟剖面顶部, 这类过渡性波痕具有比绝大多数砂质流水波痕和大型流水波痕更低的波高与波长比值(图 6-e)。低幅床波常发育于砂—泥混合的细粒岩相中, 内部多发育泥质低角度纹层(图 6-f)。研究区内发育的砂质流水波痕、大型流水波痕以及低幅床波整体构成了泥质低角度交错层理。将研究区细粒重力流沉积中的过渡性波痕与前人所统计的过渡性波痕进行对比(Bhattacharjee et al., 1970; Stanley, 1974; Baas et al., 2011; Baker and Baas, 2020), 其结果表明细粒异重岩中过渡性波痕的波高/波长远大于细粒浊积岩(图 7)。

图 7 西秦岭卓尼地区大峪沟上三叠统卡车组细粒重力流过渡性波痕波长—波高交汇图
图中部分灰色及黑色点位为前人研究的浊流沉积中过渡性流体的数据(据Baker and Baas, 2020; Baas et al., 2011; Stanley et al., 1974; Bhat-tacharjee et al., 1970), 彩色部分为本文中细粒异重流中的过渡性波痕
Fig.7 Wavelength-waveheight cross-plot diagram of transitional ripples of fine-grained gravity flows in the Upper Triassic Kache Formation of Zhuoni area Dayugou in West Qinling orogenic belt

这类高泥质含量的低角度交错层理不同于滨岸相发育的低角度交错层理, 其倾角整体高于滨岸带砂质低角度交错层理(一般为2° ~10° )(Walker, 1978)。此外, 近岸前滨冲洗带所发育的低角度交错层理是典型的波浪成因(Harms, 1975), 而高泥质含量的低角度交错层理则是由黏性颗粒含量逐渐增加的过渡性流体形成(Stevenson et al., 2020)。

相关研究表明, 重力流的湍流特征与流变性质受流速及黏土含量的影响(Baas et al., 2021)。细粒浊流在发育过程中, 由于其内部泥质含量的变化, 流体性质逐渐向过渡性流体转化, 发育过渡性波痕(Baker and Baas, 2020); 而细粒异重流在发育过程中也会受到内部黏性颗粒间相互作用力的影响, 流体性质发生转化并发育一系列过渡性流体(Dou et al., 2021)。研究区细粒异重岩垂向上发育的复合韵律特征, 指示细粒异重流流速存在增强和减弱2个半旋回(图 6-b, 6-c)(Zavala et al., 2011)。当流速增加时, 细粒异重流的湍流强度增加并转化为湍流增强过渡流(图 8-a)。随着湍流强度的增加, 细粒异重流的侵蚀作用增强将导致流体内部黏性颗粒增加。黏性颗粒之间的相互作用力会部分抑制流体的湍流强度, 引起湍流增强过渡流向下部过渡塞流的转化(Baas and Best, 2002; Baas et al., 2009, 2016b; Baker and Baas, 2020)。随着流速的不断衰减, 下部过渡塞流的湍流强度也逐渐降低。其内部黏性颗粒间的相互作用会进一步抑制湍流强度, 向上部过渡塞流进行转化。当流体内部湍流强度完全被抑制时, 上部过渡塞流将向准层状塞流转化(Baker and Baas, 2020)(图 8-b)。

图 8 西秦岭卓尼地区上三叠统卡车组异重流沉积过程及流体转化模式
a—不同黏土含量和流速状态下, 异重流内部过渡性流体的转化模式: ①湍流; ②湍流增强过渡流; ③下部过渡塞流; ④上部过渡塞流; ⑤准层状塞流(据Baas et al., 2021修改); b—细粒异重流中过渡性流体转化类型及在不同区域所产生的相序类型模式, 垂向序列组合代表了Ⅱ型异重岩中过渡性流体的发育(据Baker and Baas, 2020; 有修改)
Fig.8 Sedimentary process model of hyperpycanal flow of the Upper Triassic Kache Formation in Zhuoni area of West Qinling orogenic belt

5.3 西秦岭地区沉积模式分析

西秦岭卓尼地区上三叠统卡车组整体呈活动陆缘浅海窄陆架-斜坡的沉积背景(晋慧娟和李育慈, 1995; Weislogel et al., 2007)。卓尼县城剖面中发育的大量丘状交错层理, 厘定了上三叠统卓尼县城剖面可能沉积于风暴浪基面之上、正常浪基面之下的浅海窄陆架环境。而大峪沟剖面所发育的低角度交错层理泥质粉砂岩相及水平层理泥岩相组合, 反映其沉积于上斜坡环境(Weislogel et al., 2006)。

卓尼县城剖面及大峪沟剖面广泛分布的细粒浊积岩表明研究区发育细粒浊流。卓尼县城剖面发育的 Ⅰ 型异重流受到来自风暴浪基面之上的风暴流影响(Wilson et al., 2014), 使得底部沉积物再悬浮, 维持其流体的湍流状态并增加细粒异重流远距离输送能力(Wilson et al., 2017)。同时大峪沟剖面广泛分布的细粒浊积岩也表明其伴随着细粒浊流的发育(图 9)。随着水深不断增加, 位于上斜坡环境的大峪沟剖面逐渐远离风暴流的扰动范围, 并由斜坡失稳触发细粒浊流。随着 Ⅰ 型细粒异重流进入流量衰减阶段, 流体内部的湍流强度逐渐降低。流体内部不断增加的泥质含量会导致黏性颗粒间相互作用力进一步加强, 进而抑制细粒重力流的湍流强度, 使流体性质发生非湍流态的转化, 并发育高泥质含量的过渡性波痕。随着流体性质的持续转化, Ⅰ 型细粒异重流和细粒浊流最终过渡为Ⅱ型细粒异重流。

图 9 西秦岭卓尼地区上三叠统卡车组细粒重力流沉积模式Fig.9 Sedimentary model of the Upper Triassic fine-grained gravity flow deposits of Zhuoni area in West Qinling orogenic belt

6 结论

1)西秦岭卓尼地区上三叠统卡车组发育块状粉砂岩相(LF1)、交错层理粉砂岩相(LF2)、低角度交错层理泥质粉砂岩相(LF3)及水平层理状泥岩相(LF4)4种细粒沉积岩相。

2)西秦岭卓尼地区上三叠统卡车组发育的细粒重力流沉积主要包含2种细粒异重岩及2种细粒浊积岩。由丘状交错层理和流水波痕交错层理组合的Ⅰ 型细粒异重岩, 表明洪水成因的细粒异重流在陆架内受到同期风暴流的改造, 增强了流体向深水输运的能力; Ⅱ型细粒异重岩以发育砂质流水波痕、大型流水波痕及低幅床波等过渡性波痕为特征, 指示了细粒异重流表现为从湍流态向非湍流态的转化过程。Ⅰ 型细粒浊积岩是由多期低密度浊流形成的砂-泥互层型组合; Ⅱ型细粒浊积岩则由块状粉砂岩和低角度交错层理泥质粉砂岩所构成, 指示了细粒浊流内部过渡性流体的发育。

3)西秦岭卓尼地区上三叠统卡车组内细粒沉积物的成因机制包含细粒浊流及细粒异重流的深水输运。由斜坡失稳所触发的细粒浊流对细粒沉积物进行深水搬运; 细粒异重流则是以洪水作用驱动细粒沉积物搬运为主, 部分沉积物受到风暴流的再悬浮搬运作用。研究区细粒重力流沉积模式深化了对海相细粒重力流的沉积特征及成因模式的认识, 对海相页岩油气的勘探和开发具有指导意义。

(责任编辑 郑秀娟; 英文审校 李 攀)

参考文献
[1] 杜远生. 1995. 秦岭造山带泥盆纪古海洋研究. 地球科学, 20(6): 617-623.
[Du Y S. 1995. Devonian paleocean of the Qinling orogenic belt. Earth Science, 20(6): 617-623] [文内引用:1]
[2] 冯益民, 曹宣铎, 张二朋, 胡云绪, 潘晓萍, 杨军录, 贾群子, 李文明. 2003. 西秦岭造山带的演化、构造格局和性质. 西北地质, 36(1): 1-10.
[Feng Y M, Cao X D, Zhang E P, Hu Y X, Pan X P, Yang J L, Jia Q Z, Li W M. 2003. Tectonic evolution framework and nature of the West Qinling orogenic belt. Northwestern Geology, 36(1): 1-10] [文内引用:1]
[3] 黄文奥, 赵晓明, 谭程鹏, 葛家旺, 冯双奇, 李晨曦, 陆文明. 2020. 西秦岭直合隆地区三叠系深水水道沉积模式分析. 沉积学报, 38(5): 1061-1075.
[Huang W A, Zhao X M, Tan C P, Ge J W, Feng S Q, Li C X, Lu W M. 2020. Sedimentary model analysis of Triassic deep-water channels in Zhihelong, West Qinling Mountains. Acta Sedimentologica Sinica, 38(5): 1061-1075] [文内引用:1]
[4] 晋慧娟, 李育慈. 1995. 西秦岭二叠纪—三叠纪遗迹化石及其环境意义. 地质科学, 30(4): 321-328.
[Jin H J, Li Y C. 1995. Trace fossils and their environmental significance of Permian-Triassic, Western Qinling mountains. Chinese Journal of Geology, 30(4): 321-328] [文内引用:3]
[5] 孟庆任, 渠洪杰, 胡健民. 2007. 西秦岭和松潘地体三叠系深水沉积. 中国科学(D辑: 地球科学), 37(S1): 209-223.
[Meng Q R, Qu H J, Hu J M. 2007. Triassic deep-water sediments of the West Qinling and Songpan terrane. Science China: Earth Sciences, 37(S1): 209-223] [文内引用:3]
[6] 李永军, 赵仁夫, 刘志武, 董俊刚. 2003. 西秦岭三叠纪沉积盆地演化. 中国地质, 30(3): 268-273.
[Li Y J, Zhao R F, Liu Z W, Dong J G. 2003. Triassic sedimentation and basin evolution in Western Qinling. Geology of China, 30(3): 268-273] [文内引用:1]
[7] 梁国冰. 2019. 西秦岭临潭地区三叠纪地层地质特征与物源分析. 长安大学硕士学位论文.
[Liang G B. 2019. Geological characteristics and source analysis of the Triassic strata in the Lintan area, Western Qinling. Masteral dissertation of Chang'an University] [文内引用:3]
[8] 李林, 曲永强, 孟庆任, 武国利. 2011. 重力流沉积: 理论研究与野外识别. 沉积学报, 29(4): 677-688.
[Li L, Qu Y Q, Meng Q R, Wu G L. 2011. Gravity flow sedimentation: theoretical studies and field identification. Acta Sedimentologica Sinica, 29(4): 677-688] [文内引用:1]
[9] 李晋僧. 1994. 秦岭显生宙古海盆沉积和演化史. 北京: 地质出版社.
[Li J S. 1994. Sedimentary and Evolutionary History of the Paleozoic Qinling Basin. Beijing: Geological Publishing House] [文内引用:1]
[10] 李志扬. 2021. 陆棚海泥岩的岩相特征及沉积过程: 以晚白垩世北美西部内陆海道为例. 沉积学报, 39(1): 168-180.
[Li Z Y. 2021. Facies characteristics and depositional processes of shelf mudstones: examples from the Late Cretaceous western interior seaway of North America. Acta Sedimentologica Sinica, 39(1): 168-180] [文内引用:2]
[11] 邱振, 邹才能. 2020. 非常规油气沉积学: 内涵与展望. 沉积学报, 38(1): 1-29.
[Qiu Z, Zou C N. 2020. Unconventional petroleum sedimentology: connotation and prospect. Acta Sedimentologica Sinica, 38(1): 1-29] [文内引用:1]
[12] 孙福宁, 杨仁超, 李冬月. 2016. 异重流沉积研究进展. 沉积学报, 34(3): 452-462.
[Sun F N, Yang R C, Li D Y. 2016. Research progresses on hyperpycnal flow deposits. Acta Sedimentologica Sinica, 34(3): 452-462] [文内引用:1]
[13] 谈明轩, 朱筱敏, 朱世发. 2015. 异重流沉积过程和沉积特征研究. 高校地质学报, 21(1): 94-104.
[Tan M X, Zhu X M, Zhu S F. 2015. Research on sedimentary process and characteristics of hyperpycnal flows. Geological Journal of China Universities, 21(1): 94-104] [文内引用:1]
[14] 王志鹏. 2009. 松潘—阿坝和西秦岭三叠系砂岩组分特征及其构造意义. 成都理工大学学报(自然科学版), 36(5): 465-474.
[Wang Z P. 2009. Triassic sand stone compositions in the northern Songpan-Ganzi fold belt and West Qinling-China: implication for tectonic setting. Journal of Chengdu University of Technology(Science & Technology Edition), 36(5): 465-474] [文内引用:1]
[15] 殷鸿福, 杨逢清, 黄其胜. 1992. 秦岭及邻区三叠系. 武汉: 中国地质大学出版社.
[Yin H F, Yang F Q, Huang Q S. 1992. Triassic system in Qinling Mountains and adjacent areas. Wuhan: China University of Geosciences Press] [文内引用:1]
[16] 杨仁超, 尹伟, 樊爱萍, 韩作振, A J(Tom) van Loon. 2017. 鄂尔多斯盆地南部三叠系延长组湖相重力流沉积细粒岩及其油气地质意义. 古地理学报, 19(5): 791-806.
[Yang R C, Yin W, Fan A P, Han Z Z, A J(Tom)van Loon. 2017. Fine-grained, lacustrine gravity-flow deposits and their hydrocarbon significance in the Triassic Yanchang Formation in southern Ordos Basin. Journal of Palaeogeography(Chinese Edition), 19(5): 791-806] [文内引用:1]
[17] 于兴河, 李顺利, 孙洪伟. 2022. 碎屑岩沉积从源到汇的“物—坡”耦合效应. 古地理学报, 24(6): 1037-1057.
[Yu X H, Li S L, Sun H W. 2022. Coupling effect of “mass-slope”from source to sink in clastic rock deposition. Journal of Palaeogeography(Chinese Edition), 24(6): 1037-1057] [文内引用:1]
[18] 张国伟. 1988. 华北地块南部早前寒武纪地壳的组成及其演化和秦岭造山带的形成及其演化. 西北大学学报(自然科学版), 18(1): 21-23.
[Zhang G W. 1988. Composition and evolution of the Early Precambrian crust in southern North China Block and formation and evolution of the Qinling orogenic belt. Journal of Northwest University(Natural Science Edition), 18(1): 21-23] [文内引用:1]
[19] 张国伟, 张本仁, 袁学诚. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社.
[Zhang G W, Zhang B R, Yuan X C. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press] [文内引用:2]
[20] 张国伟, 程顺有, 郭安林, 董云鹏, 赖绍聪, 姚安平. 2004. 秦岭—大别中央造山系南缘勉略古缝合带的再认识: 兼论中国大陆主体的拼合. 地质通报, 23(Z2): 846-853.
[Zhang G W, Cheng S Y, Guo A L, Dong Y P, Lai S C, Yao A P. 2004. Mianlue paleo-suture on the southern margin of the central orogenic system in Qinling-Dabie: with a discussion of the assembly of the main part of the continent of China. Geological Bulletin of China, 23(Z2): 846-853] [文内引用:1]
[21] 朱筱敏. 2008. 沉积岩石学. 北京: 石油工业出版社.
[Zhu X M. 2008. Sedimentary Petrology. Beijing: Petroleum Industry Press] [文内引用:1]
[22] 朱筱敏, 李顺利, 潘荣, 谈明轩, 陈贺贺, 王星星, 陈锋, 张梦瑜, 侯冰洁, 董艳蕾. 2016. 沉积学研究热点与进展: 第32届国际沉积学会议综述. 古地理学报, 18(5): 699-716.
[Zhu X M, Li S L, Pan R, Tan M X, Chen H H, Wang X X, Chen F, Zhang M Y, Hou B J, Dong Y L. 2016. Current hot topics and advances of sedimentology: a summary from 32nd IAS Meeting of Sedimentology. Journal of Palaeogeography(Chinese Edition), 18(5): 699-716] [文内引用:1]
[23] 邹才能, 杨智, 朱如凯, 张国生, 侯连华, 吴松涛, 陶士振, 袁选俊, 董大忠, 王玉满, 王岚, 黄金亮, 王淑芳. 2015. 中国非常规油气勘探开发与理论技术进展. 地质学报, 89(6): 979-1007.
[Zou C N, Yang Z, Zhu R k, Zhang G S, Hou L H, Wu S T, Tao S Z, Yuan X J, Dong D Z, Wang Y M, Wang L, Huang J L, Wang S F. 2015. Progress in China's unconventional oil & gas exploration and development and theoretical technologies. Acta Geologica Sinica, 89(6): 979-1007] [文内引用:2]
[24] 邹才能, 冯有良, 杨智, 蒋文琦, 潘松圻, 张天舒, 王小妮, 朱吉昌, 李嘉蕊. 2022. 湖盆细粒重力流沉积作用过程及甜点层发育机制是什么?地球科学, 47(10): 3864-3866.
[Zou C N, Feng Y L, Yang Z, Jiang W Q, Pan S X, Zhang T S, Wang X N, Zhu J C, Li J R. 2022. What are the lacustrine fine-grained gravity flow sedimentation process and the genetic mechanism of sweet sections for shale oil? Earth Science, 47(10): 3864-3866] [文内引用:1]
[25] Aplin A C, Macquaker J H S. 2011. Mudstone diversity: origin and implications for source, seal, and reservoir properties in petroleum systems. AAPG Bulletin, 95(12): 2031-2059. [文内引用:1]
[26] Arthur M A, Sageman B B. 1994. Marine black shales: depositional mechanisms and environments of ancient deposits. Annual Review of Earth and Planetary Sciences, 23(22): 499-551. [文内引用:1]
[27] Baas J H, Best J L. 2002. Turbulence modulation in clay-rich sediment-laden flows and some implications for sediment deposition. Journal of Sedimentary Research, 72(3): 336-340. [文内引用:3]
[28] Baas J H, Best J L, Peakall J, Wang M. 2009. A phase diagram for turbulent, transitional, and laminar clay suspension flows. Journal of Sedimentary Research, 79(4): 162-183. [文内引用:2]
[29] Baas J H, Best J L, Peakall J. 2011. Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive(mud-sand )sediment flows. Sedimentology, 58(7): 1953-1987. [文内引用:1]
[30] Baas J H, Best J L, Peakall J. 2016a. Predicting bedforms and primary current stratification in cohesive mixtures of mud and sand . Journal of the Geological Society, 173(1): 12-45. [文内引用:2]
[31] Baas J H, Best J L, Peakall J. 2016b. Comparing the transitional behaviour of kaolinite and bentonite suspension flows. Earth Surface Processes and Land forms, 41(13): 1911-1921. [文内引用:2]
[32] Baas J H, Best J, Peakall J. 2021. Rapid gravity flow transformation revealed in a single climbing ripple. Geology, 49(5): 493-497. [文内引用:1]
[33] Baker M L, Baas J H2020. Mixed sand -mud bedforms produced by transient turbulent flows in the fringe of submarine fans: indicators of flow transformation. Sedimentology, 67(5): 2645-2671. [文内引用:6]
[34] Bates C C. 1953. Rational theory of delta formation. AAPG Bulletin, 37(9): 2119-2162. [文内引用:1]
[35] Basilici G, de Luca P H V, Poiré D G. 2012. Hummocky cross-stratification-like structures and combined-flow ripples in the Punta Negra Formation(Lower-Middle Devonian, Argentine Precordillera): a turbiditic deep-water or storm-dominated prodelta inner-shelf system. Sedimentary Geology, 267-268: 73-92. [文内引用:3]
[36] Bhattacharjee S. 1970. Ripple-drift Cross-lamination in Turbidites of the Ordovician Cloridorme Formation, Gaspe, Quebec. Hamilton, Canada, McMaster University: 281. [文内引用:1]
[37] Craig M J, Baas J H, Amos K J, Strachan L J, Manning A J, Paterson D M, Hope J A, Nodder S D and Baker M L. 2020. Biomediation of submarine sediment gravity flow dynamics. Geology, 48(1): 72-76. [文内引用:1]
[38] Dou L, Best J, Bao Z. 2021. The sedimentary architecture of hyperpycnites produced by transient turbulent flows in a shallow lacustrine environment. Sedimentary Geology, 17(411): 105804. [文内引用:1]
[39] Harms J C. 1975. Stratification and sequence in prograding shoreline deposits. SEPM Short Course, 13(2): 311. [文内引用:2]
[40] Haughton P, Davis C, McCaffrey W, Barker S. 2009. Hybrid sediment gravity flow deposits: classification, origin and significance. Marine and Petroleum Geology, 21(26): 1900-1918. [文内引用:1]
[41] Haughton P, Barker S P, McCaffrey W D. 2003. ‘Linked’ debrites in sand -rich turbidite systems-origin and significance. Sedimentology, 50(3): 459-482. [文内引用:1]
[42] Hizzett J L, Hughes Clarke J E, Sumner E J, Cartigny, M J B, Talling P J, Clare M A. 2018. Which triggers produce the most erosive, frequent, and longest runout turbidity currents on deltas? Geophysical Research Letters, 45(2): 855-863. [文内引用:2]
[43] Jobe Z R, Lowe D R, Morris W R. 2012. Climbing-ripple successions in turbidite systems: depositional environments, sedimentation rates and accumulation times. Sedimentology, 59(3): 867-898. [文内引用:1]
[44] Kane I A, Ponten A S M, Wagonergdal B, Eggenhuisen J T, Hodgson D M, Spychala Y T. 2017. The stratigraphic record and processes of turbidity current transformation across deep-marine lobes. Sedimentology, 64(5): 1236-1273. [文内引用:1]
[45] Li H X, Wang M Y, Zhang M H, Wignall P B, Rigo M, Chen Y L, Wu X L, Ouyang Z M, Wu B J, Yi Z Y, Zhang Z T, Lai X L. 2021. First Records of Late Triassic Conodont Fauna and δ13C carb from the Dengdengqiao Section, Dangchang County, Gansu Province, Northwestern China. Journal of Earth Science, 32(3): 646-656. [文内引用:1]
[46] Li N, Deng J, Groves D I, Han R. 2019. Controls on the distribution of invisible and visible gold in the orogenic gold deposits of the Yangshan Gold Belt, West Qinling Orogen, China. Minerals, 9(2): 92. [文内引用:1]
[47] Lowe D R. 1982 Sediment gravity flows: Ⅱ. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentology(Society of Economic Paleontologists and Mineralogists), 52(6): 279-297. [文内引用:1]
[48] Macquaker J H S, Bentley S J, Bohacs K M. 2010. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: reappraising sediment transport processes operating in ancient mudstone successions. Geology, 38(10): 947-950. [文内引用:1]
[49] Mutti E. 2019. Thin-bedded plumites: an overlooked deep-water deposit. Journal of Mediterranean Earth Sciences, 9(11): 1-20. [文内引用:4]
[50] Mulder T, Syvitski J P M. 1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans. The Journal of Geology, 103(3): 285-299. [文内引用:1]
[51] Mulder T, Syvitski J P M, Migeon S, Faugères J C, Savoye B. 2003. Marine hyperpycnal flows: initiation, behavior and related deposits: a review. Marine and Petroleum Geology, 33(20): 861-882. [文内引用:1]
[52] Pickering K, Stow D, Watson M. 1986. Deep-water facies, processes and models: a review and classification scheme for modern and ancient sediments. Earth-Science Reviews, 23(2): 75-174. [文内引用:1]
[53] Pierce C S, Haughton P D W, Shannon P M, Pulham A J, Barker S P, Martinsen O J. 2018. Variable character and diverse origin of hybrid event beds in a sand y submarine fan system, Pennsylvanian Ross Sand stone Formation, western Ireland . Sedimentology, 65(3): 952-992. [文内引用:1]
[54] Shanmugam G. 2013. New perspectives on deep-water sand stones: implications. Petroleum Exploration and Development, 40(3): 316-324. [文内引用:1]
[55] Stanley K O. 1974. Morphology and hydraulic significance of climbing ripples with superimposed micro-ripple-drift cross-lamination in lower Quaternary lake silts, Nebraska. Journal of Sedimentary Research, 44(8): 472-483. [文内引用:1]
[56] Stow D A V, Shanmugam G. 1980. Sequence of structures in fine-grained turbidites: comparison of recent deep-sea and ancient flysch sediments. Sedimentary Geology, 25(1): 23-42. [文内引用:1]
[57] Sumner E J, Talling P J, Amy L A. 2009. Deposits of flows transitional between turbidity current and debris flow. Geology, 37(11): 991-994. [文内引用:1]
[58] Sun Y W, Li X A, Liu Q Y, Zhang M D, Li P, Zhang R, Shi X A. 2020. In search of the inland carnian pluvial event: middle-upper triassic transition profile and U-Pb isotopic dating in the Yanchang Formation in Ordos Basin, China. Geological Journal, 55(7): 4905-4919. [文内引用:1]
[59] Talling P J, Amy L A, Wynn R B, Peakall J, Robinson M. 2004. Beds comprising debrite sand wiched within co‐genetic turbidite: origin and widespread occurrence in distal depositional environments. Sedimentology, 51(1): 163-194. [文内引用:1]
[60] Talling P J, Masson D G, Sumner E J, Malgesini G. 2012. Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology, 47(59): 1937-2003. [文内引用:3]
[61] Talling P J. 2014. On the triggers, resulting flow types and frequencies of subaqueous sediment density flows in different settings. Marine Geology, 23(352): 155-182. [文内引用:2]
[62] Tan M, Sun H, Fu Y. 2022. Hybrid event bed characteristics and its role in high-frequency facies change of the Upper Triassic submarine fan in the West Qinling area of NE Tibetan Plateau. Marine and Petroleum Geology, 146: 105937. [文内引用:1]
[63] Tucker M E. 1982. The field description of sedimentary rocks. Milton Keynes: Open University Press. [文内引用:1]
[64] Walker R G. 1978. Deep-water sand stone facies and ancient submarine fans: models for exploration for stratigraphic traps. AAPG Bulletin, 62(6): 932-966. [文内引用:1]
[65] Weislogel A L, Graham S A, Chang E Z, Wooden J, Gehrels G, Yang H. 2006. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: sedimentary record of collision of the North and South China blocks. Geology, 34(2): 97-100. [文内引用:3]
[66] Wilson R D, Schieber J. 2014. Muddy prodeltaic hyperpycnites in the lower Genesee Group of central New York, USA: implications for mud transport in epicontinental seas. Journal of Sedimentary Research, 84(10): 866-874. [文内引用:3]
[67] Wilson R D, Schieber J. 2017. Association between wave-and current-aided hyperpycnites and flooding surfaces in shelfal mudstones: an integrated sedimentologic, sequence stratigraphic, and geochemical approach. Journal of Sedimentary Research, 87(11): 1143-1155. [文内引用:1]
[68] Xian B Z, Wang J H, Gong C L, Yin Y, Chao C Z, Liu J P, Zhang G D, Yan Q. 2018. Classification and sedimentary characteristics of lacustrine hyperpycnal channels: triassic outcrops in the south Ordos Basin, central China. Sedimentary Geology, 31(368): 68-82. [文内引用:1]
[69] Yang R C, Jin Z J, Wagoner Loon A J, Han Z Z, Fan A P. 2017. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: implications for unconventional petroleum development. AAPG Bulletin, 101(1): 95-117. [文内引用:1]
[70] Zaki T A, Saha S. 2009. On shear sheltering and the structure of vortical modes in single and two-fluid boundary layers. Journal of Fluid Mechanics, 24(626): 111-147. [文内引用:1]
[71] Zavala C, Arcuri M, Meglio H. 2011. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits. Sediment transfer from shelf to deep water-Revisiting the delivery system. AAPG Studies in Geology, 13(61): 31-51. [文内引用:5]