田子晗, 索艳慧, 李三忠, 丁雪松, 韩续, 宋双双, 付新建. (2024). 长江三峡贯通过程的动态古地貌重建* [J]. 古地理学报, 26(1): 208-229.
TIAN Zihan, SUO Yanhui, LI Sanzhong, DING Xuesong, HAN Xu, SONG Shuangshuang, FU Xinjian. (2024). Dynamic paleo-landscape reconstruction revealing incision process of Three Gorges of Yangtze River[J]. Journal Of Palaeogeography, 26(1): 208-229.
Dynamic paleo-landscape reconstruction revealing incision process of Three Gorges of Yangtze River
TIAN Zihan1,2, SUO Yanhui1,2, LI Sanzhong1,2, DING Xuesong3, HAN Xu1,2, SONG Shuangshuang1,2, FU Xinjian1,2
1 Frontiers Science Center for Deep Ocean Multispheres and Earth System,Key Lab of Submarine Geosciences and Prospecting Techniques,MOE and College of Marine Geosciences,Ocean University of China,Shandong Qingdao 266100,China
2 Laboratory for Marine Mineral Resources,National Laboratory for Marine Science and Technology(Qingdao),Shandong Qingdao 266237,China
3 University of California Los Angeles,Department of Earth,Planetary and Space Sciences,Los Angeles,CA90095,USA
About the corresponding author SUO Yanhui,born in 1987,is a professor and a Ph.D. supervisor of Ocean University of China. She mainly focuses on marine geology and marine geodynamics. E-mail: suoyh@ouc.edu.cn.
About the first author TIAN Zihan,born in 1998,master degree candidate,majors in marine geology. E-mail: tzh7403@stu.ouc.edu.cn.
Fund:Co-funded by the Marine S & T Fund of Shandong Province for National Laboratory for Marine Science and Technology(Qingdao)(No.2022QNLM05032),the National Natural Science Foundation of China(Nos.42121005,91958214),the Natural Science Foundation of Shandong Province of China(No. ZR2021YQ25)and the Fundamental Research Funds for the Central Universities(No.202172003)
Abstract
The Yangtze River,Asia's largest river,represents a significant geomorphological event within the integrated tectonics-climate-landscape system of the Cenozoic era in China. A key point of debate in understanding its formation is the timing of the incision of the Three Gorges,situated between the Sichuan and Jianghan basins,which marked the emergence of the modern Yangtze River. Despite abundant geological data,there remains controversy over when exactly the Three Gorges were formed or incised. Previous studies usually focused on isolated factor affecting the river development,e.g., tectonic movements,sedimentology,paleo-climate and sea level changes,to resolve this key issue. In contrast,our study utilizes Badlands,a software for simulating paleo-landscape,to integrate these key factors quantitatively. Focusing on the area east of the “first bend”(Shigu Town in Yunnan Province)of the Yangtze River,we used Badlands to reconstruct the paleo-landscape and river system evolution process since the Late Cretaceous(80 Ma). We further validated our model results using seismic data from the Sichuan and Jianghan basins. The results revealed that the river flow direction in the Sichuan Basin was reversed to drain northwards due to the Late Eocene-Oligocene uplift in the eastern Tibet and the southwestern Upper Yangtze Plate. The Jianghan Basin maintained a consistently low base level during the early Paleogene,influenced by the continental rifting environment in eastern China. The reversal of the drainage direction in the Sichuan Basin and the long-lasting low base level in the Jianghan Basin eventually made the Three Gorges to be incised at the latest Oligocene. We propose that the reversal and subsequent capture of the Upper Yangtze River's flow by the middle Yangtze River played a crucial role in the incision mechanism of the Three Gorges.
Key words:
paleo-landscape reconstruction; Three Gorges incision; Late Oligocene; Sichuan Basin; Jianghan Basin; drainage inversion
图 3 长江流域晚白垩世(80 Ma)以来构造数据分布(具体数据及来源见表 2)Fig.3 Distribution of tectonic data since the Late Cretaceous(80 Ma)in Yangtze River basin(see details in Table 2)
表2
Table 2
表2(Table 2)
表2 长江流域晚白 垩世以来造山带区域隆升剥露数据Table 2 Uplift and exfoliation data of orogenic belt region since the Late Cretaceous in Yangtze River basin
表2 长江流域晚白 垩世以来造山带区域隆升剥露数据Table 2 Uplift and exfoliation data of orogenic belt region since the Late Cretaceous in Yangtze River basin
山脉、高原等隆升区数据绝大多数来自低温热年代学方法获得的研究资料(表 2; 表 3)。低温热年代学研究最常见的对象是磷灰石或锆石裂变径迹, 该方法往往用以揭示岩石的剥露(exhumation)过程(Peter and Mark, 2006), 即岩石相对的地表位移, 其往往是侵蚀(erosion)或构造活动(tectonic progress)引发负载岩石的清除(removal)作用(England Molnar, 1990)。通常情况下, 磷灰石快速冷却是构造剥露的重要特征, 而正断层活动、陆内造山增厚及大陆边缘地壳横向减薄等构造因素控制了构造剥露速度(Ring et al., 1999; Stü we and Terence, 1998), 因此可以通过低温热年代学数据对构造地形加以约束。地壳均衡补偿了相当一部分剥露作用效果(Tsuboi, 1983), 因此低温热年代学数据包含了均衡效应的影响。此外, 地壳挠曲均衡量恢复严重依赖准确的有效弹性厚度(Te), 该数值受到板块演化的显著影响。因研究区构造单元众多且模拟时间跨度大, 难以获得合适的Te参数, 故建立模型时没有进行挠曲均衡校正。
表 3
Table3
表 3(Table3)
表 3 长江流域晚白垩世以来盆地沉降速率数据Table3 Data of basin subsidence rates since the Late Cretaceous in Yangtze River basin
柏道远, 黄建中, 孟德保, 马铁球, 王先辉, 张晓阳, 陈必河. 2006. 湘东南地区中、新生代山体隆升过程的热年代学研究. , 27(6): 525-536. [Bai DY, Huang JZ, Meng DB, Ma TQ, Wang XH, Zhang XY, Chen BH. 2006. Meso-cenozoic thermochronological analysis of the uplift process of mountains in southeast Hunan. , 27(6): 525-536][文内引用:1]
[2]
柏道远, 李长安, 王先辉, 周柯军, 马铁球, 彭云益, 李纲, 陈渡平. 2010. 第四纪华容隆起构造活动、成因及动力机制. , 45(2): 411-427. [Bai DY, Li CA, Wang XH, Zhou KJ, Ma TQ, Peng YY, LiG, Chen DP. 2010. Tectonic activities, genesis and dynamic mechanisms of Quaternary Huarong uplift. , 45(2): 411-427][文内引用:1]
[3]
陈丕基. 1997. 晚白垩世中国东南沿岸山系与中南地区的沙漠和盐湖化. , 21(3): 203-213. [Chen PJ. 1997. Coastal Mountains of SE China, desertization and saliniferous lakes of Central China during the Upper Cretaceous. , 21(3): 203-213][文内引用:1]
[4]
陈思宇, 王嘉学. 2017. 云贵高原隆升研究进展. , 29(3): 23-29, 40. [Chen SY, Wang JX. 2017. Progress in research on tectonic uplift in Yunnan-Guizhou plateau. , 29(3): 23-29, 40][文内引用:1]
[5]
邓宾, 刘树根, 刘顺, 李智武, 赵建成. 2009. 四川盆地地表剥蚀量恢复及其意义. , 36(6): 675-686. [DengB, Liu SG, LiuS, Li ZW, Zhao JC. 2009. Restoration of exhumation thickness and its significance in Sichuan Basin, China. ), 36(6): 675-686][文内引用:1]
[6]
邓宾, 刘树根, 王国芝, 李智武, 刘顺, 曹俊兴. 2013. 四川盆地南部地区新生代隆升剥露研究: 低温热年代学证据. , 56(6): 1958-1973. [DengB, Liu SG, Wang GZ, Li ZW, LiuS, Cao JX. 2013. Cenozoic uplift and exhumation in southern Sichuan Basin: evidence from low-temperature thermochronology. , 56(6): 1958-1973][文内引用:1]
[7]
邓宾, 雍自权, 刘树根, 李智武, 赵高平, 米色子哈, 汤聪. 2016. 青藏高原东南缘大凉山新生代隆升建造过程: 多封闭系统低温热年代学与热模型限制. , 59(6): 2162-2175. [DengB, Yong ZQ, Liu SG, Li ZW, Zhao GP, MiS, TangC. 2016. Cenozoic Mountain-building processes in the Daliangshan, southeastern margin of the Tibetan Plateau: evidence from low-temperature thermochronology and thermal modeling. , 59(6): 2162-2175][文内引用:1]
[8]
丁汝鑫, 陈国能, 周祖翼, 许长海. 2012. 利用低温热史恢复大别造山带晚白垩世以来的古高度. , 42(S1): 247-253. [Ding RX, Chen GN, Zhou ZY, Xu CH. 2012. The paleoelevation reconstruction of Late Cretaceous dabie orogen by low-temperature thermochronological modelling data. , 42(S1): 247-253][文内引用:1]
[9]
杜德勋, 罗建宁, 李兴振. 1997. 昌都地块沉积演化与古地理. , 17(4): 1-17. [Du DX, Luo JN, Li XZ. 1997. Sedimentary evolution and palaeogeography of the Qamdo block in Xizang. , 17(4): 1-17][文内引用:1]
[10]
冯盈. 2016. 青藏高原东南缘云南思茅盆地新生代碎屑锆石U-Pb年龄分析. . [FengY. 2016. Detrital zircon U-Pb geochronology of Simao Basin in the southeastern Tibetan Plateau in the Cenozoic. [文内引用:2]
[11]
傅强, 李益, 张国栋, 刘玉瑞. 2007. 苏北盆地晚白垩世—古新世海侵湖泊的证据及其地质意义. , 25(3): 380-385. [FuQ, LiY, Zhang GD, Liu YR. 2007. Evidence of transgression lake of Subei Basin during Late Cretaceous and Paleocene epoch and its geological significance. , 25(3): 380-385][文内引用:1]
[12]
葛翔, 沈传波, 梅廉夫. 2016. 低温热年代对黄陵隆起中新生代古地形的约束. , 40(4): 654-662. [GeX, Shen CB, Mei LF. 2016. Low-temperature thermochronological constraints on the mesozoic-cenozoic paleotopograph in the Huangling massif. , 40(4): 654-662][文内引用:1]
胡济民, 曾德敏. 1996. 洞庭湖盆地白垩纪早第三纪的岩石地层与生物地层. , 15(4): 193-197. [Hu JM, Zeng DM. 1996. Petrostratigraphy and biostratigraphy of Cretaceous early tertiary periods in Dongting Basin. , 15(4): 193-197][文内引用:1]
[15]
胡圣标, 郝杰, 付明希, 吴维平, 汪集旸. 2005. 秦岭—大别—苏鲁造山带白垩纪以来的抬升冷却史: 低温年代学数据约束. , 21(4): 1167-1173. [Hu SB, HaoJ, Fu MX, Wu WP, Wang JY. 2005. Cenozoic denudation and cooling history of Qingling-Dabie-Sulu orogens: apatite fission track thermochronology constrains. , 21(4): 1167-1173][文内引用:1]
[16]
贾小乐. 2016. 川东南构造几何学与运动学特征及其与雪峰山西段的构造关系探讨. . [Jia XL. 2016. Structural geometry and kinematics of southeast Sichuan Basin: insights into tectonic relationship with the western segment of XueFeng Mountain orogenic belt. [文内引用:1]
[17]
江汉油田石油地质志编写组. 1991. , 171-213. [Compilation Group of petroleum Geology of Jianghan Oilfield. 1991. , 171-213][文内引用:1]
[18]
江卓斐, 崔晓庄, 伍皓, 卓皆文. 2014. 四川会理地区古近纪雷打树组碎屑锆石LA-ICP-MSU-Pb年龄及其地质意义. , 33(6): 788-803. [Jiang ZF, Cui XZ, WuH, Zhuo JW. 2014. Detrital zircon LA-ICP-MS U-Pb ages of the Paleogene Leidashu Formation in Huili, Sichuan Province and their geological significance. , 33(6): 788-803][文内引用:1]
[19]
姜磊, 邓宾, 刘树根, 王自剑, 周政, 罗强, 何宇, 赖冬. 2018. 上扬子盆地新生代差异抬升剥蚀与分异过程. , 43(6): 1872-1886. [JiangL, DengB, Liu SG, Wang ZJ, ZhouZ, LuoQ, HeY, LaiD. 2018. Differential uplift and fragmentation of Upper Yangtze Basin in Cenozoic. , 43(6): 1872-1886][文内引用:1]
[20]
李海龙, 张岳桥, 张长厚, 王继春. 2016. 鲜水河断裂带渐新世至早中新世两期变形相关混合岩的锆石U-Pb年代学及其意义. , 23(2): 222-237. [Li HL, Zhang YQ, Zhang CH, Wang JC. 2016. Zircon U-Pb study of two-staged Oligo-Miocene migmatization along the Xianshuihe fault zone, East Tibet Plateau. , 23(2): 222-237][文内引用:2]
[21]
李建华, 张岳桥, 董树文, 施炜, 李海龙. 2010. 北大巴山凤凰山基底隆起晚中生代构造隆升历史: 磷灰石裂变径迹测年约束. , 45(4): 969-986. [Li JH, Zhang YQ, Dong SW, ShiW, Li HL. 2010. Apatite fission track thermochronologic constraint on Late Mesozoic uplifting of the Fenghuangshan basement uplift. , 45(4): 969-986][文内引用:1]
李三忠, 索艳慧, 周洁, 王光增, 李玺瑶, 姜兆霞, 刘金平, 刘丽军, 刘永江, 占华旺, 姜素华, 程昊皞, 王鹏程, 朱俊江, 戴黎明, 董昊, 刘琳, 郭晓玉. 2022. 华南洋陆过渡带构造演化: 特提斯构造域向太平洋构造域的转换过程与机制. , 28(5): 683-704. [Li SZ, Suo YH, ZhouJ, Wang GZ, Li XY, Jiang ZX, Liu JP, Liu LJ, Liu YJ, Zhan HW, Jiang SH, Cheng HH, Wang PC, Zhu JJ, Dai LM, DongH, LiuL, Guo XY. 2022. Tectonic evolution of the South China Ocean-Continent Connection Zone: transition and mechanism of the Tethyan to the Pacific tectonic domains. , 28(5): 683-704][文内引用:2]
[24]
李永东, 熊熊, 冯雅杉. 2022. 南秦岭大巴山和米仓山—汉南穹隆中生代隆升幅度. , 52(3): 462-473. [Li YD, XiongX, Feng YS. 2022. Mesozoic uplift amplitude of Daba Mountain and Micangshan-Hannan dome in South Qinling. , 52(3): 462-473][文内引用:1]
[25]
李宗盟, 朱文敏, 高红山, 刘芬良, 邢伟. 2021. 黄淮平原区晚新生代气候变迁. , 41(4): 179-191. [Li ZM, Zhu WM, Gao HS, Liu FL, XingW. 2021. Late Cenozoic climate changes in the Huanghuai Plain. , 41(4): 179-191][文内引用:1]
[26]
刘建辉, 张培震, 郑德文, 万景林, 王伟涛. 2010. 秦岭太白山新生代隆升冷却历史的磷灰石裂变径迹分析. , 53(10): 2405-2414. [Liu JH, Zhang PZ, Zheng DW, Wan JL, Wang WT. 2010. The cooling history of Cenozoic exhumation and uplift of the Taibai Mountain, Qinling, China: evidence from the apatite fission track(AFT)analysis. , 53(10): 2405-2414][文内引用:1]
[27]
刘俊来, 曹淑云, 翟云峰, 宋志杰, 王安建, 修群业, 曹殿华, 高兰, 管烨. 2007. 用陆块旋转解释藏东南渐新世—中新世伸展作用: 来自点苍山及邻区变质核杂岩的证据. , 14(4): 40-48. [Liu JL, Cao SY, Zhai YF, Song ZJ, Wang AJ, Xiu QY, Cao DH, GaoL, GuanY. 2007. Rotation of crustal blocks as an explanation of Oligo-Miocene extension in Southeastern Tibet: evidenced by the Diancangshan and nearby metamorphic core complexes. , 14(4): 40-48][文内引用:1]
[28]
刘树根, 罗志立, 戴苏兰, DennisArne, C. J. L. Wilson. 1995. 龙门山冲断带的隆升和川西前陆盆地的沉降. , 69(3): 205-214. [Liu SG, Luo ZL, Dai SL, ArneD, Wilson C JL. 1995. The uplift of the Longmenshan thrust belt and subsidence of the western Sichuan foreland basin. , 69(3): 205-214][文内引用:1]
[29]
刘树根, 孙玮, 李智武, 邓宾, 刘顺. 2008. 四川盆地晚白垩世以来的构造隆升作用与天然气成藏. , 19(3): 293-300. [Liu SG, SunW, Li ZW, DengB, LiuS. 2008. Tectonic uplifting and gas pool formation since Late Cretaceous epoch, Sichuan Basin. , 19(3): 293-300][文内引用:1]
[30]
刘树根, 李智武, PeterJ. J. Kamp, 冉波, 李金玺, 邓宾, 王国芝, GanqingXU, Martin DanišíkM, 杨迪, 王自剑, 李祥辉, 刘顺, 李巨初. 2019. 青藏高原东缘中生代若尔盖古高原的发现及其地质意义. , 46(1): 1-28. [Liu SG, Li ZW, Kamp P JJ, RanB, Li JX, DengB, Wang GZ, Xu GQ, DanišíkM, YangD, Wang ZJ, Li XH, LiuS, Li JC. 2019. Discovery of the Mesozoic Zoige paleo-plateau in eastern Tibetan Plateau and its geological significance. ), 46(1): 1-28][文内引用:1]
[31]
刘训, 付德荣. 1986. 湖南衡阳盆地沉积相及构造发展的若干问题. , 7(2): 13-36. [LiuX, Fu DR. 1986. Some features of the sedimentary facies and the tectonic development of the Hengyang Basin, Hunan Province. , 7(2): 13-36][文内引用:1]
[32]
隆轲, 陈洪德, 林良彪, 徐胜林, 程立雪. 2011. 四川盆地白垩纪构造层序、岩相古地理及演化. , 35(3): 328-336. [LongK, Chen HD, Lin LB, Xu SL, Cheng LX. 2011. Cretaceous tectonic sequence and litho-paleogeographic evolution in the Sichuan Basin. , 35(3): 328-336][文内引用:1]
[33]
卢林. 2005. 潜江凹陷古近纪同沉积构造发育演化及其对潜江期沉积体系的控制. . [LuL. 2005. Development and evolution of Paleogene synsedimentary structure in Qianjiang depression and its control on Qianjiang sedimentary system. [文内引用:1]
[34]
罗开平, 刘光祥, 王津义. 2009. 黔中隆起金沙地区中新生代隆升剥蚀的裂变径迹分析. , 14(1): 61-64. [Luo KP, Liu GX, Wang JY. 2009. Fission track analysis of meso-cenozoic uplift and denudation in Jinsha area, the Qianzhong uplift. , 14(1): 61-64][文内引用:1]
[35]
罗威. 2010. 四川盆地中新生代地层区划及盆地演化分析. . [LuoW. 2010. Regionalization of Mesozoic-Cenozoic strata and analysis of basin evolution of Sichuan Basin. [文内引用:1]
[36]
梅廉夫, 刘昭茜, 汤济广, 沈传波, 凡元芳. 2010. 湘鄂西—川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. , 35(2): 161-174. [Mei LF, Liu ZQ, Tang JG, Shen CB, Fan YF. 2010. Mesozoic intra-continental progressive deformation in western hunan-hubei-eastern Sichuan Provinces of China: evidence from apatite fission track and balanced cross-section. , 35(2): 161-174][文内引用:1]
[37]
孟庆任. 2017. 秦岭的由来. , 487(4): 412-420. [Meng QR. 2017. Origin of the Qinling Mountains. , 487(4): 412-420][文内引用:1]
[38]
任红民, 陈丽琼, 王文军, 陈平原. 2008. 苏北盆地晚白垩世泰州期原型盆地恢复. , 30(1): 52-57. [Ren HM, Chen LQ, Wang WJ, Chen PY. 2008. Restoration of prototype basins of Late Cretaceous Taizhou period in the northern Jiangsu Basin. , 30(1): 52-57][文内引用:1]
[39]
沈传波, 梅廉夫, 徐振平, 汤济广, 田鹏. 2007. 大巴山中—新生代隆升的裂变径迹证据. , 23(11): 2901-2910. [Shen CB, Mei LF, Xu ZP, Tang JG, TianP. 2007. Fission track thermochronology evidence for Mesozoic-Cenozoic uplifting of Daba Mountain, central China. , 23(11): 2901-2910][文内引用:1]
[40]
沈传波, 梅廉夫, 刘昭茜, 徐思煌. 2009. 黄陵隆起中—新生代隆升作用的裂变径迹证据. , 29(2): 54-60. [Shen CB, Mei LF, Liu ZQ, Xu SH. 2009. Apatite and zircon fission track data, evidences for the mesozoic-cenozoic uplift of Huangling dome, central China. , 29(2): 54-60][文内引用:1]
[41]
沈尚峰. 2008. 江汉盆地江陵凹陷的构造格架和演化. . [Shen SF. 2008. Tectonic framework and evolution of Qianjiang depression in Jianghan Basin. [文内引用:1]
[42]
石红才, 施小斌. 2014. 中、上扬子白垩纪以来的剥蚀过程及构造意义: 低温年代学数据约束. , 57(8): 2608-2619. [Shi HC, Shi XB. 2014. Exhumation process of Middle-Upper Yangtze since Cretaceous and its tectonic significance: low-temperature thermochronology constraints. , 57(8): 2608-2619][文内引用:1]
[43]
孙湘君, 汪品先, 王晓梅, 贺娟. 2005. 从中国古植被记录看东亚季风的年龄. , 33(9): 1137-1143, 1159. [Sun XJ, Wang PX, Wang XM, HeJ. 2005. How old is the Asian mosoon system?: palaeobotanical constraints from China. , 33(9): 1137-1143, 1159][文内引用:1]
[44]
唐渊, 王鹏, 邓红, 刘宇平, 唐文清. 2022. 青藏高原东缘鲜水河断裂带南东段渐新世以来主要构造岩浆事件的岩石记录. , 41(7): 1121-1143. [TangY, WangP, DengH, Liu YP, Tang WQ. 2022. Petrological records of major tectono-magmatic events since Oligocene in the southeastern segment of Xianshuihe fault zone in the eastern margin of Tibetan Plateau. , 41(7): 1121-1143][文内引用:1]
[45]
田云涛, 朱传庆, 徐明, 饶松, BarryP. Kohn, 胡圣标. 2010. 白垩纪以来米仓山—汉南穹窿剥蚀过程及其构造意义: 磷灰石裂变径迹的证据. , 53(4): 920-930. [Tian YT, Zhu CQ, XuM, RaoS, Kohn BP, Hu SB. 2010. Exhumation history of the Micangshan-Hannan Dome since Cretaceous and its tectonic significance: evidences from Apatite Fission Track analysis. , 53(4): 920-930][文内引用:1]
[46]
田云涛, 袁玉松, 胡圣标, 邱楠生. 2017. 低温热年代学在沉积盆地研究中的应用: 以四川盆地北部为例. , 24(3): 105-115. [Tian YT, Yuan YS, Hu SB, Qiu NS. 2017. Application of low-temperature thermochronology to sedimentary basins: case studies in the northern Sichuan Basin. , 24(3): 105-115][文内引用:1]
[47]
童国榜, 刘志明, 郑绵平, 袁鹤然, 刘俊英, 王伟铭, 李月丛. 2002. 江汉盆地始新世中、晚期古气候定量重建初探. , 27(4): 446-452. [Tong GB, Liu ZM, Zheng MP, Yuan HR, Liu JY, Wang WM, Li YC. 2002. Primary study on quantitative reconstruction of middle-late Eocene climate in Jianghan Basin. , 27(4): 446-452][文内引用:1]
[48]
汪品先. 1998. 亚洲形变与全球变冷: 探索气候与构造的关系. , 18(3): 213-221. [Wang PX. 1998. Deformation of Asia and global cooling: searching links between climate and tectonics. , 18(3): 213-221][文内引用:2]
[49]
王必金. 2006. 江汉盆地构造演化与勘探方向. . [Wang BJ. 2006. The structure ecolution and favorable exploration areas in Jianghan basin. [文内引用:1]
[50]
王必金, 林畅松, 陈莹, 卢明国, 刘景彦. 2006. 江汉盆地幕式构造运动及其演化特征. , 41(2): 226-230, 248, 19. [Wang BJ, Lin CS, ChenY, Lu MG, Liu JY. 2006. Episodic tectonic movement and evolutional character in Jianghan Basin. , 41(2): 226-230, 248, 19][文内引用:1]
[51]
王春林. 1993. 洞庭湖盆地的形成和演化. , 14(2): 70-78. [Wang CL. 1993. The formation and evolution of Dongting Lake Basin. , 14(2): 70-78][文内引用:1]
[52]
王德良, 梅廉夫, 刘云生, 吴路路, 闵才政, 罗劲. 2018. 伸展型复合盆山体系下江汉盆地中、新生代幕式沉降与迁移. , 43(11): 4180-4192. [Wang DL, Mei LF, Liu YS, Wu LL, Min CZ, LuoJ. 2018. Mesozoic-cenozoic episodic subsidence and migration of Jianghan Basin in extensional composite basin-mountain system. , 43(11): 4180-4192][文内引用:1]
[53]
王二七, 尹纪云. 2009. 川西南新生代构造作用以及四川原型盆地的破坏. , 39(3): 359-367. [Wang EQ, Yin JY. 2009. Cenozoic multi-stage deformation occurred in southwest Sichuan: cause for the dismemberment of the proto-Sichuan Basin. , 39(3): 359-367][文内引用:1]
[54]
王国芝, 王成善, 曾允孚, 赵锡奎. 2000. 滇西高原的隆升与莺歌海盆地的沉积响应. , 18(2): 234-240. [Wang GZ, Wang CS, Zeng YF, Zhao XK. 2000. The uplift of the western Yunnan Plateau and the sedimentary response of the yinggehai basin. , 18(2): 234-240][文内引用:1]
[55]
王国芝, 初凤友, 王成善. 2004. 中新世以来滇西高原内红河流域区的古高程反演. , 31(2): 118-124. [Wang GZ, Chu FY, Wang CS. 2004. Paleoelevation reconstruction of Red River drainage areas in Western Yunnan Plateau since Miocene. ), 31(2): 118-124][文内引用:1]
王平, 刘少峰, 郜瑭珺, 王凯. 2012. 川东弧形带三维构造扩展的AFT记录. , 55(5): 1662-1673. [WangP, Liu SF, Gao TJ, WangK. 2012. Cretaceous transportation of Eastern Sichuan arcuate fold belt in three dimensions: insights from AFT analysis. , 55(5): 1662-1673][文内引用:2]
[58]
王瑞, 姜宝玉. 2021. 中国晚白垩世古水系展布及其对鸭嘴龙类分布的影响. , 23(3): 581-599. [WangR, Jiang BY. 2021. Reconstruction of the Late Cretaceous paleoriver systems in China and their effects on distribution of hadrosaurs. , 23(3): 581-599][文内引用:1]
[59]
王中波, 杨守业, 李萍, 李从先, 蔡进功. 2006. 长江水系沉积物碎屑矿物组成及其示踪意义. , 24(4): 570-578. [Wang ZB, Yang SY, LiP, Li CX, Cai JG. 2006. Detrital mineral compositions of the Changjiang River sediments and their tracing implications. , 24(4): 570-578][文内引用:1]
[60]
温晓锋. 2014. 白垩纪—古近纪南海北缘盆地构造特征研究. . [Wen XF. 2014. Tectonic features of the basins at the north Margin of the South China Sea from Cretaceous to Paleogene. [文内引用:1]
[61]
吴航. 2019. 川东地区中—新生代构造隆升过程研究. . [WuH. 2019. Meso-Cenozoic tectonic uplift process of the Eastern Sichuan Basin. [文内引用:1]
[62]
吴路路. 2019. 江汉盆地的开始、演化与夭折: 基底构造与地幔动力的共同制约. . [Wu LL. 2019. The initiation, evolution and aband onment of the Jianghan Basin: combined influence of basement structures and mantle dynamics. [文内引用:1]
[63]
吴中海, 吴珍汉, 万景林, 周春景. 2003. 华山新生代隆升—剥蚀历史的裂变径迹热年代学分析. , 22(3): 27-32. [Wu ZH, Wu ZH, Wan JL, Zhou CJ. 2003. Cenezoic uplift and denudation history of Huashan Mountains: evidence from fission track thermo-chronology of Huashan granite. , 22(3): 27-32][文内引用:1]
[64]
徐论勋, 阎春德, 俞惠隆, 王宝清, 余芳权, 王典敷. 1995. 江汉盆地下第三系火山岩年代. , 16(2): 132-137. [Xu LX, Yan CD, Yu HL, Wang BQ, Yu FQ, Wang DF. 1995. Chronology of Paleogene volcanic rocks in Jianghan Basin. , 16(2): 132-137. ][文内引用:1]
[65]
徐亚东, 梁银平, 江尚松, 骆满生, 季军良, 张宗言, 韦一, 宋博文. 2014. 中国东部新生代沉积盆地演化. , 39(8): 1079-1098. [Xu YD, Liang YP, Jiang SS, Luo MS, Ji JL, Zhang ZY, WeiY, Song BW. 2014. Evolution of Cenozoic sedimentary basins in eastern China. , 39(8): 1079-1098][文内引用:1]
[66]
杨庆道. 2014. 楚雄盆地构造演化及油气成藏条件研究. . [Yang QD. 2014. Tectonic Evolution and Hydrocarbon Accumulation Conditions in Chuxiong Basin. [文内引用:2]
杨晓东, 吴中海, 张海军. 2016. 鄱阳湖盆地的地质演化、新构造运动及其成因机制探讨. , 22(3): 667-684. [Yang XD, Wu ZH, Zhang HJ. 2016. Geological evolution, neotectonics and genetic mechanism of the Poyang Lake basin. , 22(3): 667-684][文内引用:1]
[69]
杨宗让. 2002. 川西松潘—甘孜弧前盆地的形成及演化. , 22(3): 53-59. [Yang ZR. 2002. The formation and evolution of the Songpan-Garze fore-arc basin, western Sichuan. , 22(3): 53-59][文内引用:1]
于振江, 黄多成. 1993. 淮北平原上第三系划分和孢粉序列. , 17(3): 202-209. [Yu ZJ, Huang DC. 1993. Division of the Upper Tertiary of the Huaibei plain and sporo pollen sequence. , 17(3): 202-209][文内引用:1]
[72]
袁厚勇. 2005. 裂谷盆地有机质成熟度史模拟及在江汉盆地中的应用. . [Yuan HY. 2005. Simulation of organic Matter Maturity history in rift basin and its application in Jianghan Basin. [文内引用:1]
[73]
张国伟, 孟庆任, 于在平, 孙勇, 周鼎武, 郭安林. 1996. 秦岭造山带的造山过程及其动力学特征. (), 26(3): 193-200. [Zhang GW, Meng QR, Yu ZP, SunY, Zhou DW, Guo AL. 1996. The orogenic process of Qinling orogenic belt and its dynamic characteristics. , 26(3): 193-200][文内引用:1]
[74]
张岳桥, 施炜, 董树文. 2019. 华北新构造: 印欧碰撞远场效应与太平洋俯冲地幔上涌之间的相互作用. , 93(5): 971-1001. [Zhang YQ, ShiW, Dong SW. 2019. Neotectonics of North China: interplay between far-field effect of India-Eurasia collision and Pacific subduction related deep-seated mantle upwelling. , 93(5): 971-1001][文内引用:2]
[75]
赵长煜. 2009. 叠合盆地构造热演化模拟: 以江汉盆地为例. . [Zhao CY. 2009. Tectonic-thermal evolution modeling in superposition basin with the JiangHan Basin as an example. [文内引用:1]
[76]
赵杰, 周欣, 王燕, 孙玮, 刘顺. 2020. 西昌盆地构造演化及特征研究. , 42(5): 651-659. [ZhaoJ, ZhouX, WangY, SunW, LiuS. 2020. The study on tectonic evolution and characteristics of Xichang Basin. , 42(5): 651-659][文内引用:1]
[77]
郑洪波, 贾军涛. 2009. 大河的地质演化与构造控制. , 29(2): 268-275. [Zheng HB, Jia JT. 2009. Geological evolution of big river systems and tectonic control. , 29(2): 268-275][文内引用:2]
[78]
郑洪波, 王平, 何梦颖, 罗超, 黄湘通, 贾军涛. 2013. 长江东流水系建立的时限及其构造地貌意义. , 33(4): 621-630, 620. [Zheng HB, WangP, He MY, LuoC, Huang XT, Jia JT. 2013. Timing of the establishment of the east-flowing Yangtze River and tectonic-geomorphic implications. , 33(4): 621-630, 620][文内引用:3]
[79]
周松源, 郑华平, 彭军, 徐克定, 蒋维三, 刘家铎. 2005. 南鄱阳坳陷油气地质特征. , 26(6): 618-622. [Zhou SY, Zheng HP, PengJ, Xu KD, Jiang WS, Liu JD. 2005. Characteristics of petroleum geology in South Poyang Depression. , 26(6): 618-622][文内引用:1]
[80]
朱丽, 张会化, 王江海, 周江羽, 解广轰. 2006. 金沙江—红河构造带北段囊谦盆地新生代高钾岩石40Ar/39Ar年代学研究. , 30(2): 241-247. [ZhuL, Zhang HH, Wang JH, Zhou JY, Xie GH. 2006. 40Ar/39Ar chronology of high-K magmatic rocks in Nangqian Basins at the northern segment of the Jinsha-red River shear zone(jrrsz). , 30(2): 241-247][文内引用:1]
[81]
Andrew DM. 2006. The geology of fluvial deposits. , 99-130. [文内引用:1]
[82]
Beck RA, Burbank DW, Sercombe WJ, Riley GW, Barndt JK, Berry JR, AfzalJ, Khan AM, JurgenH, MetjeJ, CheemaA, Shafique NA, Lawrence RD, Khan MA. 1995. Stratigraphic evidence for an early collision between northwest India and Asia. , 373: 55-58. [文内引用:1]
[83]
BotsyunS, SepulchreP, DonnadieuY, RisiC, LichtA, Caves Rugenstein JK. 2019. Response to Comment on “Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene”. . [文内引用:1]
[84]
BurbankD, MeigsA, BrozovićN. 1996. Interactions of growing folds and coeval depositional systems. , 8: 199-223. [文内引用:1]
[85]
Burchfiel BC, Chen ZL, YupincL, Royden LH. 1995. Tectonics of the Longmen Shan and adjacent regions, central China. , 37: 661-735. [文内引用:1]
[86]
ChenA, DarbonJ, Morel JM. 2014. Land scape evolution models: a review of their fundamental equations. , 219: 68-86. [文内引用:1]
[87]
ChenH, Hu JM, Wu GL, ShiW, Geng YY, Qu HJ. 2015. Apatite fission-track thermochronological constraints on the pattern of late Mesozoic-Cenozoic uplift and exhumation of the Qinling Orogen, central China. , 114: 649-673. [文内引用:1]
[88]
ChenY, MengJ, LiuH, Wang CS, TangM, LiuT, Zhao YN. 2022. Detrital zircons record the evolution of the Cathaysian Coastal Mountains along the South China margin. , 34: 688-701. [文内引用:1]
[89]
Chung SL, Lo CH, Lee TY, Zhang YQ, Xie YW, Li XH, Wang KL, Wang PL. 1998. Diachronous uplift of the Tibetan Plateau starting 40?Myr ago. , 394: 769-773. [文内引用:1]
[90]
Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, ZhangQ, Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. , 68: 173-196. [文内引用:1]
[91]
Clark MK, Royden LH. 2000. Topographic ooze: building the eastern margin of Tibet by lower crustal flow. , 28: 703. [文内引用:1]
[92]
Clark MK, Schoenbohm LM, Royden LH, Whipple KX, Burchfiel BC, ZhangX, TangW, WangE, ChenL. 2004. Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. [文内引用:1]
[93]
Clift PD, BlusztajnJ, Nguyen AD. 2006. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam. , 33: L19403. [文内引用:1]
[94]
Clift PD, CarterA, GiosanL, DurcanJ, Duller G AT, Macklin MG, AlizaiA, Tabrez AR, DanishM, WagonerLaninghamS, Fuller DQ. 2012. U-Pb zircon dating evidence for a Pleistocene Sarasvati River and capture of the Yamuna River. , 40: 211-214. [文内引用:1]
[95]
Clift PD, Wagoner LongH, HintonR, Ellam RM, HanniganR, Tan MT, BlusztajnJ, Duc NA. 2008. Evolving East Asian River systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-Song Hong sediments. , 9: Q04039. [文内引用:1]
[96]
DengB, Liu SG, Li ZW, Jansa LF, LiuS, Wang GZ, SunW. 2013. Differential exhumation at eastern margin of the Tibetan Plateau, from apatite fission-track thermochronology. , 591: 98-115. [文内引用:1]
[97]
DengB, Li ZW, Liu SG, Wang GZ, Li SJ, Qin ZP, Li JX, JansaL. 2016. Structural geometry and kinematic processes at the intracontinental Daloushan Mountain chain: implications for tectonic transfer in the Yangtze Block interior. , 348: 159-168. [文内引用:1]
[98]
Dietrich WE, ReissR, Hsu ML, Montgomery DR. 1995. A process-based model for colluvial soil depth and shallow land sliding using digital elevation data. , 9: 383-400. [文内引用:1]
[99]
Ding RX, MinK, Zou HP. 2019 a. . , 67: 21-32. [文内引用:1]
[100]
Ding RX, ChangY, MinK, Xu CH, WangW. 2021. Post-orogenic topographic evolution of the Dabie orogen, Eastern China: insights from apatite and zircon(U-Th)/He thermochronology. , 374: 107487. [文内引用:1]
England P, MolnarP. 1990. Surface uplift, uplift of rocks, and exhumation of rocks. , 18: 1173. [文内引用:1]
[103]
Furlong KP, KirbyE, Creason CG, Kamp P JJ, Xu GQ, DanišíkM, Shi XH, Hodges KV. 2021. Exploiting thermochronology to quantify exhumation histories and patterns of uplift along the margins of Tibet. , 9: 688374. [文内引用:1]
[104]
Guo LC, ZhangB, Xiong SF, Wu JB, Chen ZL, Cui JY, Chen YL, YeW, Zhu LD. 2022. Shifts in the silicate weathering regime in South China during the Meso-Cenozoic linked to Asian summer monsoon evolution. , 212: 103809. [文内引用:1]
[105]
Haq BU, HardenbolJ, Vail PR. 1987. Chronology of fluctuating sea levels since the Triassic. , 235: 1156-1167. [文内引用:1]
[106]
He MY, Zheng HB, Clift PD. 2013. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sand s: implications for major magmatic events and crustal evolution in Central China. 361: 186-203. [文内引用:1]
[107]
He MY, Zheng HB, BookhagenB, Clift PD. 2014. Controls on erosion intensity in the Yangtze River Basin tracked by U-Pb detrital zircon dating. , 136: 121-140. [文内引用:1]
[108]
Hoke GD, Jing LZ, Hren MT, Wissink GK, Garzione CN. 2014. Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. , 394: 270-278. [文内引用:1]
[109]
Hu SB, Kohn BP, RazaA, Wang JY, Gleadow A JW. 2006. Cretaceous and Cenozoic cooling history across the ultrahigh pressure Tongbai-Dabie belt, central China, from apatite fission-track thermochronology. , 420: 409-429. [文内引用:1]
[110]
Humphrey NF, Konrad SK. 2000. River incision or diversion in response to bedrock uplift. , 28: 43. [文内引用:1]
[111]
Jacob AC, Brian WR, Stephan AG, AndreaF, George EH. 2011. Terrestrial source to deep-sea sink sediment budgets at high and low sea levels: insights from tectonically active Southern California. , 39(7): 619-622. [文内引用:1]
[112]
Jia JT, Zheng HB, Huang XT, Wu FY, Yang SY, WangK, He MY. 2010. Detrital zircon U-Pb ages of Late Cenozoic sediments from the Yangtze delta: implication for the evolution of the Yangtze River. , 55: 1520-1528. [文内引用:1]
[113]
Ken LF, Jerry XM, LiviuG, Peter DC. 2015. Sea-level responses to erosion and deposition of sediment in the Indus River basin and the Arabian Sea. , 416: 12-20. [文内引用:1]
[114]
Klootwijk CT, Gee JS, Peirce JW, Smith GM, McFadden PL. 1992. An early India-Asia contact: paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. , 20: 395-398. [文内引用:1]
[115]
Lee TY, Lawver LA. 1995. Cenozoic plate reconstruction of Southeast Asia. , 251: 85-138. [文内引用:2]
[116]
Li JH, Zhang YQ, Dong SW, Johnston ST. 2014. Cretaceous tectonic evolution of South China: a preliminary synthesis. , 134: 98-136. [文内引用:2]
[117]
Li JJ, Xie SY, Kuang MS. 2001. Geomorphic evolution of the Yangtze Gorges and the time of their formation. , 41: 125-135. [文内引用:1]
[118]
Li SY, Currie BS, Rowley DB, IngallsM. 2015 a. . , 432: 415-424. [文内引用:1]
[119]
Li TY, He ZL, HeS, ZhouY, Sun DS, Wo YJ, Yang XY, WangL. 2015 b. . , 58: 665-681. [文内引用:1]
[120]
Li XM, Shan YH. 2011. Diverse exhumation of the Mesozoic tectonic belt within the Yangtze Plate, China, determined by apatite fission-track thermochronology. , 15: 349-357. [文内引用:1]
[121]
Li XM, Zou HP. 2017. Late Cretaceous-Cenozoic exhumation of the southeastern margin of Coastal Mountains, SE China, revealed by fission-track thermochronology: implications for the topographic evolution. , 2: 79-88. [文内引用:1]
[122]
Li XY, ZhangR, Zhang ZS, YanQ. 2018. What enhanced the aridity in Eocene Asian inland : global cooling or early Tibetan Plateau uplift? Palaeogeography, Palaeoclimatology, , 510: 6-14. [文内引用:1]
[123]
Li YQ, He DF, Chen LB, Mei QH, Li CX, ZhangL. 2016. Cretaceous sedimentary basins in Sichuan, SW China: restoration of tectonic and depositional environments. , 57: 50-65. [文内引用:1]
[124]
Li ZW, Liu SG, Chen HD, DengB, Hou MC, Wu WH, Cao JX. 2012. Spatial variation in Meso-Cenozoic exhumation history of the Longmen Shan thrust belt(eastern Tibetan Plateau)and the adjacent western Sichuan Basin: constraints from fission track thermochronology. , 47: 185-203. [文内引用:1]
[125]
Li ZX, GaoJ, Liu CL, XuM. 2015c. Present-day heat flow, thermal history, and tectonic subsidence of the Jianghan Basin. , 33: 707-725. [文内引用:1]
[126]
LichtA, van CappelleM, Abels HA, Ladant JB, Trabucho-Alexand reJ, France-LanordC, DonnadieuY, WagonerdenbergheJ, RigaudierT, LécuyerC, TerryD, AdriaensR, BouraA, GuoZ, Soe AN, QuadeJ, Dupont-NivetG, Jaeger JJ. 2014. Asian monsoons in a late Eocene greenhouse world. , 513: 501-506. [文内引用:1]
[127]
Liu HQ, TangY, Chen KQ, Tang WJ. 2017. The tectonic uplift since the Late Cretaceous and its impact on the preservation of hydrocarbon in southeastern Sichuan Basin, China. , 7: 451-461. [文内引用:1]
[128]
Liu JH, Gou GN, WangQ, Zhang XZ, Guo HF. 2022. Petrogenesis of Eocene high-silica granites in the Maliaoshan area, northern Tibet: implications for the Eocene magmatic flare-up in the Northern Qiangtang Block. , 234: 105268. [文内引用:1]
[129]
Ma XL, Jiang HC, ChengJ, Xu HY. 2012. Spatiotemporal evolution of Paleogene palynoflora in China and its implication for development of the extensional basins in East China. , 184: 24-35. [文内引用:1]
[130]
Miao YF, Song CH, Fang XM, Meng QQ, ZhangP, Wu FL, Yan XL. 2016. Late Cenozoic genus Fupingopollenites development and its implications for the Asian summer monsoon evolution. , 29: 320-333. [文内引用:1]
[131]
NajmanY, AppelE, Boudagher-FadelM, BownP, CarterA, GarzantiE, GodinL, Han JT, LiebkeU, OliverG, ParrishR, VezzoliG. 2010. Timing of india-asia collision: geological, biostratigraphic, and palaeomagnetic constraints. , 115: B12416. [文内引用:1]
[132]
Peter WR, Mark TB. 2006. Using thermochronology to understand orogenic erosion. , 34: 419-466. [文内引用:1]
[133]
Qiu LA, Yan DP, Tang SL, ChenF, Gong LX, Zhang YX. 2020. Cenozoic exhumation of the neoproterozoic Sanfang batholith in South China. , 177: 412-423. [文内引用:1]
[134]
Ren JY, TamakiK, Li ST, Zhang JX. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. , 344: 175-205. [文内引用:2]
[135]
Richardson NJ, Densmore AL, SewardD, FowlerA, WipfM, Ellis MA, YongL, ZhangY. 2008. Extraordinary denudation in the Sichuan Basin: insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau. , 113: B04409. [文内引用:2]
[136]
Richardson NJ, Densmore AL, SewardD, WipfM, YongL. 2010. Did incision of the Three Gorges begin in the Eocene?, 38: 551-554. [文内引用:1]
[137]
RingU, Brand on MT, Willett SD, Lister GS. 1999. Exhumation processes. , 154: 1-27. [文内引用:1]
[138]
SallesT. 2016. Badland s: a parallel basin and land scape dynamics model. , 5: 195-202. [文内引用:2]
[139]
SallesT, HardimanL. 2016. Badland s: an open-source, flexible and parallel framework to study land scape dynamics. , 91: 77-89. [文内引用:2]
[140]
SallesT, Ding XS, BrocardG. 2018. PyBadland s: a framework to simulate sediment transport, land scape dynamics and basin stratigraphic evolution through space and time. , 13: e0195557. [文内引用:2]
[141]
Schellart WP, ChenZ, StrakV, Duarte JC, Rosas FM. 2019. Pacific subduction control on Asian continental deformation including Tibetan extension and eastward extrusion tectonics. , 10: 4480. [文内引用:2]
[142]
Schoenbohm LM, Burchfiel BC, Chen LZ. 2006. Propagation of surface uplift, lower crustal flow, and Cenozoic tectonics of the southeast margin of the Tibetan Plateau. , 34: 813-816. [文内引用:1]
[143]
Schumm SA. 1993. River response to baselevel change: implications for sequence stratigraphy. , 101: 279-294. [文内引用:1]
Shen CB, HuD, ShaoC, Mei LF. 2018. Thermochronology quantifying exhumation history of the Wudang Complex in the South Qinling Orogenic Belt, central China. , 155: 893-906. [文内引用:1]
[146]
Shi HC, Shi XB, Yang XQ, Jiang HY. 2013. The exhumation process of Mufushan granite in Jiangnan uplift since Cenozoic: evidence from low-temperature thermochronology. , 56: 273-286. [文内引用:1]
[147]
Shi HC, Shi XB, Glasmacher UA, Yang XQ, Stockli DF. 2016. The evolution of eastern Sichuan Basin, Yangtze block since Cretaceous: constraints from low temperature thermochronology. , 116: 208-221. [文内引用:1]
[148]
Smith RB, BarstadI. 2004. A linear theory of orographic precipitation. , 61: 1377-1391. [文内引用:1]
[149]
Song XY, Zhou MF, Cao ZM, Robinson PT. 2004. Late Permian rifting of the South China Craton caused by the Emeishan mantle plume?, 161: 773-781. [文内引用:1]
[150]
StüweK, Terence DB. 1998. On uplift and exhumation during convergence. , 17: 80-88. [文内引用:1]
[151]
Sun XJ, Wang PX. 2005. How old is the Asian monsoon system?: palaeobotanical records from China. , 222: 181-222. [文内引用:1]
[152]
SunY, Zhou TJ, RamsteinG, ContouxC, Zhang ZS. 2016. Drivers and mechanisms for enhanced summer monsoon precipitation over East Asia during the mid-Pliocene in the IPSL-CM5A. , 46: 1437-1457. [文内引用:1]
[153]
Suo YH, Li SZ, JinC, ZhangY, ZhouJ, Li XY, Wang PC, LiuZ, Wang XY, SomervilleI. 2019. Eastward tectonic migration and transition of the Jurassic-Cretaceous Andean-type continental margin along Southeast China. , 196: 102884. [文内引用:2]
[154]
Suo YH, Li SZ, CaoX, Dong HW, Li XY, Wang XY. 2020. Two-stage eastward diachronous model of India-Eurasia collision: constraints from the intraplate tectonic records in Northeast Indian Ocean. , 102: 372-384. [文内引用:1]
[155]
Tang SL, Yan DP, QiuL, Gao JF, Wang CL. 2014. Partitioning of the Cretaceous Pan-Yangtze Basin in the central South China Block by exhumation of the Xuefeng Mountains during a transition from extensional to compressional tectonics?, 25: 1644-1659. [文内引用:1]
[156]
TsuboiC. 1983. Gravity. , 254. [文内引用:1]
[157]
Tucker GE, Hancock GR. 2010. Modelling land scape evolution. , 35: 28-50. [文内引用:2]
[158]
WangE, KirbyE, Furlong KP, van SoestM, XuG, ShiX, Kamp P JJ, Hodges KV. 2012. Two-phase growth of high topography in eastern Tibet during the Cenozoic. , 5: 640-645. [文内引用:1]
[159]
WangF, Chen HL, Batt GE, Lin XB, Gong JF, Gong GH, Meng LF, Yang SF, JourdanF. 2015. Tectonothermal history of the NE Jiangshan-Shaoxing suture zone: evidence from 40Ar/39Ar and fission-track thermochronology in the Chencai region. , 264: 192-203. [文内引用:1]
[160]
WangP, Zheng HB, ChenL, ChenJ, XuY, WeiX, YaoX. 2014. Exhumation of the Huangling anticline in the Three Gorges region: Cenozoic sedimentary record from the western Jianghan Basin, China. , 26: 505-522. [文内引用:1]
[161]
WangP, Zheng HB, Wang YD, Wei XC, Tang LY, JourdanF, ChenJ, Huang XT. 2022. Sedimentology, geochronology, and provenance of the late Cenozoic”Yangtze Gravel”: implications for Lower Yangtze River reorganization and tectonic evolution in southeast China. , 134(1-2): 463-486. [文内引用:1]
[162]
WangY, Wang YJ, Li SB, SeagrenE, Zhang YZ, Zhang PZ, QianX. 2020. Exhumation and land scape evolution in eastern South China since the Cretaceous: new insights from fission-track thermochronology. , 191: 104239. [文内引用:1]
[163]
Wang YN, ZhangJ, Zhang BH, ZhaoH. 2018. Cenozoic exhumation history of South China: a case study from the Xuefeng Mt. . , 151: 173-189. [文内引用:1]
[164]
Watts AB, ThorneJ. 1984. Tectonics, global changes in sea level and their relationship to stratigraphical sequences at the US Atlantic continental margin. , 1: 319-339. [文内引用:1]
[165]
Whipple KX, Tucker GE. 1999. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, land scape response timescales, and research needs. , 104: 17661-17674. [文内引用:2]
[166]
Wu LL, MeiL, PatonD, Liu YS, Shen CB, Liu ZQ, LuoJ, Min CZ, Li MH, WenH. 2020. Basement structures have crucial influence on rift development: insights from the Jianghan Basin, central China. . [文内引用:1]
[167]
XuY, Zhu JJ, Hu RZ, Bi XW, Yu HJ, Xu LL, Liu BH, Huang ML, Sheng XY. 2019. Heterogeneous lithospheric mantle beneath the southeastern Tibetan Plateau: evidence from Cenozoic high-Mg potassic volcanic rocks in the Jinshajiang-Ailaoshan Cenozoic magmatic belt. , 180: 103849. [文内引用:1]
[168]
Yan ZK, LiY, Li HB, Dong SL, Zhao GH, Li JB, Li FS, Yan LA, Zheng LL. 2015. Application of the material balance method in paleoelevation recovery: a case study of the Longmen Mountains foreland basin on the eastern margin of the Tibetan Plateau. , 89(2): 598-609. [文内引用:1]
[169]
Yang CQ, Shen CB, ZattinM, YuW, Shi SX, Mei LF. 2019. Provenances of Cenozoic sediments in the Jianghan Basin and implications for the formation of the Three Gorges. , 61: 1980-1999. [文内引用:1]
[170]
YangF, . pngonG, LiuC, Qian ZS, Zhang XH, ZhangY, GlorieS. 2022. Uplift-exhumation and preservation of the Yumugou Mo-W deposit, East Qinling, China: insights from multiple apatite low-temperature thermochronology. , 141: 104670. [文内引用:1]
[171]
YangZ, Shen CB, LotharR, Eva EM, RaymondJ, BastianW, Dong YP. 2016. Sichuan Basin and beyond: eastward foreland growth of the Tibetan Plateau from an integration of Late Cretaceous-Cenozoic fission track and (U-Th)/He ages of the eastern Tibetan Plateau, Qinling, and Daba Shan. , 122: 4712-4740. [文内引用:1]
[172]
Yao YF, Bruch AA, MosbruggerV, Li CS. 2011. Quantitative reconstruction of Miocene climate patterns and evolution in Southern China based on plant fossils. , 304: 291-307. [文内引用:1]
[173]
Yu XC, Liu CL, Wang CL, LiF, Wang JY. 2020. Eolian deposits of the northern margin of the South China(Jianghan Basin): reconstruction of the Late Cretaceous East Asian land scape in central China. , 117: 104390. [文内引用:1]
[174]
Yu XC, Liu CL, Wang CL, Wang JY. 2021. Late Cretaceous aeolian desert system within the Mesozoic fold belt of South China: palaeoclimatic changes and tectonic forcing of East Asian erg development and preservation. , 567: 110299. [文内引用:1]
[175]
Yuan WM, Yang ZQ, Zhang ZC, DengJ. 2011. The uplifting and denudation of main Huangshan Mountains, Anhui Province, China. , 54(8): 1168-1176. [文内引用:1]
[176]
Zhang HP, Oskin ME, Jing LZ, Zhang PZ, Reiners PW, XiaoP. 2016. Pulsed exhumation of interior eastern Tibet: implications for relief generation mechanisms and the origin of high-elevation planation surfaces. , 449: 176-185. [文内引用:1]
[177]
Zhang KJ. 2000. Cretaceous palaeogeography of Tibet and adjacent areas(China): tectonic implications. , 21: 23-33. [文内引用:1]
[178]
Zhang SB, Zheng YF, Wu YB, Zhao ZF, GaoS, Wu FY. 2006. Zircon U-Pb age and Hf isotope evidence for 3. 8 Ga crustal remnant and episodic reworking of Archean crust in South China. , 252(1-2): 56-71. [文内引用:1]
[179]
Zhang YF, Li CA, Wang QL, ChenL, Ma YF, Kang CG. 2008. Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges. , 53(4): 584-590. [文内引用:1]
[180]
Zhao XD, Zhang HP, HetzelR, KirbyE, Duvall AR, Whipple KX, Xiong JG, Li YF, Pang JZ, WangY, WangP, LiuK, Ma PF, ZhangB, Li XM, Zhang JW, Zhang PZ. 2021. Existence of a continental-scale river system in eastern Tibet during the Late Cretaceous-early Palaeogene. , 12(1): 7231. [文内引用:1]
[181]
Zheng HB. 2015. Birth of the Yangtze River: age and tectonic-geomorphic implications. , 2: 438-453. [文内引用:1]
[182]
Zheng HB, JiaD, ChenJ, WangP. 2011. Did incision of the Three Gorges begin in the Eocene?Comment. , 39: e244. [文内引用:1]
[183]
Zheng HB, Clift PD, WangP, TadaR, Jia JT, He MY, JourdanF. 2013. Pre-miocene birth of the Yangtze River. , 110(19): 7556-7561. [文内引用:1]