长江三峡贯通过程的动态古地貌重建*
田子晗1,2, 索艳慧1,2, 李三忠1,2, 丁雪松3, 韩续1,2, 宋双双1,2, 付新建1,2
1 深海圈层与地球系统教育部前沿科学中心,海底科学与探测技术教育部重点实验室,中国海洋大学海洋地球科学学院,山东青岛 266100
2 青岛海洋科学与技术国家实验室,海洋矿产资源评价与探测技术功能实验室,山东青岛 266237
3 加州大学洛杉矶分校地球行星与空间科学学院,美国加州洛杉矶 CA90095
通讯作者简介 索艳慧,女,1987年生,中国海洋大学教授、博士生导师,从事海洋地质学、洋底动力学研究。E-mail: suoyh@ouc.edu.cn

第一作者简介 田子晗,男,1998年生,硕士研究生,海洋地质学专业。E-mail: tzh7403@stu.ouc.edu.cn

摘要

长江是亚洲第一大河,其形成和演化是新生代以来中国东西部构造—气候—地貌综合演变的结果。长江三峡的贯通是现代长江形成的标志性事件,但受限于传统沉积学、地球化学等单一方法的制约,对“长江三峡何时贯通”这一关键科学问题一直存在争议。综合考虑了构造运动、古气候及海平面变化等影响河流发展的关键因素,并将这些因素输入 Badlands古地貌模拟软件,动态重建了长江“第一弯”以东地区晚白垩世(80 Ma)以来的长江流域地貌及水系演化过程; 并利用四川盆地和江汉盆地的地震剖面资料验证了模拟结果的可靠性。模拟结果表明,青藏东部及上扬子西南缘晚始新世—渐新世的阶段性隆升迫使四川盆地原有南流水系下切受阻,沉积物在盆内堆积形成冲积河道并促使四川盆地地貌由“东北高西南低”反转为“西南高东北低”;新生代早期,江汉盆地长期受控于中国东部的裂陷环境,持续处于较低基准面。四川盆地的水系反转和江汉盆地的持续低基准面,最终导致位于二者之间的长江三峡在晚渐新世发生贯通。由此,本研究提出一种上扬子地区水系反转并被下游捕获的三峡贯通机制。

关键词: 古地貌重建; 长江三峡贯通; 晚渐新世; 四川盆地; 江汉盆地; 水系反转
中图分类号:P531 文献标志码:A 文章编号:1671-1505(2024)01-0208-22
Dynamic paleo-landscape reconstruction revealing incision process of Three Gorges of Yangtze River
TIAN Zihan1,2, SUO Yanhui1,2, LI Sanzhong1,2, DING Xuesong3, HAN Xu1,2, SONG Shuangshuang1,2, FU Xinjian1,2
1 Frontiers Science Center for Deep Ocean Multispheres and Earth System,Key Lab of Submarine Geosciences and Prospecting Techniques,MOE and College of Marine Geosciences,Ocean University of China,Shandong Qingdao 266100,China
2 Laboratory for Marine Mineral Resources,National Laboratory for Marine Science and Technology(Qingdao),Shandong Qingdao 266237,China
3 University of California Los Angeles,Department of Earth,Planetary and Space Sciences,Los Angeles,CA90095,USA
About the corresponding author SUO Yanhui,born in 1987,is a professor and a Ph.D. supervisor of Ocean University of China. She mainly focuses on marine geology and marine geodynamics. E-mail: suoyh@ouc.edu.cn.

About the first author TIAN Zihan,born in 1998,master degree candidate,majors in marine geology. E-mail: tzh7403@stu.ouc.edu.cn.

Abstract

The Yangtze River,Asia's largest river,represents a significant geomorphological event within the integrated tectonics-climate-landscape system of the Cenozoic era in China. A key point of debate in understanding its formation is the timing of the incision of the Three Gorges,situated between the Sichuan and Jianghan basins,which marked the emergence of the modern Yangtze River. Despite abundant geological data,there remains controversy over when exactly the Three Gorges were formed or incised. Previous studies usually focused on isolated factor affecting the river development,e.g., tectonic movements,sedimentology,paleo-climate and sea level changes,to resolve this key issue. In contrast,our study utilizes Badlands,a software for simulating paleo-landscape,to integrate these key factors quantitatively. Focusing on the area east of the “first bend”(Shigu Town in Yunnan Province)of the Yangtze River,we used Badlands to reconstruct the paleo-landscape and river system evolution process since the Late Cretaceous(80 Ma). We further validated our model results using seismic data from the Sichuan and Jianghan basins. The results revealed that the river flow direction in the Sichuan Basin was reversed to drain northwards due to the Late Eocene-Oligocene uplift in the eastern Tibet and the southwestern Upper Yangtze Plate. The Jianghan Basin maintained a consistently low base level during the early Paleogene,influenced by the continental rifting environment in eastern China. The reversal of the drainage direction in the Sichuan Basin and the long-lasting low base level in the Jianghan Basin eventually made the Three Gorges to be incised at the latest Oligocene. We propose that the reversal and subsequent capture of the Upper Yangtze River's flow by the middle Yangtze River played a crucial role in the incision mechanism of the Three Gorges.

Key words: paleo-landscape reconstruction; Three Gorges incision; Late Oligocene; Sichuan Basin; Jianghan Basin; drainage inversion
1 概述

新生代以来, 太平洋板块俯冲和印度— 欧亚板块碰撞导致东亚地形格局从东高西低转变为西高东低(Ren et al., 2002; Schellart et al., 2019; 张岳桥等, 2019; 李三忠等, 2022), 青藏高原加速隆升产生强烈地势差异并促使东亚季风系统形成及强化, 上述过程深刻影响了长江、黄河、珠江等大型河流系统的形成演化。其中, 长江起源于青藏高原唐古拉山, 向东流入东海, 全长6280 km, 是亚洲第一、世界第三大河; 长江携带的巨量水沙, 在其流域生态环境和中国东部边缘海的海陆相互作用及其物质循环过程中扮演关键角色(汪品先, 1998; 郑洪波和贾军涛, 2009)。长江水系的形成, 是板块构造驱动下的沉积、地貌和气候演化有机结合的结果, 是研究地球深部与地表系统多圈层耦合作用的“ 天然实验室” 。但对于“ 长江东流水系形成于何时” 这一关键科学问题却一直存在重大争议, 尤其是针对长江水系定型的标志性事件— — 长江三峡贯通的时限存在多种观点: 低温热年代学研究揭示45~40 Ma期间四川盆地及黄陵穹隆存在1期快速降温事件, 可能是三峡贯通后地层快速剥蚀所致(Richardson et al., 2008, 2010); 江汉盆地沉积相及“ 长江砾岩” 年代学等研究结果暗示三峡的贯通发生在渐新世— 中新世之交(Zheng et al., 2011; 郑洪波等, 2013); 三峡地区河流阶地沉积物ESR(Electron Spin Rasanance:电子自旋共振)测年则反映了长江三峡可能在早更新世贯通(Li et al., 2001)。以上观点主要是基于沉积学、地球化学等单一方法对三峡贯通过程进行分析, 尚未从新生代以来的构造— 气候— 地貌的统一耦合体系角度出发, 系统推演长江演化过程。

Badlands古地貌模拟软件, 是一套正演不同时间和空间尺度上地表过程的数值模拟软件, 它综合考虑了地幔对流、构造、古气候、侵蚀和沉积等地球深部和浅表系统多种因素对地貌的影响(Salles, 2016; Salles et al., 2018)。因此, 作者利用Badlands软件, 通过加载中国东部、四川盆地及周边地区山脉隆升剥蚀量、新生代裂陷盆地沉降量、海平面变化、降水量等数据, 耦合了构造— 气候— 地貌系统, 模拟了云南省石鼓镇“ 长江第一弯” 以东区域晚白垩世以来的地貌演变过程, 并分析长江演化及三峡贯通过程。

2 区域地质背景

长江流域面积达180万平方千米, 跨越多个地质单元。金沙江段主要流经昌都地块、松潘— 甘孜地块; 川江段及中下游流经扬子地块, 包括四川盆地、黄陵穹隆、江汉— 洞庭湖盆地、苏北— 南黄海盆地及东海陆架盆地等次级单元; 长江流域北部为秦岭— 大别造山带, 南部为华夏地块(图 1-a, 1-b)。昌都地块地处长江源头(图 1-b), 变质基底由3套前寒武纪地层构成(游再平, 2001)。早古生代造山活动频繁, 加里东运动后进入稳定洋盆阶段并发育弧后盆地, 沉积相主要表现为滨海相及浅海碳酸盐岩相; 中生代以来洋盆逐渐关闭, 由早三叠系滨浅海环境过渡至晚侏罗系陆内环境, 在此期间形成巨厚复理石及磨拉石建造; 新生代以来走滑拉分活动强烈, 盆地沉积广泛发育(杜德勋等, 1997)。

图 1 长江流域地貌及水系(a)和主要地质单元(b)Fig.1 Landscape and drainage distribution(a) of Yangtze River basin and its main tectonic units(b)

松潘— 甘孜褶皱带地处扬子地块以西, 涵盖了长江金沙江段(图 1-b)。该褶皱带主体为晚石炭世至晚三叠世期间古特提斯洋向北俯冲过程中形成的弧前构造带(杨宗让, 2002); 晚二叠世, 峨眉山地幔柱活动引发强烈的裂谷作用并形成深水洋盆(Song et al., 2004); 中三叠世以来洋盆逐渐萎缩并发育巨厚复理石建造。晚三叠世松潘— 甘孜褶皱带向扬子地块强烈俯冲形成龙门山冲断带(刘树根等, 1995)。

扬子地块是长江流域主体地区(图 1-b), 其基底由太古宇— 古元古界结晶基底及中— 新元古界变质基底组成, 发生在0.82 Ga左右的晋宁运动使扬子地块与华夏地块完成拼合(葛肖虹和马文璞, 2014)。随后扬子地块长期处于稳定阶段, 南华纪至中三叠世发育广泛的浅海碳酸盐沉积, 印支期后转入陆相沉积; 晚白垩世以来, 扬子板块受到古太平洋板块及太平洋板块俯冲影响, 广泛发育裂陷盆地并形成众多河流湖泊相沉积(王鸿祯, 1985)。

秦岭— 大别造山带地处长江流域北部(图 1-b), 其基底形成于晚太古代— 古元古代; 新元古代至早古生代期间, 秦岭造山带持续处于扩张状态, 裂谷活动强烈并在早古生代形成宽2000~3000 km的洋盆, 在此期间广泛发育深水盆地沉积; 早古生代晚期, 扬子板块开始向华北板块俯冲并于晚中生代发生碰撞作用; 三叠纪, 全面陆陆碰撞造山作用使秦岭— 大别造山带最终成型(张国伟等, 1996)。中生代以来, 秦岭造山带处于持续剥蚀状态; 新生代强烈的伸展作用导致秦岭再次隆升形成高耸山脉并成为长江流域和黄河流域分水岭(孟庆任, 2017)。

华夏地块位于长江流域东南部(图 1-b), 碎屑锆石年代学(Zhang et al., 2006)表明其可能存在太古代基底。元古代以来, 华夏地块发生多期变质作用, 沉积环境主要为深水盆地。晋宁运动后, 华夏地块与扬子板块拼合形成统一的华南板块, 此后加里东期广泛的构造活动使华夏地块褶皱广泛发育; 晚中生代以来强烈的火山活动对其也产生显著影响(葛肖虹和马文璞, 2014)。

3 模拟方法及模型构建
3.1 模拟方法

Badlands是一个描述地球表面活动的景观演化模型(Landscape evolution models)。该模型考虑了构造活动、气候变化、海平面升降、地壳均衡效应、岩石剥蚀及沉积物堆积等过程对地貌演化的影响(Salles and Hardiman, 2016)。

1)构造活动是某点一段时间内在三维空间上的位移积累量, 包括垂直方向上的隆升沉降量以及水平方向上的运动距离(文中称之为构造地形); 此外还可以将反演得到的动力地形作为构造活动参数(Ding et al., 2019)。

2)气候变化参数在Badlands代码中以降水量的形式表现, 可以在模型中某段时间内设置恒定值或导入地形降水线性模型(Smith and Barstad, 2004)加以实现。

3)海平面升降是影响地表作用的重要因素, 其变化受到气候、洋陆相互作用等因素控制, Badlands代码中可通过导入全球海平面变化曲线数据加以实现。

4)地貌演化中伴随着剥蚀及沉积过程, 这会导致地球弹性外壳上的区域质量再分配并进一步影响地壳形变, Badlands代码中可通过挠曲均衡模块对进行相应校正。

在代码运行过程中主要遵循以下质量连续性方程:

zt=-Ñ · qs+u (1)

该方程描述了构造驱动的地貌效应(Chen et al., 2014)。公式(1)左侧表示某点地表高程(z)在单位时间上的变化量; 右侧u表示构造活动引发的地表隆升/沉降量, 单位m/yr; qs表示深度上为整体、单位宽度上的沉积物通量, 单位m2/yr。

下述方程描述了沉积物的输运及水流侵蚀过程(Salles, 2016):

-Ñ · qr=-eAm(Ñ z)n (2)

-Ñ · qd=-κ 2z (3)

公式(2)描述了沉积物以地表径流方式输运的状态, 左侧qr表示单位宽度上流水输运沉积物的速率; 右侧为无量纲侵蚀常数, 其受到气候、岩性及泥沙载荷多因素控制(Whipple and Tucker, 1999), A为排水面积, Ñ z为地形梯度, mn表示沉积物通量及输运能力恒定的情况下河流下切速率与河床剪应力之间的关系, 它们没有恒定取值但m/n的值通常为0.5(Tucker and Hancock, 2010)。公式(3)描述了沉积物以蠕移扩散方式输运的状态, 其中κ 表示扩散系数, 其取值不固定, 往往受到岩性、降水及其他因素影响, 可通过现场考察获取较为精确的数值(Dietrich et al., 1995; Whipple and Tucker, 1999; Tucker and Hancock, 2010)。

3.2 模型构建

构建的地貌演化模型需输入初始地形、构造地形、古降水、古海平面、侵蚀系数等。

3.2.1 初始古地形构建

文中研究区为长江第一弯以东地区, 纬度范围24° N~35° N、经度范围100° E~122° E(图 2)。长江流域的地貌演化和贯通主要发生在新生代。为了较为完整地体现一系列晚白垩世— 早新生代构造活动对地形产生的影响, 需要对新生代的模拟时间进行合理外延。80 Ma前后(± 5 Ma)的古地貌研究成果较为丰富, 更易用于限定古地形, 故设定初始古地形时间为80 Ma。研究区包含多个构造单元, 各单元初始古高程数据来源见表 1

图 2 长江流域晚白垩世(80 Ma)初始古地貌Fig.2 Paleo-landscape reconstruction at the Late Cretaceous(80 Ma) in Yangtze River basin

表 1 各构造单元晚白垩世古高程数据 Table1 Paleo-elevation of each tectonic unit at the Late Cretaceous

3.2.2 构造地形构建

新生代以来, 受到太平洋及特提斯构造体系相互作用的强烈影响, 中国东部地区普遍遭受弧后伸展导致的古高原垮塌及克拉通破坏作用, 而西部、西南部则由于印度— 欧亚板块碰撞发生强烈横向缩短及纵向隆升作用, 中国整体地貌产生西低东高到西高东低的巨变(李三忠等, 2022; 张岳桥等, 2019; Ren et al., 2002; Schellart et al., 2019)。此外, 中国大陆内部存在多个相互作用复杂的构造单元, 无法通过粗糙且变化量较小的动力地形模拟数据准确约束构造地形。因此, 作者收集了造山带低温热年代学及裂陷盆地沉降数据(图 3), 构建各构造单元不同演化阶段的构造地形。不同构造单元的数据详情见表 2

图 3 长江流域晚白垩世(80 Ma)以来构造数据分布(具体数据及来源见表 2)Fig.3 Distribution of tectonic data since the Late Cretaceous(80 Ma)in Yangtze River basin(see details in Table 2)

表2 长江流域晚白 垩世以来造山带区域隆升剥露数据 Table 2 Uplift and exfoliation data of orogenic belt region since the Late Cretaceous in Yangtze River basin

山脉、高原等隆升区数据绝大多数来自低温热年代学方法获得的研究资料(表 2; 表 3)。低温热年代学研究最常见的对象是磷灰石或锆石裂变径迹, 该方法往往用以揭示岩石的剥露(exhumation)过程(Peter and Mark, 2006), 即岩石相对的地表位移, 其往往是侵蚀(erosion)或构造活动(tectonic progress)引发负载岩石的清除(removal)作用(England Molnar, 1990)。通常情况下, 磷灰石快速冷却是构造剥露的重要特征, 而正断层活动、陆内造山增厚及大陆边缘地壳横向减薄等构造因素控制了构造剥露速度(Ring et al., 1999; Stü we and Terence, 1998), 因此可以通过低温热年代学数据对构造地形加以约束。地壳均衡补偿了相当一部分剥露作用效果(Tsuboi, 1983), 因此低温热年代学数据包含了均衡效应的影响。此外, 地壳挠曲均衡量恢复严重依赖准确的有效弹性厚度(Te), 该数值受到板块演化的显著影响。因研究区构造单元众多且模拟时间跨度大, 难以获得合适的Te参数, 故建立模型时没有进行挠曲均衡校正。

表 3 长江流域晚白垩世以来盆地沉降速率数据 Table3 Data of basin subsidence rates since the Late Cretaceous in Yangtze River basin

3.2.3 古降水重建

Badlands代码中, 古降水量是影响地表岩石侵蚀、河流下切及沉积物搬运的重要参数(Salles and Hardiman, 2018)。研究区不同时间段古降水量数据及来源见表 4

表 4 长江流域晚白垩世以来古降水量数据汇总 Table4 Paleo-precipitation data since the Late Cretaceous in Yangtze River basin

3.2.4 古海平面重建

海平面升降会改变河流侵蚀基准面以及沉积物容纳空间, 从而影响流域地貌的演变(Watts and Thorne, 1984; Schumm, 1993; Jacob et al., 2011; Ken et al., 2015), 因此是模型的重要参数。本研究采用了Haq等(1987)海平面重建方案。

3.2.5 侵蚀系数

侵蚀系数(erodibility coefficient)是在Badlands代码中构建地貌演化模型重要参数, 它受到岩性、河道宽度、洪水频率及河道水流动力等因素的控制(Salles and Hardiman, 2016)。模拟结果表明, 侵蚀系数对地貌演化模型影响强烈, 通过现今研究区真实地貌、地表岩石侵蚀量恢复以及盆地地震剖面等资料约束, 设定该系数为5× 10-6较为贴合实际情况。

4 模拟结果
4.1 古地貌演化过程

晚白垩世, 中国整体地形呈现出“ 东高西低” 的特征。锆石年代学研究(王瑞和姜宝玉, 2021)表明, 这一时期四川盆地可能存在流向西南的水系, 四川盆地被造山带围限仅西南侧海拔较低是水系向该方向发育的原因(图 4-a, 4-b)。受古太平洋板块俯冲后撤影响, 中国东部裂陷活动强烈(Li et al., 2014; Suo et al., 2019), 山间盆地及边缘海盆地的发育可能促进了东部水系的建立(图 4-b), 而扬子地区东西两侧水系被海拔超过2000 m的湘鄂西褶皱带阻隔。

图 4 晚白垩世(80 Ma)以来古地貌演化模型Fig.4 Paleo-landscape evolution model since the Late Cretaceous

古新世至早始新世, 中国整体地貌格局没有发生明显变化(图 4-b, 4-c)。但东部的持续裂陷活动(Li et al., 2014; Suo et al., 2019), 导致盆地规模扩大、古高原萎缩。中下扬子东部河流系统继续向西扩展, 而四川盆地水系格局没有显著变化(图 4-c)。

古近纪晚期, 青藏东南缘及大凉山地区的快速隆升, 导致四川盆地排水严重受阻, 沉积物大量堆积抬升地表并迫使西南向水系开始衰亡(图 4-c, 4-d)。湘鄂西褶皱带长期构造稳定, 持续剥蚀降低。

中国东部持续强烈伸展作用则导致江汉盆地处于较低基准面。研究区东西两侧构造环境的共同作用, 最终导致长江三峡在晚渐新世(约26 Ma)发生贯通(图 4-e)。新近纪以来, 研究区气候湿润化, 中国东部山脉侵蚀强烈, 长江流域现今水系形态逐步建立(图 4-f)。晚新生代以来, 云贵高原快速隆升, 促使金沙江向北进入四川盆地形成现代长江流域(图 4-g, 4-h)。

4.2 模拟结果对比

为验证模拟结果的可靠性, 选择长江三峡东西两侧的江汉盆地和四川盆地作为参考对象, 对比了晚白垩世以来四川盆地的剥蚀量(图 5)及江汉盆地沉积厚度(图 6)。模拟结果表明, 四川盆地的剥蚀主要集中在川东、川北及川西南等边缘区域, 而川中、川南的剥蚀明显较弱(图 5-a), 这与低温热年代学恢复的剥蚀量(图 5-b)反映的趋势相同。但需要注意文中模拟的起始时间为80 Ma, 故模拟结果相对于热年代学揭示的晚白垩世以来的剥蚀恢复量偏小。地震资料揭示, 江汉盆地晚白垩世以来的沉积中心主要位于江陵凹陷、潜江凹陷, 其沉积厚度超过10 000 m; 其他区域, 如陈沱口凹陷、小板凹陷、沔阳凹陷部分区域沉积厚度达5000 m(江汉油田石油地质志编写组, 1991)。本研究模拟结果呈现的盆地各次级单元沉积厚度和沉积中心位置与地震资料揭示的结果吻合较好(图 6)。此外, 模拟结果中显示的部分地层剖面结构, 也与地震剖面解译的地层结构呈现出明显的相似性(图 7)。

图 5 四川盆地晚白垩世以来地层剥蚀量
a— 低温热年代学揭示剥蚀量(据邓宾等, 2009); b— 本研究模拟的80 Ma以来剥蚀量
Fig.5 Strata denudation since the Late Cretaceous in Sichuan Basin

图 6 江汉盆地晚白垩世以来地层沉积厚度
a— 地震资料揭示的沉积厚度(据Wu et al., 2020); b— 本研究模拟的沉积厚度
Fig.6 Sedimentary thickness since the Late Cretaceous in Jianghan Basin

图 7 江汉盆地地震剖面与模拟剖面结果对比(剖面位置见图 6-a。地震剖面来源: AA’ 据赵长煜, 2009; BB’ 和CC’ 据卢林, 2005; DD’ 据王德良等, 2018)Fig.7 Comparison between seismic profiles and simulated profiles in Jianghan Basin(Profile location is shown in Fig.6-a. Seismic profile AA’ was from Zhao, 2009; BB’ and CC’ were from Lu, 2005; DD’ was from Wang et al., 2018)

5 讨论
5.1 长江三峡的贯通时限

利用锆石年龄特征进行物源追踪是分析河流演化的重要方法(Clift et al., 2012)。同位素年代学研究表明, 扬子板块、华夏板块、松潘— 甘孜地块、江南造山带及秦岭大别造山带中, 现代长江流域大部分区域碎屑锆石的年龄大于65 Ma, 年龄小于65 Ma的碎屑锆石记录主要出现在金沙江地区。青藏高原始新世以来的隆升过程伴随着广泛的岩浆活动, 是长江流域新生代锆石的主要物源(He et al., 2013, 2014)。长江上游北羌塘地块出露诸多年龄为40~24 Ma的花岗岩(朱丽等, 2006; Xu et al., 2019), 其东部金沙江— 红河构造带则存在年龄为40~30 Ma的花岗岩(Liu et al., 2022); 此外, 松潘— 甘孜褶皱带东南部鲜水河断裂带出露始新世— 渐新世花岗岩(李海龙等, 2016; 唐渊等, 2022)。因此, 在长江中下游地区沉积地层中识别新生代锆石信号, 是分析三峡贯通时限的重要依据。

江汉盆地位于长江三峡东侧出口, 必然留存其贯通事件的地质记录(Zheng, 2015)。Yang等(2019)在江汉盆地中新统广化寺组下部, 首次识别出同位素年龄32 Ma的碎屑锆石, 该地层底界年代约为26~24.6 Ma(王必金等, 2006)。江汉盆地内部存在最新年龄不超过36.5 Ma新生代玄武岩(徐论勋等, 1995)。可见, 长江三峡在渐新世末期已经贯通, 才会导致上述可能来源于青藏东部新生代花岗岩的碎屑锆石进入江汉盆地。

另有研究表明, 长江下游南京、六安地区出露的“ 长江砾岩” 形成年代不晚于早中新世, 其碎屑锆石年龄谱特征与长江三角洲全新世沉积物锆石年龄谱特征(Jia et al., 2010)基本相当, 由此推测长江三峡贯通导致一条含有与现代长江无法区分物源的河流在中新世之前形成(Zheng et al., 2013)。

不同的沉积相反映了水动力环境的变化, 是分析水系类型及演化的重要依据(Andrew, 2006)。Wang等(2014)指出江汉盆地西缘宜昌至松滋地区出露的古近系主要为砂岩— 粉砂岩, 代表低能量边缘湖相环境, 而在中新世地层中则出现大量低成熟度砾石并发育辫状河沉积, 古水流呈东南走向。在晚渐新世, 江汉盆地主体也由深水湖盆沉积向大型河流沉积转变。此外, 长江下游多地出露早中新世辫状河及泛滥平原相沉积(Zheng et al., 2013; 徐亚东等, 2014; Wang et al., 2022)。上述区域沉积环境的显著变化, 可能反映了中下扬子地区在早中新世之前可能出现了东西向大型贯通性河流。

以上资料均表明长江下游地区在早中新世沉积物源及沉积动力条件已经发生显著转变, 这种转变可能受到了长江三峡贯通的影响。本研究模拟结果揭示的长江三峡在晚渐新世— 早中新世贯通, 这一结果与上述地质资料吻合。

5.2 古长江水系演化及三峡贯通机制

大型河流系统的形成发展受到板块构造、气候演变、海平面升降等要素的控制(郑洪波和贾军涛, 2009)。新生代以来, 青藏高原隆升、中国东部裂陷盆地发育以及东亚季风建立等因素(汪品先, 1998)均对长江水系的形成和演化产生了重要影响。因此, 对三峡贯通事件的研究, 需要综合考虑各种因素效应并对各因素的重要性加以评估。Badlands软件定量化考虑了上述多种环境因素, 基于这种构造— 气候— 地貌综合演变的模拟结果, 可以探讨古长江水系演化及三峡贯通机制。

沉积资料表明, 晚白垩世原四川盆地呈现出“ 东北高西南低” 的地貌格局, 大凉山等现今高海拔地区处于湖盆沉积环境(Li et al., 2016); 扬子西南缘沿南北方向分布一系列盆地, 如西昌盆地、会理盆地、楚雄盆地、思茅盆地等, 这些盆地在晚白垩世至古新世普遍发育湖泊及河流相沉积(江卓斐等, 2014; 杨庆道, 2014; 冯盈, 2016; 赵杰等, 2020)。最新的锆石年代学数据表明, 晚白垩世至早古近纪青藏高原东缘存在一个物源区(包括松潘— 甘孜及上扬子地区), 发育流经上述盆地群的古河流(Zhao et al., 2021)。这得到了本研究模拟结果的验证, 模拟结果显示, 这一时期四川盆地由西南缘向外排水, 这些水系构成了古长江川江段(图 4-a, 4-b)。

古地磁、沉积相及古生物研究表明, 印度— 欧亚板块于55~50 Ma开始碰撞并进入“ 软碰撞” 阶段(Lee and Lawver, 1995; Suo et al., 2020), 新特提斯洋盆逐渐关闭(Klootwijk et al., 1992; Beck et al., 1995; Najman et al., 2010)。古氧同位素研究认为, 青藏东南缘在晚始新世(约40 Ma)已经存在与现今海拔相当的高原(Hoke et al., 2014; Li et al., 2015a), 但大气及海洋性质变化会显著影响传统氧同位素古地貌重建结果, 故该结果受到质疑。最新的古气候重建结果表明, 青藏地区晚始新世低海拔边界条件设定得到的氧同位素分布模型, 与实地样品分布拟合效果更好(Botsyun et al., 2019)。本研究的古地貌模拟结果表明, 青藏东南部及扬子西南缘的低地貌可能更有利于四川盆地周围山脉剥蚀物质向外排泄, 仅在现今大凉山地区出现较薄沉积地层(图 8-b), 原有水系的地貌梯度得以维持。另外锆石年代学研究表明, 至少40 Ma思茅盆地存在上扬子地区的物质输入(冯盈, 2016), 南流水系尚未中断。

图 8 四川盆地AB剖面模拟结果(剖面位置见图 1)Fig.8 Model results along Profile AB in Sichuan Basin(Profile location is shown in Fig.1)

岩浆记录及热年代学研究表明, 晚始新世(约40 Ma)青藏东部及四川盆地西南缘龙门山南部开始快速隆升(Chung et al., 1998, 2005; Richardson et al., 2008; Zhang et al., 2016), 这可能与45 Ma以来印度— 欧亚板块进入“ 硬碰撞” 阶段(Lee and Lawver, 1995)有关。与此同时, 印支地块快速顺时针旋转, 扬子西南缘受到强烈挤压(刘俊来等, 2007), 楚雄盆地群快速隆升(杨庆道, 2014)。本研究模拟结果显示, 青藏东南缘快速隆升导致剥蚀通量迅速增加, 而扬子西南部隆升则迫使沉积物在四川盆地南部堆积并形成平衡冲积河流系统(图 4-c, 4-d; 图 8-c, 8-d)。相较于深切河谷, 地形梯度较低的冲积河道更有利于河道反转使得古长江连续向西袭夺更易进行(Clark et al., 2004)。

晚古近纪, 四川盆地西南缘受到强烈挤压并广泛发育褶皱(Burchfiel et al., 1995; 王二七和尹纪云, 2009), 盆地向南排水进一步受阻。平衡冲积河流系统在下游隆升会显著阻碍河流下切, 导致沉积物在上游堆积并降低地貌梯度(Humphrey and Konrad, 2000), 当隆升速度高于河流下切速度则会迫使河道转向或消亡(Burbank et al., 1996)。本研究模拟结果表明, 约30 Ma盆地西南部大凉山地区的快速隆升破坏了南向外流水系, 30~25 Ma龙门山地区的强烈挤压(Wang et al., 2012)则进一步缩小盆地容积, 沉积物快速堆积并导致盆内冲积地貌逐渐反转(图 8-c至8-e)。此外, 川东— 湘鄂西褶皱带北部古近纪构造稳定持续剥蚀降低(王平等, 2012; 石红才和施小斌, 2014), 而江汉盆地长期裂陷沉降维持较低基准面则为河流改道提供大坡度潜在导流路径。上述因素综合作用, 导致晚渐新世四川盆地东北边缘产生新的河流切口引发长江三峡贯通(图 4-e, 4-f)。同位素研究表明, 24 Ma之后红河流域与上扬子地区失去联系, 这很可能与晚渐新世古长江中上游被下游袭夺有关(Clift et al., 2006, 2008)。

早中新世, 东亚季风体系逐步确立(Sun and Wang, 2005; Yao et al., 2011), 湿润化的气候加剧了侵蚀作用, 四川盆地剥蚀强烈(图 8-g, 8-h), 中国东部地形持续降低, 长江中下游流域进一步扩张(图 4-f, 4-g)。晚中新世青藏高原快速隆升, 下地壳管道流向东部川滇地块强烈挤出(Clark and Royden, 2000; Schoenbohm et al., 2006), 导致云贵高原快速抬升(王国芝等, 2004), 长江进一步向上游扩展并在不早于中新世进入云贵高原(图 4-h)。沉积学研究表明江汉盆地新沟、周老钻孔中第四纪地层沉积物磁化率大幅提高, 这是大量铁磁性物质的输入的结果(Zhang et al., 2008)。现代长江水系碎屑矿物研究表明长江流域仅金沙江段沉积物重矿物含量超过5%, 且绝大多数为铁磁性矿物, 而长江其他支流沉积物重矿物含量显著低于金沙江段(王中波等, 2006), 而江汉盆地第四纪地层磁化率大幅提升可能与长江进入云贵高原有关。

由此, 作者推测, 长江三峡的贯通方式具体表现为: 四川盆地西南向水系消亡、新生东向水系进入江汉盆地并被中国东部原有水系捕获形成统一流域。

6 结论

本研究利用Badlands古地貌模拟软件, 动态重建了长江“ 第一弯” 以东地区、晚白垩世(80 Ma)以来的长江流域地貌及水系演化过程。基于模型结果, 探讨了长江长江水系的演化过程和三峡贯通机制, 主要结论如下:

1)新生代以来, 扬子板块东西部各自独立发育河流系统, 它们是构成现代长江的重要组成部分。晚渐新世(约26 Ma), 东、西河流系统在湘鄂西褶皱带北部三峡地区发生贯通, 成为现代长江形成的标志性事件。

2)长江三峡的贯通是四川盆地水系反转和江汉盆地持续低基准面的共同作用。印度— 欧亚板块碰撞导致的青藏东南缘及上扬子西南部的快速隆升, 迫使原四川盆地南向排水系统消亡, 同时沉积物排泄受阻在盆内堆积形成冲积河流系统并引发地貌变为“ 西南高东北低” ; 中国东部裂陷活动持续进一步破坏原有高原地貌, 并大幅降低区域(包括江汉盆地在内)基准面。上述作用共同导致长江三峡在晚渐新世贯通。

(责任编辑 李新坡; 英文审校 徐杰)

参考文献
[1] 柏道远, 黄建中, 孟德保, 马铁球, 王先辉, 张晓阳, 陈必河. 2006. 湘东南地区中、新生代山体隆升过程的热年代学研究. 地球学报, 27(6): 525-536.
[Bai D Y, Huang J Z, Meng D B, Ma T Q, Wang X H, Zhang X Y, Chen B H. 2006. Meso-cenozoic thermochronological analysis of the uplift process of mountains in southeast Hunan. Acta Geoscientica Sinica, 27(6): 525-536] [文内引用:1]
[2] 柏道远, 李长安, 王先辉, 周柯军, 马铁球, 彭云益, 李纲, 陈渡平. 2010. 第四纪华容隆起构造活动、成因及动力机制. 地质科学, 45(2): 411-427.
[Bai D Y, Li C A, Wang X H, Zhou K J, Ma T Q, Peng Y Y, Li G, Chen D P. 2010. Tectonic activities, genesis and dynamic mechanisms of Quaternary Huarong uplift. Chinese Journal of Geology(Scientia Geologica Sinica), 45(2): 411-427] [文内引用:1]
[3] 陈丕基. 1997. 晚白垩世中国东南沿岸山系与中南地区的沙漠和盐湖化. 地层学杂志, 21(3): 203-213.
[Chen P J. 1997. Coastal Mountains of SE China, desertization and saliniferous lakes of Central China during the Upper Cretaceous. Journal of Stratigraphy, 21(3): 203-213] [文内引用:1]
[4] 陈思宇, 王嘉学. 2017. 云贵高原隆升研究进展. 云南地理环境研究, 29(3): 23-29, 40.
[Chen S Y, Wang J X. 2017. Progress in research on tectonic uplift in Yunnan-Guizhou plateau. Yunnan Geographic environment Research, 29(3): 23-29, 40] [文内引用:1]
[5] 邓宾, 刘树根, 刘顺, 李智武, 赵建成. 2009. 四川盆地地表剥蚀量恢复及其意义. 成都理工大学学报(自然科学版), 36(6): 675-686.
[Deng B, Liu S G, Liu S, Li Z W, Zhao J C. 2009. Restoration of exhumation thickness and its significance in Sichuan Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 36(6): 675-686] [文内引用:1]
[6] 邓宾, 刘树根, 王国芝, 李智武, 刘顺, 曹俊兴. 2013. 四川盆地南部地区新生代隆升剥露研究: 低温热年代学证据. 地球物理学报, 56(6): 1958-1973.
[Deng B, Liu S G, Wang G Z, Li Z W, Liu S, Cao J X. 2013. Cenozoic uplift and exhumation in southern Sichuan Basin: evidence from low-temperature thermochronology. Chinese Journal of Geophysics, 56(6): 1958-1973] [文内引用:1]
[7] 邓宾, 雍自权, 刘树根, 李智武, 赵高平, 米色子哈, 汤聪. 2016. 青藏高原东南缘大凉山新生代隆升建造过程: 多封闭系统低温热年代学与热模型限制. 地球物理学报, 59(6): 2162-2175.
[Deng B, Yong Z Q, Liu S G, Li Z W, Zhao G P, Mi S, Tang C. 2016. Cenozoic Mountain-building processes in the Daliangshan, southeastern margin of the Tibetan Plateau: evidence from low-temperature thermochronology and thermal modeling. Chinese Journal of Geophysics, 59(6): 2162-2175] [文内引用:1]
[8] 丁汝鑫, 陈国能, 周祖翼, 许长海. 2012. 利用低温热史恢复大别造山带晚白垩世以来的古高度. 吉林大学学报(地球科学版), 42(S1): 247-253.
[Ding R X, Chen G N, Zhou Z Y, Xu C H. 2012. The paleoelevation reconstruction of Late Cretaceous dabie orogen by low-temperature thermochronological modelling data. Journal of Jilin University(Earth Science Edition), 42(S1): 247-253] [文内引用:1]
[9] 杜德勋, 罗建宁, 李兴振. 1997. 昌都地块沉积演化与古地理. 岩相古地理, 17(4): 1-17.
[Du D X, Luo J N, Li X Z. 1997. Sedimentary evolution and palaeogeography of the Qamdo block in Xizang. Sedimentary Facies and Palaeogeography, 17(4): 1-17] [文内引用:1]
[10] 冯盈. 2016. 青藏高原东南缘云南思茅盆地新生代碎屑锆石U-Pb年龄分析. 兰州大学硕士学位论文.
[Feng Y. 2016. Detrital zircon U-Pb geochronology of Simao Basin in the southeastern Tibetan Plateau in the Cenozoic. Masteral dissertation of Lanzhou University] [文内引用:2]
[11] 傅强, 李益, 张国栋, 刘玉瑞. 2007. 苏北盆地晚白垩世—古新世海侵湖泊的证据及其地质意义. 沉积学报, 25(3): 380-385.
[Fu Q, Li Y, Zhang G D, Liu Y R. 2007. Evidence of transgression lake of Subei Basin during Late Cretaceous and Paleocene epoch and its geological significance. Acta Sedimentologica Sinica, 25(3): 380-385] [文内引用:1]
[12] 葛翔, 沈传波, 梅廉夫. 2016. 低温热年代对黄陵隆起中新生代古地形的约束. 大地构造与成矿学, 40(4): 654-662.
[Ge X, Shen C B, Mei L F. 2016. Low-temperature thermochronological constraints on the mesozoic-cenozoic paleotopograph in the Huangling massif. Geotectonica et Metallogenia, 40(4): 654-662] [文内引用:1]
[13] 葛肖虹, 马文璞. 2014. 中国区域大地构造学教程. 北京: 地质出版社.
[Ge X H, Ma W P. 2014. Course of Regional Tectonics in China. Beijing: Geological Publishing House] [文内引用:2]
[14] 胡济民, 曾德敏. 1996. 洞庭湖盆地白垩纪早第三纪的岩石地层与生物地层. 湖南地质, 15(4): 193-197.
[Hu J M, Zeng D M. 1996. Petrostratigraphy and biostratigraphy of Cretaceous early tertiary periods in Dongting Basin. Hunan Geology, 15(4): 193-197] [文内引用:1]
[15] 胡圣标, 郝杰, 付明希, 吴维平, 汪集旸. 2005. 秦岭—大别—苏鲁造山带白垩纪以来的抬升冷却史: 低温年代学数据约束. 岩石学报, 21(4): 1167-1173.
[Hu S B, Hao J, Fu M X, Wu W P, Wang J Y. 2005. Cenozoic denudation and cooling history of Qingling-Dabie-Sulu orogens: apatite fission track thermochronology constrains. Acta Petrologica Sinica, 21(4): 1167-1173] [文内引用:1]
[16] 贾小乐. 2016. 川东南构造几何学与运动学特征及其与雪峰山西段的构造关系探讨. 中国地质大学(北京)博士论文.
[Jia X L. 2016. Structural geometry and kinematics of southeast Sichuan Basin: insights into tectonic relationship with the western segment of XueFeng Mountain orogenic belt. Doctoral dissertation of China University of Geosciences(Beijing)] [文内引用:1]
[17] 江汉油田石油地质志编写组. 1991. . 中国石油地质志(卷9)·江汉油田. 北京: 石油工业出版社, 171-213.
[Compilation Group of petroleum Geology of Jianghan Oilfield. 1991. Petroleum Geology of China(Vol. 9): Jianghan Oilfield. Beijing: Petroleum Industry Publishing House, 171-213] [文内引用:1]
[18] 江卓斐, 崔晓庄, 伍皓, 卓皆文. 2014. 四川会理地区古近纪雷打树组碎屑锆石LA-ICP-MSU-Pb年龄及其地质意义. 地质通报, 33(6): 788-803.
[Jiang Z F, Cui X Z, Wu H, Zhuo J W. 2014. Detrital zircon LA-ICP-MS U-Pb ages of the Paleogene Leidashu Formation in Huili, Sichuan Province and their geological significance. Geological Bulletin of China, 33(6): 788-803] [文内引用:1]
[19] 姜磊, 邓宾, 刘树根, 王自剑, 周政, 罗强, 何宇, 赖冬. 2018. 上扬子盆地新生代差异抬升剥蚀与分异过程. 地球科学, 43(6): 1872-1886.
[Jiang L, Deng B, Liu S G, Wang Z J, Zhou Z, Luo Q, He Y, Lai D. 2018. Differential uplift and fragmentation of Upper Yangtze Basin in Cenozoic. Earth Science, 43(6): 1872-1886] [文内引用:1]
[20] 李海龙, 张岳桥, 张长厚, 王继春. 2016. 鲜水河断裂带渐新世至早中新世两期变形相关混合岩的锆石U-Pb年代学及其意义. 地学前缘, 23(2): 222-237.
[Li H L, Zhang Y Q, Zhang C H, Wang J C. 2016. Zircon U-Pb study of two-staged Oligo-Miocene migmatization along the Xianshuihe fault zone, East Tibet Plateau. Earth Science Frontiers, 23(2): 222-237] [文内引用:2]
[21] 李建华, 张岳桥, 董树文, 施炜, 李海龙. 2010. 北大巴山凤凰山基底隆起晚中生代构造隆升历史: 磷灰石裂变径迹测年约束. 地质科学, 45(4): 969-986.
[Li J H, Zhang Y Q, Dong S W, Shi W, Li H L. 2010. Apatite fission track thermochronologic constraint on Late Mesozoic uplifting of the Fenghuangshan basement uplift. Chinese Journal of Geology(Scientia Geologica Sinica), 45(4): 969-986] [文内引用:1]
[22] 李军, 黄成敏, 文星跃, 张茂超. 2021. 四川盆地中生代古气候变化: 来自深时古土壤证据. 沉积学报, 39(5): 1157-1170.
[Li J, Huang C M, Wen X Y, Zhang M C. 2021. Mesozoic paleoclimate reconstruction in Sichuan Basin, China: evidence from deep-time paleosols. Acta Sedimentologica Sinica, 39(5): 1157-1170] [文内引用:1]
[23] 李三忠, 索艳慧, 周洁, 王光增, 李玺瑶, 姜兆霞, 刘金平, 刘丽军, 刘永江, 占华旺, 姜素华, 程昊皞, 王鹏程, 朱俊江, 戴黎明, 董昊, 刘琳, 郭晓玉. 2022. 华南洋陆过渡带构造演化: 特提斯构造域向太平洋构造域的转换过程与机制. 地质力学学报, 28(5): 683-704.
[Li S Z, Suo Y H, Zhou J, Wang G Z, Li X Y, Jiang Z X, Liu J P, Liu L J, Liu Y J, Zhan H W, Jiang S H, Cheng H H, Wang P C, Zhu J J, Dai L M, Dong H, Liu L, Guo X Y. 2022. Tectonic evolution of the South China Ocean-Continent Connection Zone: transition and mechanism of the Tethyan to the Pacific tectonic domains. Journal of Geomechanics, 28(5): 683-704] [文内引用:2]
[24] 李永东, 熊熊, 冯雅杉. 2022. 南秦岭大巴山和米仓山—汉南穹隆中生代隆升幅度. 中国科学: 地球科学, 52(3): 462-473.
[Li Y D, Xiong X, Feng Y S. 2022. Mesozoic uplift amplitude of Daba Mountain and Micangshan-Hannan dome in South Qinling. Scientia Sinica(Terrae), 52(3): 462-473] [文内引用:1]
[25] 李宗盟, 朱文敏, 高红山, 刘芬良, 邢伟. 2021. 黄淮平原区晚新生代气候变迁. 海洋地质与第四纪地质, 41(4): 179-191.
[Li Z M, Zhu W M, Gao H S, Liu F L, Xing W. 2021. Late Cenozoic climate changes in the Huanghuai Plain. Marine Geology & Quaternary Geology, 41(4): 179-191] [文内引用:1]
[26] 刘建辉, 张培震, 郑德文, 万景林, 王伟涛. 2010. 秦岭太白山新生代隆升冷却历史的磷灰石裂变径迹分析. 地球物理学报, 53(10): 2405-2414.
[Liu J H, Zhang P Z, Zheng D W, Wan J L, Wang W T. 2010. The cooling history of Cenozoic exhumation and uplift of the Taibai Mountain, Qinling, China: evidence from the apatite fission track(AFT)analysis. Chinese Journal of Geophysics, 53(10): 2405-2414] [文内引用:1]
[27] 刘俊来, 曹淑云, 翟云峰, 宋志杰, 王安建, 修群业, 曹殿华, 高兰, 管烨. 2007. 用陆块旋转解释藏东南渐新世—中新世伸展作用: 来自点苍山及邻区变质核杂岩的证据. 地学前缘, 14(4): 40-48.
[Liu J L, Cao S Y, Zhai Y F, Song Z J, Wang A J, Xiu Q Y, Cao D H, Gao L, Guan Y. 2007. Rotation of crustal blocks as an explanation of Oligo-Miocene extension in Southeastern Tibet: evidenced by the Diancangshan and nearby metamorphic core complexes. Earth Science Frontiers, 14(4): 40-48] [文内引用:1]
[28] 刘树根, 罗志立, 戴苏兰, Dennis Arne, C. J. L. Wilson. 1995. 龙门山冲断带的隆升和川西前陆盆地的沉降. 地质学报, 69(3): 205-214.
[Liu S G, Luo Z L, Dai S L, Arne D, Wilson C J L. 1995. The uplift of the Longmenshan thrust belt and subsidence of the western Sichuan foreland basin. Acta Geologica Sinica, 69(3): 205-214] [文内引用:1]
[29] 刘树根, 孙玮, 李智武, 邓宾, 刘顺. 2008. 四川盆地晚白垩世以来的构造隆升作用与天然气成藏. 天然气地球科学, 19(3): 293-300.
[Liu S G, Sun W, Li Z W, Deng B, Liu S. 2008. Tectonic uplifting and gas pool formation since Late Cretaceous epoch, Sichuan Basin. Natural Gas Geoscience, 19(3): 293-300] [文内引用:1]
[30] 刘树根, 李智武, Peter J. J. Kamp, 冉波, 李金玺, 邓宾, 王国芝, Ganqing XU, Martin Danišík M, 杨迪, 王自剑, 李祥辉, 刘顺, 李巨初. 2019. 青藏高原东缘中生代若尔盖古高原的发现及其地质意义. 成都理工大学学报(自然科学版), 46(1): 1-28.
[Liu S G, Li Z W, Kamp P J J, Ran B, Li J X, Deng B, Wang G Z, Xu G Q, Danišík M, Yang D, Wang Z J, Li X H, Liu S, Li J C. 2019. Discovery of the Mesozoic Zoige paleo-plateau in eastern Tibetan Plateau and its geological significance. Journal of Chengdu University of Technology(Science & Technology Edition), 46(1): 1-28] [文内引用:1]
[31] 刘训, 付德荣. 1986. 湖南衡阳盆地沉积相及构造发展的若干问题. 中国地质科学院院报, 7(2): 13-36.
[Liu X, Fu D R. 1986. Some features of the sedimentary facies and the tectonic development of the Hengyang Basin, Hunan Province. Acta Geosicientia Sinica, 7(2): 13-36] [文内引用:1]
[32] 隆轲, 陈洪德, 林良彪, 徐胜林, 程立雪. 2011. 四川盆地白垩纪构造层序、岩相古地理及演化. 地层学杂志, 35(3): 328-336.
[Long K, Chen H D, Lin L B, Xu S L, Cheng L X. 2011. Cretaceous tectonic sequence and litho-paleogeographic evolution in the Sichuan Basin. Journal of Stratigraphy, 35(3): 328-336] [文内引用:1]
[33] 卢林. 2005. 潜江凹陷古近纪同沉积构造发育演化及其对潜江期沉积体系的控制. 中国地质大学(北京)硕士学位论文.
[Lu L. 2005. Development and evolution of Paleogene synsedimentary structure in Qianjiang depression and its control on Qianjiang sedimentary system. Masteral dissertation of China University of Geosciences] [文内引用:1]
[34] 罗开平, 刘光祥, 王津义. 2009. 黔中隆起金沙地区中新生代隆升剥蚀的裂变径迹分析. 海相油气地质, 14(1): 61-64.
[Luo K P, Liu G X, Wang J Y. 2009. Fission track analysis of meso-cenozoic uplift and denudation in Jinsha area, the Qianzhong uplift. Marine Origin Petroleum Geology, 14(1): 61-64] [文内引用:1]
[35] 罗威. 2010. 四川盆地中新生代地层区划及盆地演化分析. 成都理工大学硕士学位论文.
[Luo W. 2010. Regionalization of Mesozoic-Cenozoic strata and analysis of basin evolution of Sichuan Basin. Masteral dissertation of Chengdu University of Technology] [文内引用:1]
[36] 梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西—川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学, 35(2): 161-174.
[Mei L F, Liu Z Q, Tang J G, Shen C B, Fan Y F. 2010. Mesozoic intra-continental progressive deformation in western hunan-hubei-eastern Sichuan Provinces of China: evidence from apatite fission track and balanced cross-section. Earth Science, 35(2): 161-174] [文内引用:1]
[37] 孟庆任. 2017. 秦岭的由来. 中国科学: 地球科学, 487(4): 412-420.
[Meng Q R. 2017. Origin of the Qinling Mountains. Science China(Earth Sciences), 487(4): 412-420] [文内引用:1]
[38] 任红民, 陈丽琼, 王文军, 陈平原. 2008. 苏北盆地晚白垩世泰州期原型盆地恢复. 石油实验地质, 30(1): 52-57.
[Ren H M, Chen L Q, Wang W J, Chen P Y. 2008. Restoration of prototype basins of Late Cretaceous Taizhou period in the northern Jiangsu Basin. Petroleum Geology & Experiment, 30(1): 52-57] [文内引用:1]
[39] 沈传波, 梅廉夫, 徐振平, 汤济广, 田鹏. 2007. 大巴山中—新生代隆升的裂变径迹证据. 岩石学报, 23(11): 2901-2910.
[Shen C B, Mei L F, Xu Z P, Tang J G, Tian P. 2007. Fission track thermochronology evidence for Mesozoic-Cenozoic uplifting of Daba Mountain, central China. Acta Petrologica Sinica, 23(11): 2901-2910] [文内引用:1]
[40] 沈传波, 梅廉夫, 刘昭茜, 徐思煌. 2009. 黄陵隆起中—新生代隆升作用的裂变径迹证据. 矿物岩石, 29(2): 54-60.
[Shen C B, Mei L F, Liu Z Q, Xu S H. 2009. Apatite and zircon fission track data, evidences for the mesozoic-cenozoic uplift of Huangling dome, central China. Journal of Mineralogy and Petrology, 29(2): 54-60] [文内引用:1]
[41] 沈尚峰. 2008. 江汉盆地江陵凹陷的构造格架和演化. 中国地质大学(北京)硕士学位论文.
[Shen S F. 2008. Tectonic framework and evolution of Qianjiang depression in Jianghan Basin. Masteral dissertation of China University of Geosciences (Beijing)] [文内引用:1]
[42] 石红才, 施小斌. 2014. 中、上扬子白垩纪以来的剥蚀过程及构造意义: 低温年代学数据约束. 地球物理学报, 57(8): 2608-2619.
[Shi H C, Shi X B. 2014. Exhumation process of Middle-Upper Yangtze since Cretaceous and its tectonic significance: low-temperature thermochronology constraints. Chinese Journal of Geophysics, 57(8): 2608-2619] [文内引用:1]
[43] 孙湘君, 汪品先, 王晓梅, 贺娟. 2005. 从中国古植被记录看东亚季风的年龄. 同济大学学报(自然科学版), 33(9): 1137-1143, 1159.
[Sun X J, Wang P X, Wang X M, He J. 2005. How old is the Asian mosoon system?: palaeobotanical constraints from China. Journal of Tongji University(Natural Science), 33(9): 1137-1143, 1159] [文内引用:1]
[44] 唐渊, 王鹏, 邓红, 刘宇平, 唐文清. 2022. 青藏高原东缘鲜水河断裂带南东段渐新世以来主要构造岩浆事件的岩石记录. 地质通报, 41(7): 1121-1143.
[Tang Y, Wang P, Deng H, Liu Y P, Tang W Q. 2022. Petrological records of major tectono-magmatic events since Oligocene in the southeastern segment of Xianshuihe fault zone in the eastern margin of Tibetan Plateau. Geological Bulletin of China, 41(7): 1121-1143] [文内引用:1]
[45] 田云涛, 朱传庆, 徐明, 饶松, Barry P. Kohn, 胡圣标. 2010. 白垩纪以来米仓山—汉南穹窿剥蚀过程及其构造意义: 磷灰石裂变径迹的证据. 地球物理学报, 53(4): 920-930.
[Tian Y T, Zhu C Q, Xu M, Rao S, Kohn B P, Hu S B. 2010. Exhumation history of the Micangshan-Hannan Dome since Cretaceous and its tectonic significance: evidences from Apatite Fission Track analysis. Chinese Journal of Geophysics, 53(4): 920-930] [文内引用:1]
[46] 田云涛, 袁玉松, 胡圣标, 邱楠生. 2017. 低温热年代学在沉积盆地研究中的应用: 以四川盆地北部为例. 地学前缘, 24(3): 105-115.
[Tian Y T, Yuan Y S, Hu S B, Qiu N S. 2017. Application of low-temperature thermochronology to sedimentary basins: case studies in the northern Sichuan Basin. Earth Science Frontiers, 24(3): 105-115] [文内引用:1]
[47] 童国榜, 刘志明, 郑绵平, 袁鹤然, 刘俊英, 王伟铭, 李月丛. 2002. 江汉盆地始新世中、晚期古气候定量重建初探. 地球科学, 27(4): 446-452.
[Tong G B, Liu Z M, Zheng M P, Yuan H R, Liu J Y, Wang W M, Li Y C. 2002. Primary study on quantitative reconstruction of middle-late Eocene climate in Jianghan Basin. Earth Science, 27(4): 446-452] [文内引用:1]
[48] 汪品先. 1998. 亚洲形变与全球变冷: 探索气候与构造的关系. 第四纪研究, 18(3): 213-221.
[Wang P X. 1998. Deformation of Asia and global cooling: searching links between climate and tectonics. Quaternary Sciences, 18(3): 213-221] [文内引用:2]
[49] 王必金. 2006. 江汉盆地构造演化与勘探方向. 中国地质大学(北京)博士论文.
[Wang B J. 2006. The structure ecolution and favorable exploration areas in Jianghan basin. Doctoral dissertation of China University of Geosciences(Beijing)] [文内引用:1]
[50] 王必金, 林畅松, 陈莹, 卢明国, 刘景彦. 2006. 江汉盆地幕式构造运动及其演化特征. 石油地球物理勘探, 41(2): 226-230, 248, 19.
[Wang B J, Lin C S, Chen Y, Lu M G, Liu J Y. 2006. Episodic tectonic movement and evolutional character in Jianghan Basin. Oil Geophysical Prospecting, 41(2): 226-230, 248, 19] [文内引用:1]
[51] 王春林. 1993. 洞庭湖盆地的形成和演化. 热带地貌, 14(2): 70-78.
[Wang C L. 1993. The formation and evolution of Dongting Lake Basin. Tropical Geomorphology, 14(2): 70-78] [文内引用:1]
[52] 王德良, 梅廉夫, 刘云生, 吴路路, 闵才政, 罗劲. 2018. 伸展型复合盆山体系下江汉盆地中、新生代幕式沉降与迁移. 地球科学, 43(11): 4180-4192.
[Wang D L, Mei L F, Liu Y S, Wu L L, Min C Z, Luo J. 2018. Mesozoic-cenozoic episodic subsidence and migration of Jianghan Basin in extensional composite basin-mountain system. Earth Science, 43(11): 4180-4192] [文内引用:1]
[53] 王二七, 尹纪云. 2009. 川西南新生代构造作用以及四川原型盆地的破坏. 西北大学学报(自然科学版), 39(3): 359-367.
[Wang E Q, Yin J Y. 2009. Cenozoic multi-stage deformation occurred in southwest Sichuan: cause for the dismemberment of the proto-Sichuan Basin. Journal of Northwest University(Natural Science Edition), 39(3): 359-367] [文内引用:1]
[54] 王国芝, 王成善, 曾允孚, 赵锡奎. 2000. 滇西高原的隆升与莺歌海盆地的沉积响应. 沉积学报, 18(2): 234-240.
[Wang G Z, Wang C S, Zeng Y F, Zhao X K. 2000. The uplift of the western Yunnan Plateau and the sedimentary response of the yinggehai basin. Acta Sedimentologica Sinica, 18(2): 234-240] [文内引用:1]
[55] 王国芝, 初凤友, 王成善. 2004. 中新世以来滇西高原内红河流域区的古高程反演. 成都理工大学学报(自然科学版), 31(2): 118-124.
[Wang G Z, Chu F Y, Wang C S. 2004. Paleoelevation reconstruction of Red River drainage areas in Western Yunnan Plateau since Miocene. Journal of Chengdu University of Technology(Science & Technology Edition), 31(2): 118-124] [文内引用:1]
[56] 王鸿祯. 1985. 中国古地理图集. 北京: 地图出版社.
[Wang H Z. 1985. Atlas of The Palaeogeography of China. Beijing: Cartographic Publishing House] [文内引用:1]
[57] 王平, 刘少峰, 郜瑭珺, 王凯. 2012. 川东弧形带三维构造扩展的AFT记录. 地球物理学报, 55(5): 1662-1673.
[Wang P, Liu S F, Gao T J, Wang K. 2012. Cretaceous transportation of Eastern Sichuan arcuate fold belt in three dimensions: insights from AFT analysis. Chinese Journal of Geophysics, 55(5): 1662-1673] [文内引用:2]
[58] 王瑞, 姜宝玉. 2021. 中国晚白垩世古水系展布及其对鸭嘴龙类分布的影响. 古地理学报, 23(3): 581-599.
[Wang R, Jiang B Y. 2021. Reconstruction of the Late Cretaceous paleoriver systems in China and their effects on distribution of hadrosaurs. Journal of Palaeogeography(Chinese Edition), 23(3): 581-599] [文内引用:1]
[59] 王中波, 杨守业, 李萍, 李从先, 蔡进功. 2006. 长江水系沉积物碎屑矿物组成及其示踪意义. 沉积学报, 24(4): 570-578.
[Wang Z B, Yang S Y, Li P, Li C X, Cai J G. 2006. Detrital mineral compositions of the Changjiang River sediments and their tracing implications. Acta Sedimentologica Sinica, 24(4): 570-578] [文内引用:1]
[60] 温晓锋. 2014. 白垩纪—古近纪南海北缘盆地构造特征研究. 中国地质大学(北京)硕士学位论文.
[Wen X F. 2014. Tectonic features of the basins at the north Margin of the South China Sea from Cretaceous to Paleogene. Masteral dissertation of China University of Geosciences (Beijing)] [文内引用:1]
[61] 吴航. 2019. 川东地区中—新生代构造隆升过程研究. 中国石油大学(北京)博士学位论文.
[Wu H. 2019. Meso-Cenozoic tectonic uplift process of the Eastern Sichuan Basin. Doctoral dissertation of China University of Petroleum (Beijing)] [文内引用:1]
[62] 吴路路. 2019. 江汉盆地的开始、演化与夭折: 基底构造与地幔动力的共同制约. 中国地质大学博士论文.
[Wu L L. 2019. The initiation, evolution and aband onment of the Jianghan Basin: combined influence of basement structures and mantle dynamics. Doctoral dissertation of China University of Geosciences] [文内引用:1]
[63] 吴中海, 吴珍汉, 万景林, 周春景. 2003. 华山新生代隆升—剥蚀历史的裂变径迹热年代学分析. 地质科技情报, 22(3): 27-32.
[Wu Z H, Wu Z H, Wan J L, Zhou C J. 2003. Cenezoic uplift and denudation history of Huashan Mountains: evidence from fission track thermo-chronology of Huashan granite. Geological Science and Technology Information, 22(3): 27-32] [文内引用:1]
[64] 徐论勋, 阎春德, 俞惠隆, 王宝清, 余芳权, 王典敷. 1995. 江汉盆地下第三系火山岩年代. 石油与天然气地质, 16(2): 132-137.
[Xu L X, Yan C D, Yu H L, Wang B Q, Yu F Q, Wang D F. 1995. Chronology of Paleogene volcanic rocks in Jianghan Basin. Oil & Gas Geology, 16(2): 132-137. ] [文内引用:1]
[65] 徐亚东, 梁银平, 江尚松, 骆满生, 季军良, 张宗言, 韦一, 宋博文. 2014. 中国东部新生代沉积盆地演化. 地球科学, 39(8): 1079-1098.
[Xu Y D, Liang Y P, Jiang S S, Luo M S, Ji J L, Zhang Z Y, Wei Y, Song B W. 2014. Evolution of Cenozoic sedimentary basins in eastern China. Earth Science, 39(8): 1079-1098] [文内引用:1]
[66] 杨庆道. 2014. 楚雄盆地构造演化及油气成藏条件研究. 中国石油大学(华东)博士学位论文.
[Yang Q D. 2014. Tectonic Evolution and Hydrocarbon Accumulation Conditions in Chuxiong Basin. Doctoral dissertation of China University of Petroleum(East China)] [文内引用:2]
[67] 杨庆道, 郭朝斌, 王伟锋, 张文博, 周雄波. 2014. 楚雄盆地扭动构造及其演化. 油气地质与采收率, 21(6): 15-21, 111.
[Yang Q D, Guo C B, Wang W F, Zhang W B, Zhou X B. 2014. Wrench structure and evolution sequence in Chuxiong Basin. Petroleum Geology and Recovery Efficiency, 21(6): 15-21, 111] [文内引用:1]
[68] 杨晓东, 吴中海, 张海军. 2016. 鄱阳湖盆地的地质演化、新构造运动及其成因机制探讨. 地质力学学报, 22(3): 667-684.
[Yang X D, Wu Z H, Zhang H J. 2016. Geological evolution, neotectonics and genetic mechanism of the Poyang Lake basin. Journal of Geomechanics, 22(3): 667-684] [文内引用:1]
[69] 杨宗让. 2002. 川西松潘—甘孜弧前盆地的形成及演化. 沉积与特提斯地质, 22(3): 53-59.
[Yang Z R. 2002. The formation and evolution of the Songpan-Garze fore-arc basin, western Sichuan. Sedimentary Geology and Tethyan Geology, 22(3): 53-59] [文内引用:1]
[70] 游再平. 2001. 昌都地块前寒武纪基底地层格架探讨. 中国地质, 28(5): 15-18.
[You Z P. 2001. Discussion on Precambrian basement stratigraphic framework in Changdu block. Chinese Geology, 28(5): 15-18] [文内引用:1]
[71] 于振江, 黄多成. 1993. 淮北平原上第三系划分和孢粉序列. 地层学杂志, 17(3): 202-209.
[Yu Z J, Huang D C. 1993. Division of the Upper Tertiary of the Huaibei plain and sporo pollen sequence. Journal of Stratigraphy, 17(3): 202-209] [文内引用:1]
[72] 袁厚勇. 2005. 裂谷盆地有机质成熟度史模拟及在江汉盆地中的应用. 中国地质大学(北京)硕士学位论文.
[Yuan H Y. 2005. Simulation of organic Matter Maturity history in rift basin and its application in Jianghan Basin. Masteral dissertation of China University of Geosciences(Beijing)] [文内引用:1]
[73] 张国伟, 孟庆任, 于在平, 孙勇, 周鼎武, 郭安林. 1996. 秦岭造山带的造山过程及其动力学特征. 中国科学(D辑: 地球科学), 26(3): 193-200.
[Zhang G W, Meng Q R, Yu Z P, Sun Y, Zhou D W, Guo A L. 1996. The orogenic process of Qinling orogenic belt and its dynamic characteristics. Science in China, Ser D, 26(3): 193-200] [文内引用:1]
[74] 张岳桥, 施炜, 董树文. 2019. 华北新构造: 印欧碰撞远场效应与太平洋俯冲地幔上涌之间的相互作用. 地质学报, 93(5): 971-1001.
[Zhang Y Q, Shi W, Dong S W. 2019. Neotectonics of North China: interplay between far-field effect of India-Eurasia collision and Pacific subduction related deep-seated mantle upwelling. Acta Geologica Sinica, 93(5): 971-1001] [文内引用:2]
[75] 赵长煜. 2009. 叠合盆地构造热演化模拟: 以江汉盆地为例. 中国地质大学(北京)硕士学位论文.
[Zhao C Y. 2009. Tectonic-thermal evolution modeling in superposition basin with the JiangHan Basin as an example. Masteral dissertation of China University of Geosciences(Beijing)] [文内引用:1]
[76] 赵杰, 周欣, 王燕, 孙玮, 刘顺. 2020. 西昌盆地构造演化及特征研究. 物探化探计算技术, 42(5): 651-659.
[Zhao J, Zhou X, Wang Y, Sun W, Liu S. 2020. The study on tectonic evolution and characteristics of Xichang Basin. Computing Techniques for Geophysical and Geochemical Exploration, 42(5): 651-659] [文内引用:1]
[77] 郑洪波, 贾军涛. 2009. 大河的地质演化与构造控制. 第四纪研究, 29(2): 268-275.
[Zheng H B, Jia J T. 2009. Geological evolution of big river systems and tectonic control. Quaternary Sciences, 29(2): 268-275] [文内引用:2]
[78] 郑洪波, 王平, 何梦颖, 罗超, 黄湘通, 贾军涛. 2013. 长江东流水系建立的时限及其构造地貌意义. 第四纪研究, 33(4): 621-630, 620.
[Zheng H B, Wang P, He M Y, Luo C, Huang X T, Jia J T. 2013. Timing of the establishment of the east-flowing Yangtze River and tectonic-geomorphic implications. Quaternary Sciences, 33(4): 621-630, 620] [文内引用:3]
[79] 周松源, 郑华平, 彭军, 徐克定, 蒋维三, 刘家铎. 2005. 南鄱阳坳陷油气地质特征. 新疆石油地质, 26(6): 618-622.
[Zhou S Y, Zheng H P, Peng J, Xu K D, Jiang W S, Liu J D. 2005. Characteristics of petroleum geology in South Poyang Depression. Xinjiang Petroleum Geology, 26(6): 618-622] [文内引用:1]
[80] 朱丽, 张会化, 王江海, 周江羽, 解广轰. 2006. 金沙江—红河构造带北段囊谦盆地新生代高钾岩石40Ar/39Ar年代学研究. 大地构造与成矿学, 30(2): 241-247.
[Zhu L, Zhang H H, Wang J H, Zhou J Y, Xie G H. 2006. 40Ar/39Ar chronology of high-K magmatic rocks in Nangqian Basins at the northern segment of the Jinsha-red River shear zone(jrrsz). Geotectonica et Metallogenia, 30(2): 241-247] [文内引用:1]
[81] Andrew D M. 2006. The geology of fluvial deposits. New York: Springer-Verlag Berlin Heidelberg, 99-130. [文内引用:1]
[82] Beck R A, Burbank D W, Sercombe W J, Riley G W, Barndt J K, Berry J R, Afzal J, Khan A M, Jurgen H, Metje J, Cheema A, Shafique N A, Lawrence R D, Khan M A. 1995. Stratigraphic evidence for an early collision between northwest India and Asia. Nature, 373: 55-58. [文内引用:1]
[83] Botsyun S, Sepulchre P, Donnadieu Y, Risi C, Licht A, Caves Rugenstein J K. 2019. Response to Comment on “Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene”. Science, 365: eaax8990. [文内引用:1]
[84] Burbank D, Meigs A, Brozović N. 1996. Interactions of growing folds and coeval depositional systems. Basin Research, 8: 199-223. [文内引用:1]
[85] Burchfiel B C, Chen Z L, Yupinc L, Royden L H. 1995. Tectonics of the Longmen Shan and adjacent regions, central China. International Geology Review, 37: 661-735. [文内引用:1]
[86] Chen A, Darbon J, Morel J M. 2014. Land scape evolution models: a review of their fundamental equations. Geomorphology, 219: 68-86. [文内引用:1]
[87] Chen H, Hu J M, Wu G L, Shi W, Geng Y Y, Qu H J. 2015. Apatite fission-track thermochronological constraints on the pattern of late Mesozoic-Cenozoic uplift and exhumation of the Qinling Orogen, central China. Journal of Asian Earth Sciences, 114: 649-673. [文内引用:1]
[88] Chen Y, Meng J, Liu H, Wang C S, Tang M, Liu T, Zhao Y N. 2022. Detrital zircons record the evolution of the Cathaysian Coastal Mountains along the South China margin. Basin Research, 34: 688-701. [文内引用:1]
[89] Chung S L, Lo C H, Lee T Y, Zhang Y Q, Xie Y W, Li X H, Wang K L, Wang P L. 1998. Diachronous uplift of the Tibetan Plateau starting 40?Myr ago. Nature, 394: 769-773. [文内引用:1]
[90] Chung S L, Chu M F, Zhang Y Q, Xie Y W, Lo C H, Lee T Y, Lan C Y, Li X H, Zhang Q, Wang Y Z. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68: 173-196. [文内引用:1]
[91] Clark M K, Royden L H. 2000. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology, 28: 703. [文内引用:1]
[92] Clark M K, Schoenbohm L M, Royden L H, Whipple K X, Burchfiel B C, Zhang X, Tang W, Wang E, Chen L. 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics, 23(1): TC1006. [文内引用:1]
[93] Clift P D, Blusztajn J, Nguyen A D. 2006. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. Geophysical Research Letters, 33: L19403. [文内引用:1]
[94] Clift P D, Carter A, Giosan L, Durcan J, Duller G A T, Macklin M G, Alizai A, Tabrez A R, Danish M, WagonerLaningham S, Fuller D Q. 2012. U-Pb zircon dating evidence for a Pleistocene Sarasvati River and capture of the Yamuna River. Geology, 40: 211-214. [文内引用:1]
[95] Clift P D, Wagoner Long H, Hinton R, Ellam R M, Hannigan R, Tan M T, Blusztajn J, Duc N A. 2008. Evolving East Asian River systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sediments. Geochemistry, Geophysics, Geosystems, 9: Q04039. [文内引用:1]
[96] Deng B, Liu S G, Li Z W, Jansa L F, Liu S, Wang G Z, Sun W. 2013. Differential exhumation at eastern margin of the Tibetan Plateau, from apatite fission-track thermochronology. Tectonophysics, 591: 98-115. [文内引用:1]
[97] Deng B, Li Z W, Liu S G, Wang G Z, Li S J, Qin Z P, Li J X, Jansa L. 2016. Structural geometry and kinematic processes at the intracontinental Daloushan Mountain chain: implications for tectonic transfer in the Yangtze Block interior. Comptes Rendus Geoscience, 348: 159-168. [文内引用:1]
[98] Dietrich W E, Reiss R, Hsu M L, Montgomery D R. 1995. A process-based model for colluvial soil depth and shallow land sliding using digital elevation data. Hydrological Processes, 9: 383-400. [文内引用:1]
[99] Ding R X, Min K, Zou H P. 2019 a. Inversion of topographic evolution using low-T thermal history: a case study from coastal mountain system in Southeastern China. Gondwana Research, 67: 21-32. [文内引用:1]
[100] Ding R X, Chang Y, Min K, Xu C H, Wang W. 2021. Post-orogenic topographic evolution of the Dabie orogen, Eastern China: insights from apatite and zircon(U-Th)/He thermochronology. Geomorphology, 374: 107487. [文内引用:1]
[101] Ding X S, Salles T, Flament N, Mallard C, Rey P F. 2019b. Drainage and sedimentary responses to dynamic topography. Geophysical Research Letters, 46: 14385-14394. [文内引用:1]
[102] England P, Molnar P. 1990. Surface uplift, uplift of rocks, and exhumation of rocks. Geology, 18: 1173. [文内引用:1]
[103] Furlong K P, Kirby E, Creason C G, Kamp P J J, Xu G Q, Danišík M, Shi X H, Hodges K V. 2021. Exploiting thermochronology to quantify exhumation histories and patterns of uplift along the margins of Tibet. Frontiers in Earth Science, 9: 688374. [文内引用:1]
[104] Guo L C, Zhang B, Xiong S F, Wu J B, Chen Z L, Cui J Y, Chen Y L, Ye W, Zhu L D. 2022. Shifts in the silicate weathering regime in South China during the Meso-Cenozoic linked to Asian summer monsoon evolution. Global and Planetary Change, 212: 103809. [文内引用:1]
[105] Haq B U, Hardenbol J, Vail P R. 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235: 1156-1167. [文内引用:1]
[106] He M Y, Zheng H B, Clift P D. 2013. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sand s: implications for major magmatic events and crustal evolution in Central China. Chemical Geology, 360-361: 186-203. [文内引用:1]
[107] He M Y, Zheng H B, Bookhagen B, Clift P D. 2014. Controls on erosion intensity in the Yangtze River Basin tracked by U-Pb detrital zircon dating. Earth-Science Reviews, 136: 121-140. [文内引用:1]
[108] Hoke G D, Jing L Z, Hren M T, Wissink G K, Garzione C N. 2014. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth and Planetary Science Letters, 394: 270-278. [文内引用:1]
[109] Hu S B, Kohn B P, Raza A, Wang J Y, Gleadow A J W. 2006. Cretaceous and Cenozoic cooling history across the ultrahigh pressure Tongbai-Dabie belt, central China, from apatite fission-track thermochronology. Tectonophysics, 420: 409-429. [文内引用:1]
[110] Humphrey N F, Konrad S K. 2000. River incision or diversion in response to bedrock uplift. Geology, 28: 43. [文内引用:1]
[111] Jacob A C, Brian W R, Stephan A G, Andrea F, George E H. 2011. Terrestrial source to deep-sea sink sediment budgets at high and low sea levels: insights from tectonically active Southern California. Geology, 39(7): 619-622. [文内引用:1]
[112] Jia J T, Zheng H B, Huang X T, Wu F Y, Yang S Y, Wang K, He M Y. 2010. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: implication for the evolution of the Yangtze River. Chinese Science Bulletin, 55: 1520-1528. [文内引用:1]
[113] Ken L F, Jerry X M, Liviu G, Peter D C. 2015. Sea-level responses to erosion and deposition of sediment in the Indus River basin and the Arabian Sea. Earth and Planetary Science Letters, 416: 12-20. [文内引用:1]
[114] Klootwijk C T, Gee J S, Peirce J W, Smith G M, McFadden P L. 1992. An early India-Asia contact: paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology, 20: 395-398. [文内引用:1]
[115] Lee T Y, Lawver L A. 1995. Cenozoic plate reconstruction of Southeast Asia. Tectonophysics, 251: 85-138. [文内引用:2]
[116] Li J H, Zhang Y Q, Dong S W, Johnston S T. 2014. Cretaceous tectonic evolution of South China: a preliminary synthesis. Earth-Science Reviews, 134: 98-136. [文内引用:2]
[117] Li J J, Xie S Y, Kuang M S. 2001. Geomorphic evolution of the Yangtze Gorges and the time of their formation. Geomorphology, 41: 125-135. [文内引用:1]
[118] Li S Y, Currie B S, Rowley D B, Ingalls M. 2015 a. Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau: constraints on the tectonic evolution of the region. Earth and Planetary Science Letters, 432: 415-424. [文内引用:1]
[119] Li T Y, He Z L, He S, Zhou Y, Sun D S, Wo Y J, Yang X Y, Wang L. 2015 b. Tectonic and thermal history during the Mesozoic and Cenozoic stage in paizhouwan region, Jianghan plain, mid Yangtze area. Chinese Journal of Geophysics, 58: 665-681. [文内引用:1]
[120] Li X M, Shan Y H. 2011. Diverse exhumation of the Mesozoic tectonic belt within the Yangtze Plate, China, determined by apatite fission-track thermochronology. Geosciences Journal, 15: 349-357. [文内引用:1]
[121] Li X M, Zou H P. 2017. Late Cretaceous-Cenozoic exhumation of the southeastern margin of Coastal Mountains, SE China, revealed by fission-track thermochronology: implications for the topographic evolution. Solid Earth Sciences, 2: 79-88. [文内引用:1]
[122] Li X Y, Zhang R, Zhang Z S, Yan Q. 2018. What enhanced the aridity in Eocene Asian inland : global cooling or early Tibetan Plateau uplift? Palaeogeography, Palaeoclimatology, Palaeoecology, 510: 6-14. [文内引用:1]
[123] Li Y Q, He D F, Chen L B, Mei Q H, Li C X, Zhang L. 2016. Cretaceous sedimentary basins in Sichuan, SW China: restoration of tectonic and depositional environments. Cretaceous Research, 57: 50-65. [文内引用:1]
[124] Li Z W, Liu S G, Chen H D, Deng B, Hou M C, Wu W H, Cao J X. 2012. Spatial variation in Meso-Cenozoic exhumation history of the Longmen Shan thrust belt(eastern Tibetan Plateau)and the adjacent western Sichuan Basin: constraints from fission track thermochronology. Journal of Asian Earth Sciences, 47: 185-203. [文内引用:1]
[125] Li Z X, Gao J, Liu C L, Xu M. 2015c. Present-day heat flow, thermal history, and tectonic subsidence of the Jianghan Basin. Energy Exploration & Exploitation, 33: 707-725. [文内引用:1]
[126] Licht A, van Cappelle M, Abels H A, Ladant J B, Trabucho-Alexand re J, France-Lanord C, Donnadieu Y, Wagonerdenberghe J, Rigaudier T, Lécuyer C, Terry D, Adriaens R, Boura A, Guo Z, Soe A N, Quade J, Dupont-Nivet G, Jaeger J J. 2014. Asian monsoons in a late Eocene greenhouse world. Nature, 513: 501-506. [文内引用:1]
[127] Liu H Q, Tang Y, Chen K Q, Tang W J. 2017. The tectonic uplift since the Late Cretaceous and its impact on the preservation of hydrocarbon in southeastern Sichuan Basin, China. Journal of Petroleum Exploration and Production Technology, 7: 451-461. [文内引用:1]
[128] Liu J H, Gou G N, Wang Q, Zhang X Z, Guo H F. 2022. Petrogenesis of Eocene high-silica granites in the Maliaoshan area, northern Tibet: implications for the Eocene magmatic flare-up in the Northern Qiangtang Block. Journal of Asian Earth Sciences, 234: 105268. [文内引用:1]
[129] Ma X L, Jiang H C, Cheng J, Xu H Y. 2012. Spatiotemporal evolution of Paleogene palynoflora in China and its implication for development of the extensional basins in East China. Review of Palaeobotany and Palynology, 184: 24-35. [文内引用:1]
[130] Miao Y F, Song C H, Fang X M, Meng Q Q, Zhang P, Wu F L, Yan X L. 2016. Late Cenozoic genus Fupingopollenites development and its implications for the Asian summer monsoon evolution. Gondwana Research, 29: 320-333. [文内引用:1]
[131] Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han J T, Liebke U, Oliver G, Parrish R, Vezzoli G. 2010. Timing of india-asia collision: geological, biostratigraphic, and palaeomagnetic constraints. Journal of Geophysical Research, 115: B12416. [文内引用:1]
[132] Peter W R, Mark T B. 2006. Using thermochronology to understand orogenic erosion. The Annual Review of Earth and Planetary Science, 34: 419-466. [文内引用:1]
[133] Qiu L A, Yan D P, Tang S L, Chen F, Gong L X, Zhang Y X. 2020. Cenozoic exhumation of the neoproterozoic Sanfang batholith in South China. Journal of the Geological Society, 177: 412-423. [文内引用:1]
[134] Ren J Y, Tamaki K, Li S T, Zhang J X. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics, 344: 175-205. [文内引用:2]
[135] Richardson N J, Densmore A L, Seward D, Fowler A, Wipf M, Ellis M A, Yong L, Zhang Y. 2008. Extraordinary denudation in the Sichuan Basin: insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau. Journal of Geophysical Research, 113: B04409. [文内引用:2]
[136] Richardson N J, Densmore A L, Seward D, Wipf M, Yong L. 2010. Did incision of the Three Gorges begin in the Eocene?Geology, 38: 551-554. [文内引用:1]
[137] Ring U, Brand on M T, Willett S D, Lister G S. 1999. Exhumation processes. Geological Society London Special publications, 154: 1-27. [文内引用:1]
[138] Salles T. 2016. Badland s: a parallel basin and land scape dynamics model. SoftwareX, 5: 195-202. [文内引用:2]
[139] Salles T, Hardiman L. 2016. Badland s: an open-source, flexible and parallel framework to study land scape dynamics. Computers & Geosciences, 91: 77-89. [文内引用:2]
[140] Salles T, Ding X S, Brocard G. 2018. PyBadland s: a framework to simulate sediment transport, land scape dynamics and basin stratigraphic evolution through space and time. PLoS One, 13: e0195557. [文内引用:2]
[141] Schellart W P, Chen Z, Strak V, Duarte J C, Rosas F M. 2019. Pacific subduction control on Asian continental deformation including Tibetan extension and eastward extrusion tectonics. Nature Communications, 10: 4480. [文内引用:2]
[142] Schoenbohm L M, Burchfiel B C, Chen L Z. 2006. Propagation of surface uplift, lower crustal flow, and Cenozoic tectonics of the southeast margin of the Tibetan Plateau. Geology, 34: 813-816. [文内引用:1]
[143] Schumm S A. 1993. River response to baselevel change: implications for sequence stratigraphy. The Journal of Geology, 101: 279-294. [文内引用:1]
[144] Scotese C R, Wright N. 2018. PALEO MaP Paleodigital Elevation Models(PaleoDEMS)for the Phanerozoic PALEO MaP Project. https://www.earthbyte.org/paleodem-resourcescotese-and-wright-2018/. [文内引用:1]
[145] Shen C B, Hu D, Shao C, Mei L F. 2018. Thermochronology quantifying exhumation history of the Wudang Complex in the South Qinling Orogenic Belt, central China. Geological Magazine, 155: 893-906. [文内引用:1]
[146] Shi H C, Shi X B, Yang X Q, Jiang H Y. 2013. The exhumation process of Mufushan granite in Jiangnan uplift since Cenozoic: evidence from low-temperature thermochronology. Chinese Journal of Geophysics, 56: 273-286. [文内引用:1]
[147] Shi H C, Shi X B, Glasmacher U A, Yang X Q, Stockli D F. 2016. The evolution of eastern Sichuan Basin, Yangtze block since Cretaceous: constraints from low temperature thermochronology. Journal of Asian Earth Sciences, 116: 208-221. [文内引用:1]
[148] Smith R B, Barstad I. 2004. A linear theory of orographic precipitation. Journal of the Atmospheric Sciences, 61: 1377-1391. [文内引用:1]
[149] Song X Y, Zhou M F, Cao Z M, Robinson P T. 2004. Late Permian rifting of the South China Craton caused by the Emeishan mantle plume?Journal of the Geological Society, 161: 773-781. [文内引用:1]
[150] Stüwe K, Terence D B. 1998. On uplift and exhumation during convergence. Tectonics, 17: 80-88. [文内引用:1]
[151] Sun X J, Wang P X. 2005. How old is the Asian monsoon system?: palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 222: 181-222. [文内引用:1]
[152] Sun Y, Zhou T J, Ramstein G, Contoux C, Zhang Z S. 2016. Drivers and mechanisms for enhanced summer monsoon precipitation over East Asia during the mid-Pliocene in the IPSL-CM5A. Climate Dynamics, 46: 1437-1457. [文内引用:1]
[153] Suo Y H, Li S Z, Jin C, Zhang Y, Zhou J, Li X Y, Wang P C, Liu Z, Wang X Y, Somerville I. 2019. Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China. Earth-Science Reviews, 196: 102884. [文内引用:2]
[154] Suo Y H, Li S Z, Cao X, Dong H W, Li X Y, Wang X Y. 2020. Two-stage eastward diachronous model of India-Eurasia collision: constraints from the intraplate tectonic records in Northeast Indian Ocean. Gondwana Research, 102: 372-384. [文内引用:1]
[155] Tang S L, Yan D P, Qiu L, Gao J F, Wang C L. 2014. Partitioning of the Cretaceous Pan-Yangtze Basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics?Gondwana Research, 25: 1644-1659. [文内引用:1]
[156] Tsuboi C. 1983. Gravity. Society, London, Special Publications. London: George Allen and Unwin, 254. [文内引用:1]
[157] Tucker G E, Hancock G R. 2010. Modelling land scape evolution. Earth Surface Processes and Land forms, 35: 28-50. [文内引用:2]
[158] Wang E, Kirby E, Furlong K P, van Soest M, Xu G, Shi X, Kamp P J J, Hodges K V. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 5: 640-645. [文内引用:1]
[159] Wang F, Chen H L, Batt G E, Lin X B, Gong J F, Gong G H, Meng L F, Yang S F, Jourdan F. 2015. Tectonothermal history of the NE Jiangshan-Shaoxing suture zone: evidence from 40Ar/39Ar and fission-track thermochronology in the Chencai region. Precambrian Research, 264: 192-203. [文内引用:1]
[160] Wang P, Zheng H B, Chen L, Chen J, Xu Y, Wei X, Yao X. 2014. Exhumation of the Huangling anticline in the Three Gorges region: Cenozoic sedimentary record from the western Jianghan Basin, China. Basin Research, 26: 505-522. [文内引用:1]
[161] Wang P, Zheng H B, Wang Y D, Wei X C, Tang L Y, Jourdan F, Chen J, Huang X T. 2022. Sedimentology, geochronology, and provenance of the late Cenozoic”Yangtze Gravel”: implications for Lower Yangtze River reorganization and tectonic evolution in southeast China. Bulletin, 134(1-2): 463-486. [文内引用:1]
[162] Wang Y, Wang Y J, Li S B, Seagren E, Zhang Y Z, Zhang P Z, Qian X. 2020. Exhumation and land scape evolution in eastern South China since the Cretaceous: new insights from fission-track thermochronology. Journal of Asian Earth Sciences, 191: 104239. [文内引用:1]
[163] Wang Y N, Zhang J, Zhang B H, Zhao H. 2018. Cenozoic exhumation history of South China: a case study from the Xuefeng Mt. Range. Journal of Asian Earth Sciences, 151: 173-189. [文内引用:1]
[164] Watts A B, Thorne J. 1984. Tectonics, global changes in sea level and their relationship to stratigraphical sequences at the US Atlantic continental margin. Marine and Petroleum Geology, 1: 319-339. [文内引用:1]
[165] Whipple K X, Tucker G E. 1999. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, land scape response timescales, and research needs. Journal of Geophysical Research: Solid Earth, 104: 17661-17674. [文内引用:2]
[166] Wu L L, Mei L, Paton D, Liu Y S, Shen C B, Liu Z Q, Luo J, Min C Z, Li M H, Wen H. 2020. Basement structures have crucial influence on rift development: insights from the Jianghan Basin, central China. Tectonics, 39: e2019TC005671. [文内引用:1]
[167] Xu Y, Zhu J J, Hu R Z, Bi X W, Yu H J, Xu L L, Liu B H, Huang M L, Sheng X Y. 2019. Heterogeneous lithospheric mantle beneath the southeastern Tibetan Plateau: evidence from Cenozoic high-Mg potassic volcanic rocks in the Jinshajiang-Ailaoshan Cenozoic magmatic belt. Journal of Asian Earth Sciences, 180: 103849. [文内引用:1]
[168] Yan Z K, Li Y, Li H B, Dong S L, Zhao G H, Li J B, Li F S, Yan L A, Zheng L L. 2015. Application of the material balance method in paleoelevation recovery: a case study of the Longmen Mountains foreland basin on the eastern margin of the Tibetan Plateau. Acta Geologica Sinica-English Edition, 89(2): 598-609. [文内引用:1]
[169] Yang C Q, Shen C B, Zattin M, Yu W, Shi S X, Mei L F. 2019. Provenances of Cenozoic sediments in the Jianghan Basin and implications for the formation of the Three Gorges. International Geology Review, 61: 1980-1999. [文内引用:1]
[170] Yang F, . pngon G, Liu C, Qian Z S, Zhang X H, Zhang Y, Glorie S. 2022. Uplift-exhumation and preservation of the Yumugou Mo-W deposit, East Qinling, China: insights from multiple apatite low-temperature thermochronology. Ore Geology Reviews, 141: 104670. [文内引用:1]
[171] Yang Z, Shen C B, Lothar R, Eva E M, Raymond J, Bastian W, Dong Y P. 2016. Sichuan Basin and beyond: eastward foreland growth of the Tibetan Plateau from an integration of Late Cretaceous-Cenozoic fission track and (U-Th)/He ages of the eastern Tibetan Plateau, Qinling, and Daba Shan. Journal of Geophysical Research: Solid Earth, 122: 4712-4740. [文内引用:1]
[172] Yao Y F, Bruch A A, Mosbrugger V, Li C S. 2011. Quantitative reconstruction of Miocene climate patterns and evolution in Southern China based on plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 304: 291-307. [文内引用:1]
[173] Yu X C, Liu C L, Wang C L, Li F, Wang J Y. 2020. Eolian deposits of the northern margin of the South China(Jianghan Basin): reconstruction of the Late Cretaceous East Asian land scape in central China. Marine and Petroleum Geology, 117: 104390. [文内引用:1]
[174] Yu X C, Liu C L, Wang C L, Wang J Y. 2021. Late Cretaceous aeolian desert system within the Mesozoic fold belt of South China: palaeoclimatic changes and tectonic forcing of East Asian erg development and preservation. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110299. [文内引用:1]
[175] Yuan W M, Yang Z Q, Zhang Z C, Deng J. 2011. The uplifting and denudation of main Huangshan Mountains, Anhui Province, China. Science China Earth Sciences, 54(8): 1168-1176. [文内引用:1]
[176] Zhang H P, Oskin M E, Jing L Z, Zhang P Z, Reiners P W, Xiao P. 2016. Pulsed exhumation of interior eastern Tibet: implications for relief generation mechanisms and the origin of high-elevation planation surfaces. Earth and Planetary Science Letters, 449: 176-185. [文内引用:1]
[177] Zhang K J. 2000. Cretaceous palaeogeography of Tibet and adjacent areas(China): tectonic implications. Cretaceous Research, 21: 23-33. [文内引用:1]
[178] Zhang S B, Zheng Y F, Wu Y B, Zhao Z F, Gao S, Wu F Y. 2006. Zircon U-Pb age and Hf isotope evidence for 3. 8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters, 252(1-2): 56-71. [文内引用:1]
[179] Zhang Y F, Li C A, Wang Q L, Chen L, Ma Y F, Kang C G. 2008. Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges. Chinese Science Bulletin, 53(4): 584-590. [文内引用:1]
[180] Zhao X D, Zhang H P, Hetzel R, Kirby E, Duvall A R, Whipple K X, Xiong J G, Li Y F, Pang J Z, Wang Y, Wang P, Liu K, Ma P F, Zhang B, Li X M, Zhang J W, Zhang P Z. 2021. Existence of a continental-scale river system in eastern Tibet during the Late Cretaceous-early Palaeogene. Nature Communications, 12(1): 7231. [文内引用:1]
[181] Zheng H B. 2015. Birth of the Yangtze River: age and tectonic-geomorphic implications. National Science Review, 2: 438-453. [文内引用:1]
[182] Zheng H B, Jia D, Chen J, Wang P. 2011. Did incision of the Three Gorges begin in the Eocene?Comment. Geology, 39: e244. [文内引用:1]
[183] Zheng H B, Clift P D, Wang P, Tada R, Jia J T, He M Y, Jourdan F. 2013. Pre-miocene birth of the Yangtze River. Proceedings of the National Academy of Sciences of the United States of America, 110(19): 7556-7561. [文内引用:1]