Progress on volcanic-hydrothermal sedimentary dolostone in intracontinental lacustrine rift basin
WEI Shilin1, JIAO Xin1, LIU Yiqun1, LI Hong1, ZHOU Dingwu2, LÜ Yiran3
1 State Key Laboratory of Continental Dynamics,Department of Geology,Northwest University,Xi’an 710069,China
2 College of Earth Science and Engineering,Shandong University of Science and Technology,Shandong Qingdao 266590,China
3 Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China
About the corresponding author JIAO Xin,born in 1985,is an associate professor in Northwest University. His research interests include sedimentary petrology,volcanic-hydrothermal sedimentology,and shale oil. E-mail: jxin807@163.com.
About the first author WEI Shilin,born in 2000,is a master degree candidate in Northwest University. He is engaged in sedimentology. E-mail: wsl1924@163.com.
Fund:Youth Program of the National Nature Science Foundation of China(No.41802120)and the Natural Science Basic Research Program of Shaanxi(No. S2024-JC-YB-1766)
Abstract
Organic-rich black shales,which represent shale oil and gas resources,have become a research hotspot in the field of oil and gas exploration and development in China and around the world in recent years. These lithologies consist mainly of complexly sourced fine-grained sedimentary rocks in continental lacustrine basins in China,among which a special type of laminated microcrystalline dolostone is developed. The petrological,mineralogical micro-features,and geochemical characteristics of this type of dolostone are distinct from the commonly dolostones formed by dolomitization and are also different from microbial mediated dolostones. Hence,the dolostones have been defined as a new type of volcanic-hydrothermal sedimentary dolostone. Based on extensive review of domestic and foreign literature,this paper summarizes the global distribution and environmental characteristics of modern lacustrine dolomites and presents the research progress on the models of origins of dolostone. The focus is on the comparative study of volcanic-hydrothermal sedimentary dolostones found in the Lucaogou Formation in Santanghu and Junggar Basins, the Xiagou Formation in Jiuxi Basin,and the Tengger Formation in Erlian Basin,all of which are formed in an extensional tectonic setting. Four characteristics are summarized as follows: (1)These dolostones are well-preserved with μm-scale laminated structure and microcrystallized,indicating latterly weak diagenesis. (2)They contain a variety of volcanic-hydrothermal minerals,and are interbedded with semi-deep to deep lacustrine black shale. Evaporite characteristics are lacking. (3)Strontium isotopes indicate that the diagenetic fluid has a deep source(crust-mantle mixed)characteristic. (4)They are rich in organic matters and show a strong coupling relationship with hydrocarbon distribution. Finally,it is recommended to enhance research on this type of dolostone,utilize its unique geological information for tracing tectonic backgrounds,and explore its relationship with hydrocarbon generation as future research directions.
图 8 火山-热液沉积型白云岩与次生白云岩及微生物白云岩的碳、氧同位素特征Fig.8 Carbon and oxygen isotopic characteristics of the volcanic-hydrothermal sedimentary dolostones, secondary dolostones, and microbial mediated dolostones
图 9 火山-热液沉积型白云岩、次生白云岩和微生物白云岩REE+Y模式Fig.9 REE+Y distribution patterns of the volcanic-hydrothermal sedimentary dolostones, secondary dolostones, and microbial mediated dolostones
表 3
Table3
表 3(Table3)
表 3 全球发育白云石的湖泊特征统计Table3 Characteristics of global dolomite precipitated lakes
表 3 全球发育白云石的湖泊特征统计Table3 Characteristics of global dolomite precipitated lakes
表 4 中国火山-热液沉积型白云岩盆地构造背景、岩石学及矿物学特征Table4 Characteristics of basin tectonic background, petrology and mineralogy of the volcanic-hydrothermal sedimentary dolostone in China
表 4 中国火山-热液沉积型白云岩盆地构造背景、岩石学及矿物学特征Table4 Characteristics of basin tectonic background, petrology and mineralogy of the volcanic-hydrothermal sedimentary dolostone in China
虽然4个盆地在火山-热液沉积型白云岩形成时期均为拉张背景(文华国等, 2014; 焦鑫等, 2017; Yang et al., 2020; 张帅等, 2020), 但前人通过大量岩石学、地球化学与构造特征研究表明, 三塘湖盆地和准噶尔盆地在晚石炭世— 中二叠世经历了碰撞后的裂谷拉伸环境(Feng et al., 1989; Zhao et al., 2003; Choulet et al., 2012), 导致了伸展构造和下地壳的剥离(Karsli et al., 2010), 形成大量的火山作用和相关的火山灰。这种盆地的典型特征是因为存在壳源性火山灰和幔源性物质(Zhang et al., 2023), 这与三塘湖盆地和准噶尔盆地芦草沟组白云岩中可见火山物质及强烈的幔源Sr同位素特征一致。因此, 火山作用所带来的深源物质以火山灰的形式进入湖盆, 为白云石的形成提供了Mg和Fe离子的物质基础; 同时, 火山活动带来的热量也有助于白云石成核与进一步生长(Jiao et al., 2023)。而酒西盆地和二连盆地则可能代表了弧后裂谷盆地。该类盆地主要以幕式断裂、岩浆活动和热构造沉降为主要特征(Zhang et al., 2023)。其中酒西盆地是受到伸展断陷作用后发育而成的陆相断陷盆地。盆地中白云岩形成时期早白垩世为全球性大规模火山活动时期(文华国等, 2014)。二连盆地是一个中生代陆相裂谷盆地, 晚侏罗世和早白垩世期间, 该地区经历了太平洋板块在欧亚板块下的俯冲, 构造活动为热液流体上涌提供了通道(Yang et al., 2020)。酒西盆地下沟组和二连盆地腾格尔组火山-热液沉积型白云岩分布多与区内深大断裂发育较为一致。因此, 该类白云岩在沉积过程中受到了更加强烈的热液活动影响。热液流体沿着裂缝上涌并携带深部物质, 为白云岩形成提供了条件。依据该类白云岩所蕴含的地球化学信息, 可为所处盆地沉积时期的构造背景探讨提供新的研究思路与证据。
4.3 火山-热液沉积型白云岩与油气生成、聚集的关系
白云岩在以往都被视作良好的油气储集层, 如四川盆地龙王庙组(邹才能等, 2014)、 塔里木盆地寒武系和奥陶系等白云岩储集层(Jiang et al., 2018)。 但是4个研究区火山-热液沉积型白云岩不仅可以作为良好的储集层, 还具有一定的生油潜力(高阳等, 2016, 2020; 靳军等, 2018; 张记刚等, 2022)。 4 个研究区内白云岩夹层中可见黑色页岩, 在白云岩中也存在富藻类有机质纹层和有机碎屑(图 7), 说明在白云岩沉积时期伴随着生物活动。 三塘湖盆地和准噶尔盆地芦草沟组白云岩在形成过程存在大量火山活动形成的火山灰。 火山灰是大陆碰撞时岩浆活动的典型产物, 对碳氢化合物的初级生产力有重要影响(Huff et al., 1992; Lee et al., 2018)。 其中富含的营养物质可以使得浮游植物尤其是藻类的大量繁殖, 从而提高初级生产力, 进而提高页岩层系中有机质富集。 同时, 热液流体上涌的同时会携带大量的热能, 可以显著加速盆地烃源岩的演化, 促进油气生成(Liu et al., 2019)。 因此, 这类纹层状泥晶白云岩同样具有较高的生油潜力, 可作为一类生油岩进行研究与勘探。
高阳, 王英伟, 王玉多, 谢天寿, 刘刚, 王黎. 2016. 吉木萨尔凹陷芦草沟组致密储集层岩石力学特征. , 37(2): 158-162. [GaoY, Wang YW, Wang YD, Xie TS, LiuG, WangL. 2016. Rock mechanics characteristics of Lucaogou tight oil reservoir in Jimusaer Sag, Junggar Basin. , 37(2): 158-162][文内引用:1]
[2]
高阳, 叶义平, 何吉祥, 钱根葆, 覃建华, 李映艳. 2020. 准噶尔盆地吉木萨尔凹陷陆相页岩油开发实践. , 25(2): 133-141. [GaoY, Ye YP, He JX, Qian GB, Tan JH, Li YY. 2020. Development practice of continental shale oil in Jimsar sag in the Junggar Basin. , 25(2): 133-141][文内引用:1]
[3]
郭佳, 宋双, 王一博, 詹路锋, 芮志峰. 2018 准噶尔盆地吉木萨尔凹陷梧桐沟组层序地层划分. , 42(4): 558-567. [GuoJ, SongS, Wang YB, Zhan LF, Rui ZF. 2018. Sequence stratigraphic division of the Wutonggou Formation in the Jimsar sag of Junggar Basin. , 42(4): 558-567][文内引用:1]
[4]
郭强, 钟大康, 张放东, 刘新刚, 范凌霄, 李君军. 2012. 内蒙古二连盆地白音查干凹陷下白垩统湖相白云岩成因. , 14(1): 59-68. [GuoQ, Zhong DK, Zhang FD, Liu XG, Fan LX, Li JJ. 2012. Origin of the Lower Cretaceous lacustrine dolostones in Baiyinchagan Sag of Erlian Basin, Inner Mongolia. , 14(1): 59-68][文内引用:1]
[5]
赫云兰, 刘波, 秦善. 2010. 白云石化机理与白云岩成因问题研究. , 46(6): 1010-1020. [Hao YL, LiuB, QinS. 2010. Study on the Dolomitization and dolostone genesis. , 46(6): 1010-1020][文内引用:1]
[6]
贾承造, 郑民, 张永峰. 2012. 中国非常规油气资源与勘探开发前景. , 39(2): 129-136. [Jia CZ, ZhengM, Zhang YF. 2012. Unconventional hydrocarbon resources in China and the prospect of exploration and development. , 39(2): 129-136][文内引用:1]
[7]
姜在兴, 张建国, 孔祥鑫, 谢环羽, 程浩, 王力. 2023. 中国陆相页岩油气沉积储层研究进展及发展方向. , 44(1): 45-71. [Jiang ZX, Zhang JG, Kong XX, Xie HY, ChengH, WangL. 2023. Research progress and development direction of continental shale oil and gas deposition and reservoirs in China. , 44(1): 45-71][文内引用:1]
[8]
焦鑫, 柳益群, 靳梦琪, 周鼎武. 2017. 新疆三塘湖薄层状岩浆—热液白云质喷流沉积岩. , 35(6): 1087-1096. [JiaoX, Liu YQ, Jin MQ, Zhou DW. 2017. Thin layered magma-hydrothermal dolomitic exhaled sedimentary rocks in Santang Lake, Xinjiang. , 35(6): 1087-1096][文内引用:5]
[9]
金之钧, 张谦, 朱如凯, 董琳, 付金华, 刘惠民, 云露, 刘国勇, 黎茂稳, 赵贤正, 王小军, 胡素云, 唐勇, 白振瑞, 孙冬胜, 李晓光. 2023. 中国陆相页岩油分类及其意义. , 44(4): 801-819. [Jin ZJ, ZhangQ, Zhu RK, DongL, Fu JH, Liu HM, YunL, Liu GY, Li MW, Zhao XZ, Wang XJ, Hu SY, TangY, Bai ZR, Sun DS, Li XG. 2023. Classification of lacustrine shale oil reservoirs in China and its significance. , 44(4): 801-819][文内引用:1]
[10]
靳军, 杨召, 依力哈木·尔西丁, 李璐璐, 刘明. 2018. 准噶尔盆地吉木萨尔凹陷致密油储层纳米孔隙特征及其含油性. , 43(5): 1594-1601. [JinJ, YangZ, YilihamuE, Li LL, LiuM. 2018. Nanopore characteristics and oil-bearing properties of tight oil reservoirs in Jimsar Sag, Junggar Basin. , 43(5): 1594-1601][文内引用:1]
[11]
李昌伟, 陶士振, 董大忠, 管全中. 2015. 国内外页岩气形成条件对比与有利区优选. , 26(5): 986-1000. [Li CW, Tao SZ, Dong DZ, Guan QZ. 2015. Comparison of the formation of shale gas between domestic and favorable areas evaluation. , 26(5): 986-1000][文内引用:1]
文华国, 郑荣才, Qing HR, 范铭涛, 李雅楠, 宫博识. 2014. 青藏高原北缘酒泉盆地青西凹陷白垩系湖相热水沉积原生白云岩. , 44(4): 591-604. [Wen HG, Zheng RC, Qing HR, Fan MZ, Li YN, Gong BS. 2014. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi sag, Jiuquan Basin on the northern Tibetan Plateau. , 44(4): 591-604][文内引用:10]
[19]
张记刚, 杜猛, 陈超, 秦明, 贾宁洪, 吕伟峰, 丁振华. 向勇. 2022. 吉木萨尔凹陷二叠系芦草沟组页岩储层孔隙结构定量表征. , 34(4): 89-102. [Zhang JG, DuM, ChenC, QinM, Jia NH, Lu WF, Ding ZH, XiangY. 2022. Quantitative characterization of pore structure of shale reservoirs of Permian Lucaogou Formation in Jimsar Sag. , 34(4): 89-102][文内引用:1]
[20]
张帅, 柳益群, 焦鑫, 周鼎武, 张旭, 陆申童, 周宁超. 2018. 准噶尔盆地吉木萨尔凹陷中二叠统芦草沟组云质岩沉积环境及白云石成因探讨. , 20(1): 33-48. [ZhangS, Liu YQ, JiaoX, Zhou DW, ZhangX, Lu ST, Zhou NC. 2018. Sedimentary environment and formation mechanisim of dolomitic rocks in the Middle Permian Lucaogou Formation, Jimusar Depression, Junggar Basin. , 20(1): 33-48][文内引用:2]
[21]
张帅, 柳益群, 李红, 焦鑫, 周鼎武. 2020. 准噶尔盆地东部中二叠统幔源热液沉积白云岩. , 22(1): 111-128. [ZhangS, Liu YQ, LiH, JiaoX, Zhou DW. 2020. Mantle-originated hydrothermal-sedimentary dolostone in the Middle Permian in eastern Junggar Basin, China. , 22(1): 111-128][文内引用:10]
[22]
张晓宝, 王志勇, 徐永昌. 2000. 特殊碳同位素组成白云岩的发现及其意义. , 18(3): 449-452. [Zhang XB, Wang ZY, Xu YC. 2000. The discovery and significance of special carbon isotope composition of dolomite. , 18(3): 449-452][文内引用:1]
[23]
赵文智, 朱如凯, 张婧雅, 杨静儒. 2023. 中国陆相页岩油类型、勘探开发现状与发展趋势. , 28(4): 1-13. [Zhao WZ, Zhu RK, Zhang JY, Yang JR. 2023. Classification, exploration and development status and development trend of continental shale oil in China. , 28(4): 1-13][文内引用:1]
[24]
郑荣才, 王成善, 朱利东, 刘红军, 方国玉, 杜文博, 王崇孝, 汪满福. 2003. 酒西盆地首例湖相“白烟型”喷流岩—热水沉积白云岩的发现及其意义. , 30(1): 1-8. [Zheng RC, Wang CS, Zhu LD, Liu HJ, Fang GY, Du WB, Wang CX, Wang MF. 2003. Discovery of the first example of “White Smoke Type”of exhalative rock(Hydrothermal sedimentary dolostone)in Jiuxi Basin and its significance. , 30(1): 1-8][文内引用:3]
[25]
郑荣才, 文华国, 范铭涛, 汪满福, 吴国瑄, 夏佩芬. 2006. 酒西盆地下沟组湖相白烟型喷流岩岩石学特征. , 22(12): 3027-3038. [Zheng RC, Wen HG, Fan MT, Wang MF, Wu GX, Xia PF. 2006. Lithological characteristics of sublacustrine white smoke type exhalative rock of the Xiagou Formation in Jiuxi Basin. , 22(12): 3027-3038][文内引用:4]
[26]
郑荣才, 文华国, 李云, 常海亮. 2018. 甘肃酒西盆地青西凹陷下白垩统下沟组湖相喷流岩物质组分与结构构造. , 20(1): 1-18. [Zheng RC, Wen HG, LiY, Chang HL. 2018. Compositions and texture of lacustrine exhalative rocks from the Lower Cretaceous Xiagou Formation in Qingxi sag of Jiuxi Basin, Gansu. , 20(1): 1-18][文内引用:1]
[27]
钟大康, 姜振昌, 郭强, 孙海涛, 杨喆. 2015. 内蒙古二连盆地白音查干凹陷热水沉积白云岩的发现及其地质与矿产意义. , 36(4): 587-595. [Zhong DK, Jiang ZC, GuoQ, Sun HT, YangZ. 2015. Discovery of hydrothermal dolostones in Baiyinchagan sag of Erlian Basin, Inner Mongolia, and its geologic and mineral significance. , 36(4): 587-595][文内引用:4]
[28]
钟大康, 杨喆, 孙海涛, 张硕. 2018. 热水沉积岩岩石学特征: 以内蒙古二连盆地白音查干凹陷下白垩统腾格尔组为例. , 20(1): 19-32. [Zhong DK, YangZ, Sun HT, ZhangS. 2018. Petrological characteristics of hydrothermal-sedimentary rocks: A case study of the Lower Cretaceous Tengger Formation in the Baiyinchagan Sag of Erlian Basin, Inner Mongolia. , 20(1): 19-32][文内引用:1]
[29]
周雪. 2022. 美国页岩油勘探开发现状及其对中国的启示. , 42(7): 5-9. [ZhouX. 2022. The status quo of shale oil exploration and development in the United States and its implications for China. , 42(7): 5-9][文内引用:1]
[30]
邹才能, 董大忠, 王社教, 李建忠, 李新景, 王玉满, 李登华, 程克明. 2010. 中国页岩气形成机理, 地质特征及资源潜力. , 37(6): 641-653. [Zou CN, Dong DZ, Wang SJ, Li JZ, Li XJ, Wang YM, Li DH, Cheng KM. 2010. Geological characteristics formation mechanism and resource potential of shale gas in China. , 37(6): 641-653][文内引用:1]
[31]
邹才能, 杜金虎, 徐春春, 汪泽成, 张宝民, 魏国齐, 王铜山, 姚根顺, 邓胜徽, 刘静江, 周慧, 徐安娜, 杨智, 姜华, 谷志东. 2014. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现. , 41(3): 278-293. [Zou CN, Du JH, Xu CC, Wang ZC, Zhang BM, Wei GQ, Wang TS, Yao GS, Deng SH, Liu JJ, ZhouH, Xu AN, YangZ, JiangH, Gu ZD. 2014. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China. , 41(3): 278-293][文内引用:1]
[32]
邹才能, 潘松圻, 荆振华, 高金亮, 杨智, 吴松涛, 赵群. 2020. 页岩油气革命及影响. , 41(1): 1-12. [Zou CN, Pan SQ, Jing ZH, Gao JL, YangZ, Wu ST, ZhaoQ. 2020. Shale oil and gas revolution and its impact. , 41(1): 1-12][文内引用:1]
[33]
邹才能, 马锋, 潘松圻, 张新顺, 吴松涛, 傅国友, 王红军, 杨智. 2023a. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展. , 30(1): 128-142. [Zou CN, MaF, Pan SQ, Zhang XS, Wu ST, Fu GY, Wang HJ, YangZ. 2023a. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China. , 30(1): 128-142][文内引用:1]
[34]
邹才能, 杨智, 张国生, 朱如凯, 陶士振, 袁选俊, 侯连华, 董大忠, 郭秋麟, 宋岩, 冉启全, 邱振, 吴松涛, 马锋, 白斌, 王岚, 熊波, 潘松圻, 刘翰林, 王小妮. 2023b. 非常规油气地质学理论技术及实践. , 48(6): 2376-2397. [Zou CN, YangZ, Zhang GS, Zhu RK, Tao SZ, Yuan XJ, Hou LH, Dong DZ, Guo QL, SongY, Ran QQ, QiuZ, Wu ST, MaF, BaiB, WangL, XiongB, Pan SQ, Liu HL, Wang XN. 2023b. Theory, technology and practice of unconventional petroleum geology. , 48(6): 2376-2397][文内引用:1]
AiuppaA, D'Alessand roW, GurrieriS, MadoniaP, ParelloF. 2007. Hydrologic and geochemical survey of the lake “Specchio di Venere”(Pantelleria island , Southern Italy). , 53(4): 903-913. [文内引用:1]
[37]
AmiriV, NakhaeiM, LakR, KholghiM. 2016. Geophysical, isotopic, and hydrogeochemical tools to identify potential impacts on coastal groundwater resources from Urmia hypersaline Lake, NW Iran. , 23: 16738-16760. [文内引用:1]
[38]
BadiozamaniK. 1973. The dorag dolomitization model application to the Middle Ordovician of Wisconsin. , 43(4): 965-984. [文内引用:1]
[39]
Balch DP, Cohen AS, Schnurrenberger DW, Haskell BJ, Valero Garces BL, Warren BeckJ, ChengH, Lawrence EdwardsR. 2005. Ecosystem and paleohydrological response to Quaternary climate change in the Bonneville Basin, Utah. , 221(1-2): 99-122. [文内引用:1]
[40]
BoniM, ParenteaG, BechstadtbT. 2000. Hydrothermal dolomites in SW Sanlinia(Italy): evidence for a widespread late-Variscan fluid flow event. , 131: 181-200. [文内引用:1]
[41]
BoutonA, VenninE, BoulleJ, PaceA, BourillotR, ThomazoC, BrayardA, DésaubliauxG, GoslarT, YokoyamaY, DuprazC, Visscher PT. 2016. Linking the distribution of microbial deposits from the great Salt Lake(utah, usa)to tectonic and climatic processes. , 13(19): 5511-5526. [文内引用:1]
[42]
Bwire OjiamboS, Berry LyonsW, Welch KA, Poreda RJ, Johannesson KH. 2003. Strontium isotopes and rare earth elements as tracers of groundwater lake water interactions, Lake Naivasha, Kenya. , 18(11): 1789-1805. [文内引用:1]
[43]
CangemiM, CensiP, ReimerA, D'Alessand roW, Hause-ReitnerD, MadoniaP, OliveriY, PecorainoG, ReitnerJ. 2016. Carbonate precipitation in the alkaline lake Specchio di Venere(Pantelleria Island , Italy)and the possible role of microbial mats. , 67: 168-176. [文内引用:1]
[44]
CangemiM, MadoniaP, SpezialeS. 2018. Geochemistry and mineralogy of a complex sedimentary deposit in the alkaline volcanic Lake Specchio di Venere(Pantelleria Island , south Mediterranean). , 77(2): 220-231. [文内引用:1]
[45]
Chagas A AP, Webb GE, Burne RV, SouthamG. 2016. Modern lacustrine microbialites: towards a synthesis of aqueous and carbonate geochemistry and mineralogy. , 162: 338-363. [文内引用:1]
[46]
ChangB, LiC, LiuD, FostercI, TripatiA, Lloyd MK, MaradiagaI, Luo GM, An ZH, She ZB, Xie SCh, Tong JN, Huang JH, Algeo TJ, Lyons TW, ImmenhauserA. 2020. Massive formation of early diagenetic dolomite in the Ediacaran ocean: constraints on the “dolomite problem”. , 117(25): 14005-14014. [文内引用:1]
[47]
Chivas AR, Deckker PD, NindM, ThirietD, WatsonG. 1986. The pleistocene palaeoenvironmental record of Lake Buchanan: an atypical Australian playa. , 54(1-4): 131-137. [文内引用:1]
[48]
ChouletF, FaureM, CluzelD, ChenY, LinW, WangB. 2012. From oblique accretion to transpression in the evolution of the Altaid collage: new insights from West Junggar, northwestern China. , 21(2-3): 530-547. [文内引用:1]
[49]
Cohen TJ, MogensenL, Arnold LJ, Li ZH, Janseng JD, Mayh JH. 2022. Topographic insights in the Frome-Callabonna system and the elevation of a newly surveyed highstand shoreline. , 146(1): 90-108. [文内引用:1]
[50]
Cort GD, BessemsI, KeppensE, MeesF, CummingB, VerschurenD. 2013. Late-Holocene and recent hydroclimatic variability in the central Kenya Rift Valley: the sediment record of hypersaline lakes Bogoria, Nakuru and Elementeita. , 388: 69-80. [文内引用:1]
[51]
Cort GD, MeesF, Renaut RW, SinnesaelM, Meeren T VD, GoderisS, KeppensE, MbuthiaA, VerschurenD. 2019. Late-Holocene sedimentation and sodium carbonate deposition in hypersaline, alkaline Nasikie Engida, southern Kenya Rift Valley. , 62(3): 279-300. [文内引用:1]
[52]
DarehshouriS, MichelsenN, CSchüth, TajrishyM, AchulzS. 2023. Evaporation from the dried-up lake bed of Lake Urmia, Iran. , 858(3): 159960. [文内引用:1]
[53]
Davies GR, Smith L BJr. 2006. Structurally controlled hydrothermal dolomite reservoir facies: an overview. , 90: 1641-1690. [文内引用:1]
[54]
Deckker PD. 1988. Biological and sedimentary facies of Australian salt lakes. , 62(1-4): 237-270. [文内引用:1]
[55]
Deckker PD. 2019. Groundwater interactions control dolomite and magnesite precipitation in saline playas in the Western District Volcanic Plains of Victoria, Australia. , 380: 105-126. [文内引用:1]
[56]
Deckker PD, Last WM. 1988. Modern dolomite deposition in continental, saline lakes, western Victoria, Australia. , 16(1): 29-32. [文内引用:1]
[57]
Deckker PD, BauldJ, Burne RV. 1982. Pillie Lake, Eyre Peninsula, South Australia: modern environment and biota, dolomite sedimentation and Holocene history. , 106: 169-181. [文内引用:1]
[58]
Deckker PD, Magee JW, Shelley J MG. 2011. Late Quaternary palaeohydrological changes in the large playa Lake Frome in central Australia, recorded from the Mg/Ca and Sr/Ca in ostracod valves and biotic remains. , 75(1): 38-50. [文内引用:1]
[59]
Devogel SB, Magee JW, Manley WF, Manley WF, Miller GH. 2004. A GIS-based reconstruction of late Quaternary paleohydrology: lake eyre, arid central Australia. , 204(1-2): 1-13. [文内引用:1]
[60]
Dunham EC, Fones EM, FangY, Lindsay MR, SteuerC, FoxN, WillisM, WalshA, Colman DR, Baxter BK, LagesonD, MogkD, RupkeA, Xu HF, Boyd ES. 2020. An ecological perspective on dolomite formation in Great Salt Lake, Utah. , 8: 24. [文内引用:1]
[61]
EickmannB, BachW, RosnerM, PeckmannJ. 2009. Geochemical constraints on the modes of carbonate precipitation in peridotites from the logatchev hydrothermal vent field and gakkel ridge. , 268(1-2): 97-106. [文内引用:1]
[62]
FaureG. 1986. Principles of Isotope Geology. , 160-230. [文内引用:1]
[63]
Feibel CS. 2011. A geological history of the Turkana Basin: evolutionary Anthropology. , 20(6): 206-216. [文内引用:1]
[64]
FengY, Coleman RG, TiltonG, XiaoX. 1989. Tectonic evolution of the west Junggar region, Xinjiang, China. , 8(4): 729-752. [文内引用:1]
[65]
FussmannD, von Hoyningen-HueneA J E, ReimerA, SchneiderD, BabkováH, PeticzkaR, MaierA, ArpG, DanielR, MeisterP. 2020. Authigenic formation of Ca-Mg carbonates in the shallow alkaline Lake Neusiedl, Austria. , 17: 2085-2106. [文内引用:1]
[66]
García-Aguilar JM, Guerra-MerchánA, SerranoF, PalmqvistP, Flores-MoyaA, Martínez-NavarroB. 2013. Hydrothermal activity and its palaeoecological implications in the latest Miocene to Middle Pleistocene lacustrine environments of the Baza Basin(Betic Cordillera, SE Spain). , 96: 204-221. [文内引用:1]
[67]
GibertL, FerràndezC, García-VeigasJ, Scott GR. 2015. No sedimentary evidence for hydrothermal refugia in the Plio-Pleistocene deposits of the Baza Basin(SE Spain). , 112: 226-235[文内引用:1]
[68]
GiresseP, Makaya-Mvoubou. 2010. Sediment and particulate organic carbon fluxes in various lacustrine basins of tropical Africa and in the Gulf of Guinea. , 72(4): 341-355. [文内引用:1]
[69]
Given RK, Wilkinson BH. 1987. Dolomite abundance and stratigraphic age, constraints on rates and mechanisms of Phanerozoic dolostone formation. , 57: 1068-1078. [文内引用:1]
[70]
Hardie LA. 1991. On the significance of evaporates. , 19: 131-168. [文内引用:1]
[71]
Hargrave JE, Hicks MK, Scholz CA. 2014. Lacustrine carbonates from Lake Turkana, Kenya: a depositional model of carbonates in an extensional basin. , 84(3): 224-237. [文内引用:1]
[72]
HetényiM, NyilasT, Sajgó. 2010. Organic geochemical evidence of late Pleistocene-Holocene environmental changes in the Lake Balaton region(Hungary). , 41(9): 915-923. [文内引用:1]
[73]
HollisC, BastesenE, BoyceA, CorlettH, GawthorpeR, HiraniJ, RotevatnA, WhitakerF. 2017. Fault-controlled dolomitization in a rift basin. , 45(3): 219-222. [文内引用:2]
[74]
Hsü KJ, SiegenthalerC. 1969. Preliminary experiments on hydrodynammic movement induced by evaporation and bearing on the dolomite problem. , 12: 448-453. [文内引用:1]
[75]
Huff WD, Bergstrom SM, Kolata DR. 1992. Gigantic Ordovician volcanic ash fall in North America and Europe: biological, tectonomagmatic, and event-stratigraphic significance. , 20(10): 875-878. [文内引用:1]
[76]
JiangL, Worden RH, Cai CF, Shen AJ, Crowley SF. 2018. Diagenesis of an evaporite-related carbonate reservoir in deeply buried cambrian strata, tarim basin, northwest China. , 102(1): 77-102. [文内引用:1]
[77]
JiaoX, Liu YQ, YangW, Zhou DW, BaiB, Zhang TS, Zhao MR, Li ZY, Meng ZY, Yang YY, Li ZX. 2020. Fine-grained volcanic-hydrothermal sedimentary rocks in Permian Lucaogou Formation, Santanghu Basin, NW China: implications on hydrocarbon source rocks and accumulation in lacustrine rift basins. , 114: 104201. [文内引用:1]
[78]
JiaoX, Liu YQ, YangW, LiH, Meng ZY, Zhao MR, Li ZX. 2023. Microcrystalline dolomite in a Middle Permian volcanic lake: insights on Primary Dolomite Formation in a non-evaporitic environment. , 70: 48-77. [文内引用:10]
[79]
Jiménez-MillánJ, AbadI, García-Tortosa FJ, NietoF, Jiménez-EspinosaR. 2020. Clay saline diagenesis in lake Plio-Pleistocene sediments rich in organic matter from the Guadix-Baza Basin(Betic Cordillera, SE Spain). , 195: 105739. [文内引用:1]
[80]
Karakaya MÇ, BozdaġA, Ercana HÜ, KarakayaN, DelikanA. 2019. Origin of Miocene halite from Tuz Golu basin in Central Anatolia, Turkey: evidences from the pure halite and fluid inclusion geochemistry. , 202: 1-12. [文内引用:1]
[81]
KarsliO, DokuzA, UysalI, AydinF, Kand emirR, WijbransJ. 2010. Generation of the early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. , 114(1-2): 109-120. [文内引用:1]
[82]
Kavazos C RJ, Huggett MJ, MuellerU, HorwitzP. 2017. Biogenic processes or terrigenous inputs?Permanent water bodies of the Northern Ponds in the Lake MacLeod basin of Western Australia. , 68(7): 1366-1376. [文内引用:1]
[83]
Kenward PA, Goldstein RG, Gonzalez LA, Roberts JA. 2009. Precipitation of low temperature dolomite from an anaerobic microbial consortium: the role of methanogenic archaea. , 7: 556-565. [文内引用:1]
KorteC, JasperT, Kozur HW, VeizerJ. 2006. 87Sr/86Sr record of Permian seawater. , 240: 89-107. [文内引用:1]
[86]
LancasterN. 2002. How dry was dry?Late Pleistocene palaeoclimates in the Namib Desert. , 21(7): 769-782. [文内引用:1]
[87]
Land LS. 1985. The origin of massive dolomite. , 33: 112-125. [文内引用:1]
[88]
Land LS. 1998. Failure to precipitate dolomite at 25 ℃ from dilute solution despite 1000-fold oversaturation after 32 years. , 4: 361-368. [文内引用:2]
[89]
Last WM. 1990. Lacustrine dolomite: an overview of modem, Holocene, and Pleistocene occurrences. , 27: 221-263. [文内引用:1]
[90]
Last WM, Schweyen TH. 1985. Late Holocene history of Waldsea Lake, Saskatchewan, Canada. , 24(2): 219-234. [文内引用:1]
[91]
Last WM, Ginn FM. 2005. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology. , 1(1): 10. [文内引用:1]
[92]
Last WM, DeleqiatJ, GreengrassK, SukhanS. 2002. Re-examination of the recent history of meromictic Waldsea Lake, Saskatchewan, Canada. , 148(1-2): 147-160. [文内引用:1]
[93]
Lee C TA, Jiang HH, RonayE, MinisiniD, StilesJ, NealM. 2018. Volcanic ash as a driver of enhanced organic carbon burial in the cretaceous. , 8(1): 4197. [文内引用:1]
[94]
LiH, Liu YQ, YangK, Liu YJ, Niu YZ. 2021. Hydrothermal mineral assemblages of calcite and dolomite-analcime-pyrite in Permian lacustrine Lucaogou mudstones, eastern Junggar Basin, Northwest China. , 115: 63-85. [文内引用:1]
[95]
Liu JY, Liu QY, Zhu DY, Meng QQ, Huang XW. 2019. Influences of the deep fluid on organic matter during the hydrocarbon generation and evolution process. , 30(4): 478-492. [文内引用:1]
[96]
Liu XJ, Fisher TG, LepperK, Lowell TV. 2014. Geochemical characteristics of glacial Lake Agassiz sediments and new ages for the Moorhead Phase at Fargo, North Dakota, USA. , 51(9): 850-861. [文内引用:1]
[97]
LonneeJ, Machel HG. 2006. Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field, Middle Devonian Slave Point Formation, British Columbia, Canada. , 90(11): 1739-1761. [文内引用:1]
[98]
Lowenstein TK, Dolginko L AC, Garcia-VeigasJ. 2016. Influence of magmatic-hydrothermal activity on brine evolution in closed basins: Searles Lake, California. , 128: 9-10. [文内引用:1]
[99]
Magee JW, Bowler JM, Miller GH, Willians D LG. 1995. Stratigraphy, sedimentology, chronology and palaeohydrology of Quaternary lacustrine deposits at Madigan Gulf, Lake Eyre, south Australia. , 113(1): 3-42. [文内引用:1]
[100]
May JH, BarrettA, Cohen TJ, Jones BG, PriceD, Gliganic LA. 2015. Late Quaternary evolution of a playa margin at Lake Frome, South Australia. , 122: 93-108. [文内引用:1]
[101]
Mazzullo SJ. 2000. Organogenic dolomitization in peritidal to deep-sea sediments. , 70: 10-23. [文内引用:5]
[102]
MccallJ. 2020. Lake Bogoria, Kenya: hot and warm springs, geysers and Holocene stromatolites. , 103(1-2): 71-79. [文内引用:1]
[103]
MccormackJ, BontognaliT, ImmenhauserA, KwiecienO. 2018. Controls on cyclic formation of Quaternary early diagenetic dolomite. , 45: 3625-3634. [文内引用:1]
[104]
McGeeD, QuadeJ, Lawrence EdwardsR, Broecker WS, ChengH, Reiners PW, EvensonN. 2012. Lacustrine cave carbonates: novel archives of paleohydrologic change in the Bonneville Basin(Utah, USA). , 351-352: 182-194. [文内引用:1]
[105]
MclarenS, Wallace MW, Pillans BJ, GallagherJ, Mirand a JA, Warne MT. 2009. Revised stratigraphy of the Blanchetown Clay, Murray Basin: age constraints on the evolution of paleo Lake Bungunnia. , 56: 259-270. [文内引用:1]
[106]
MclarenS, Wallace MW, Gallagher SJ, Mirand a JA, Holdgate GR, Gow LJ, SnowballI, Sand grenP. 2011. Palaeogeographic, climatic and tectonic change in southeastern Australia: the Late Neogene evolution of the Murray Basin. , 30(9-10): 1086-1111. [文内引用:1]
[107]
MclarenS, Wallace MW, ReynoldsT. 2012. The Late Pleistocene evolution of palaeo megalake Bungunnia, southeastern Australia: a sedimentary record of fluctuating lake dynamics, climate change and the formation of the modern Murray River. , 317-318: 114-127. [文内引用:1]
[108]
MeisterP, ReyesC, BeaumonW, RinconM, CollinsL, BerelsonW, StottL, CorsettiF, Nealson KH. 2011. Calcium and magnesium-limited dolomite precipitation at Deep Springs Lake, California. , 58(7): 1810-1830. [文内引用:1]
[109]
Moore TS, Murray RW, Kurtz AC, Schrag DP. 2004. Anaerobic methane oxidation and the formation of dolomite. , 229: 141-154. [文内引用:1]
[110]
Moreira NF, Walter LM, VasconcelosC, McKenzie JA, McCall PJ. 2004. Role of sulfide oxidation in dolomitization: sediment and pore-water geochemistry of a modern hypersaline lagoon system. , 32: 701-704. [文内引用:1]
[111]
Palmer MR, ElderfieldH. 1985. Sr isotope composition of sea water over the past 75 Myr. , 314: 526-528. [文内引用:1]
[112]
Petrash DA, Bialik OM, BontognaliT, VasconcelosC, Roberts JA, McKenzie JA, Konhauser KO. 2017. Microbially catalyzed dolomite formation: from near-surface to burial. , 171: 558-582. [文内引用:2]
[113]
PoucletA, BellonH, BramK. 2016. The Cenozoic volcanism in the Kivu rift: assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions. , 121: 219-246. [文内引用:1]
Qiao ZF, Zhang SN, Shen AJ, Shao GM, SheM, CaoP, Sun XW, ZhangJ, Guo RX, Tan XC. 2021. Features and origins of massive dolomite of Lower Ordovician Penglaiba Formationin the Northwest Tarim Basin: evidence from petrography and geochemistry. , 18: 1323-1341. [文内引用:2]
[116]
Renaut RW, Owen RB, Ego JK. 2017. Geothermal activity and hydrothermal mineral deposits at southern Lake Bogoria, Kenya Rift Valley: impact of lake level changes. , 129: 623-646. [文内引用:1]
[117]
Roberts JA, Bennett PC, Gonzalez LA, Macpherson GL, Milliken KL. 2004. Microbial precipitation of dolomite in methanogenic groundwater. , 32: 277-280. [文内引用:1]
[118]
Ross KA, SchmidM, OgorkaS, Muvundja FA, Anselmetti FS. 2015. The history of subaquatic volcanism recorded in the sediments of Lake Kivu;East Africa. , 54(1): 137-152. [文内引用:1]
[119]
Roy PD, Smykatz-KlossW, SinhaR. 2006. Late Holocene geochemical history inferred from Sambhar and Didwana playa sediments, Thar Desert, India: Comparison and synthesis. , 144: 84-98. [文内引用:1]
[120]
Sánchez-RománM, VasconcelosC, SchmidT, DittrichM, McKenzie JA. 2008. Aerobic microbial dolomite at the nanometer scale: implications for the geologic record. , 36: 879-882. [文内引用:1]
[121]
SchusterM, NutzA. 2017. Lacustrine wave-dominated clastic shorelines: modern to ancient littoral land forms and deposits from the Lake Turkana Basin(East African Rift System, Kenya). , 59: 221-243. [文内引用:1]
[122]
Smith L BJr. 2006. Origin and reservoir characteristics of Upper Ordovician Trenton-Black river hydrothermaldolomite reservoirs in New York. , 90(11): 1691-1718. [文内引用:2]
[123]
Smith RE, Tyler JJ, ReevesJ, BlockleyS, Jacobsen GE. 2016. First Holocene cryptotephras in mainland Australia reported from sediments at Lake Keilambete, Victoria, Australia. , 40: 82-91. [文内引用:1]
[124]
Stone A EC, Thomas D SG. 2013. Casting new light on late Quaternary environmental and palaeohydrological change in the Namib Desert: a review of the application of optically stimulated luminescence in the region. , 93: 40-58. [文内引用:1]
[125]
Talbot MR, KeltsK. 1986. Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi, Ghana. , 14(11): 912-916. [文内引用:1]
[126]
TekinE, AyyildizT, Gündoġanİ, OrtiF. 2007. Modern halolites(halite oolites)in the Tuz Gölü, Turkey. , 195(3/4): 101-112. [文内引用:1]
[127]
TolottiM, GuellaG, HerzigA, RodeghieroM, Rose NL, SojaG, ZechmeisterT, Yang HD, TeubnerK. 2021. Assessing the ecological vulnerability of the shallow steppe Lake Neusiedl(Austria-Hungary)to climate-driven hydrological changes using a palaeolimnological approach. , 47(5): 1327-1344. [文内引用:1]
[128]
ÜnerS. 2018. Evolution of Colpan barrier and lagoon complex(Lake Van-Turkey): sedimentological and hydrological approach. , 486(30): 73-82. [文内引用:1]
[129]
VasconcelosC, McKenzie JA. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions(Lagoa Vermelha, Rio de Janeiro, Brazil). , 67(3): 378-390. [文内引用:1]
[130]
WaceyD, Wright DT, Boyce AJ. 2007. A stable isotope study of microbial dolomite formation in the Coorong Region, South Australia. , 244(1-2): 155-174. [文内引用:1]
[131]
WarrenJ. 2000. Dolomite: occurrence evolution and economically important associations. , 52: 1-81. [文内引用:1]
WierzbickiR, DravisJ, Al-AasmI. 2006. Burial dolomitization and dissolution of Upper Jurassic Abenakiplat form carbonates, deep Panuke reservoir, Nova Scotia, Canada. , 90(11): 1843-1861. [文内引用:1]
[134]
WilkinsD, Deckker PD, Fifield LK, GouramanisC, OlleyJ. 2012. Comparative optical and radiocarbon dating of laminated Holocene sediments in two maar lakes: Lake Keilambete and Lake Gnotuk, south-western Victoria, Australia. , 9: 3-15. [文内引用:1]
[135]
Wright DT, WaceyD. 2005. Precipitation of dolomite using sulphate reducing bacteria from the Coorong Region, South Australia: significance and implications. , 52: 987-1008. [文内引用:1]
[136]
Xie ZL, HeJ, Lue CW, Zhang RQ, ZhouB, Mao HF, Song WJ, Zhao WC, Hou DK, Wang JH, Li YF. 2015. Organic carbon fractions and estimation of organic carbon storage in the lake sediments in Inner Mongolia Plateau, China. , 73(5): 2169-2178. [文内引用:1]
[137]
YangZ, Zhong DK, WhitakerF, LuZ, ZhangS, Tang ZC, Liu RC, LiZ. 2020. Syn-sedimentary hydrothermal dolomites in a lacustrine rift basin: petrographic and geochemical evidence from the lower Cretaceous Erlian Basin, Northern China. , 67(1): 305-329. [文内引用:8]
[138]
YangZ, Whitaker FF, LiuR, Phillips JC, Zhong DK. 2021. A new model for formation of lacustrine primary dolomite by subaqueous hydrothermal venting. , 48(6): e2020GL091335. [文内引用:3]
[139]
Yu BH, Yuan JL. 2013. Current situation of China’s shale gas exploration and development. , 318: 469-472. [文内引用:1]
[140]
ZámolyiA, SalcherB, DraganitsE, ExnerU, WagreichM, GierS, FiebigM, LomaxJ, SurányiG, DielM, ZámolyiF. 2017. Latest Pannonian and Quaternary evolution at the transition between Eastern Alps and Pannonian Basin: new insights from geophysical, sedimentological and geochronological data. , 106: 1695-1721. [文内引用:1]
[141]
Zenger DH, Dunham JB, Ethington RL. 1980. Concepts and models of dolomitization. , 28: 259-297. [文内引用:1]
[142]
ZhangM, Liu DD, Liu QY, JiangS, WangX, Wang YW, MaC, Wu AB, ZhangK, Ma YQ. 2023. Magmatism and hydrocarbon accumulation in sedimentary basins: a review. , 244: 104531. [文内引用:2]
[143]
Zhang XW, Scholz CA, Hecky RE, Wood DA, Zal HJ, Ebinger CJ. 2014. Climatic control of the late Quaternary turbidite sedimentology of Lake Kivu, East Africa: implications for deep mixing and geologic hazards. , 42(9): 811-814. [文内引用:1]
[144]
Zhao ZH, Guo ZJ, ZhangC. 2003. Tectonic evolution of the Santanghu Basin, East Xinjiang and it’s implication for the hydrocarbon accumulation. , 39(2): 219-228. [文内引用:1]