陆内裂谷湖相火山-热液沉积型白云岩研究进展*
魏世林1, 焦鑫1, 柳益群1, 李红1, 周鼎武2, 吕亦然3
1 大陆动力学国家重点实验室,西北大学地质学系,陕西西安 710069
2 山东科技大学地球科学与工程学院,山东青岛 266590
3 中国科学院地质与地球物理研究所,北京 100029
通讯作者简介 焦鑫,男,1985年生,副教授,主要从事沉积岩石学、火山-热液沉积学、页岩油研究工作。E-mail: jxin807@163.com

第一作者简介 魏世林,男,2000年生,硕士研究生,主要从事沉积学研究工作。E-mail: wsl1924@163.com

摘要

以富有机质黑色页岩为代表的页岩油、页岩气资源近年来成为全球范围内油气勘探、开发领域的研究热点。该岩性在中国陆相湖盆中主要为来源复杂的细粒沉积岩,其中发育有一类特殊的纹层状泥晶白云岩。该类白云岩的岩石学、矿物学微观特征和地球化学特征既区别于常见的次生白云石化成因白云岩,又与微生物成因白云岩不同,被定义为一类新型的火山-热液沉积型白云岩。在研读大量国内外文献的基础上,综述了现代湖相白云石全球分布及形成环境特征,并展示了白云岩成因模式研究进展。重点选择了均在拉张构造背景下所形成的三塘湖盆地和准噶尔盆地芦草沟组、酒西盆地下沟组和二连盆地腾格尔组发育的火山-热液沉积型白云岩为研究对象,并进行对比研究。发现该类白云岩的特征: (1)保留有完好的原始微米级纹层结构和微晶晶体,后期受到的成岩作用较弱; (2)与半深—深湖黑色泥页岩互层且缺乏蒸发作用特征,并含有不同比例的火山-热液矿物; (3)锶同位素显示成岩流体具有深源(壳-幔混合)特征; (4)含有丰富的有机物质,并与油气分布展现出较强的耦合关系。最后,提出应加强该类白云岩研究、 利用其蕴含的特殊地质信息进行构造背景示踪及探讨其与油气生成关系。

关键词: 白云岩成因; 湖相泥晶白云岩; 热液沉积; 黑色页岩; 裂谷盆地
中图分类号:P531 文献标志码:A 文章编号:1671-1505(2024)05-1037-21
Progress on volcanic-hydrothermal sedimentary dolostone in intracontinental lacustrine rift basin
WEI Shilin1, JIAO Xin1, LIU Yiqun1, LI Hong1, ZHOU Dingwu2, LÜ Yiran3
1 State Key Laboratory of Continental Dynamics,Department of Geology,Northwest University,Xi’an 710069,China
2 College of Earth Science and Engineering,Shandong University of Science and Technology,Shandong Qingdao 266590,China
3 Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China
About the corresponding author JIAO Xin,born in 1985,is an associate professor in Northwest University. His research interests include sedimentary petrology,volcanic-hydrothermal sedimentology,and shale oil. E-mail: jxin807@163.com.

About the first author WEI Shilin,born in 2000,is a master degree candidate in Northwest University. He is engaged in sedimentology. E-mail: wsl1924@163.com.

Abstract

Organic-rich black shales,which represent shale oil and gas resources,have become a research hotspot in the field of oil and gas exploration and development in China and around the world in recent years. These lithologies consist mainly of complexly sourced fine-grained sedimentary rocks in continental lacustrine basins in China,among which a special type of laminated microcrystalline dolostone is developed. The petrological,mineralogical micro-features,and geochemical characteristics of this type of dolostone are distinct from the commonly dolostones formed by dolomitization and are also different from microbial mediated dolostones. Hence,the dolostones have been defined as a new type of volcanic-hydrothermal sedimentary dolostone. Based on extensive review of domestic and foreign literature,this paper summarizes the global distribution and environmental characteristics of modern lacustrine dolomites and presents the research progress on the models of origins of dolostone. The focus is on the comparative study of volcanic-hydrothermal sedimentary dolostones found in the Lucaogou Formation in Santanghu and Junggar Basins, the Xiagou Formation in Jiuxi Basin,and the Tengger Formation in Erlian Basin,all of which are formed in an extensional tectonic setting. Four characteristics are summarized as follows: (1)These dolostones are well-preserved with μm-scale laminated structure and microcrystallized,indicating latterly weak diagenesis. (2)They contain a variety of volcanic-hydrothermal minerals,and are interbedded with semi-deep to deep lacustrine black shale. Evaporite characteristics are lacking. (3)Strontium isotopes indicate that the diagenetic fluid has a deep source(crust-mantle mixed)characteristic. (4)They are rich in organic matters and show a strong coupling relationship with hydrocarbon distribution. Finally,it is recommended to enhance research on this type of dolostone,utilize its unique geological information for tracing tectonic backgrounds,and explore its relationship with hydrocarbon generation as future research directions.

Key words: dolomite origin; lacustrine microcrystalline dolostone; hydrothermal sedimentology; black shale; rift basin

随着世界范围内常规油气产量的不断下降, 以黑色页岩为主要代表的非常规油气资源在勘探开发中取得了一系列突破(邹才能等, 2020, 2023a; 姜在兴等, 2023; 金之钧等, 2023; 赵文智等, 2023)。自2010年以来, 中国在非常规油气资源领域发展迅速, 以湖相细粒沉积岩为主要岩性的富有机质黑色页岩, 作为非常规油气资源重要的生油岩和储集层因具有非常可观的油气勘探开发价值, 因而受到广泛关注(邹才能等, 2010; 贾承造等, 2012; Yu and Yuan, 2013; 李昌伟等, 2015)。统计发现, 中国多套重要的黑色页岩均分布于拉张作用下形成的被动大陆边缘盆地和裂谷盆地内(邹才能等, 2023b), 而在这些富有机质黑色页岩中均含有一类特殊的泥晶白云岩, 其岩石学、矿物学和地球化学特征既区别于常见的次生白云石化成因白云岩, 又与微生物成因形成的原生白云岩不同(柳益群等, 2010, 2011; 文华国等, 2014; 焦鑫等, 2017; 郑荣才等, 2018)。整体表现为: (1)保留有完好的原始微米级纹层结构和微晶晶体, 后期受到的成岩作用较弱; (2)与泥页岩互层且缺乏蒸发作用特征, 其矿物组分中含有不同比例的火山-热液矿物; (3)锶同位素显示成岩流体具有深源(壳-幔混合)特征; (4)含有丰富的有机物质, 并白云岩分布特征与油气资源展现出较强的耦合关系。因此, 无论是对解决“ 白云石问题” 等科学问题, 还是指导非常规油气勘探、开发的生产问题, 该类白云岩均具有极高的研究价值。郑荣才等(2003, 2006)最早在酒西盆地白垩系下沟组发现并报道了首例湖相“ 白烟型” 喷流沉积白云岩; 随后柳益群等(2010)在三塘湖盆地二叠系芦草沟组发现了热水沉积白云岩, 认为其形成与幔源热液活动密切相关; 钟大康等(2015)在二连盆地白音查干凹陷下白垩统腾格尔组发现湖相热水沉积白云岩, 认为其形成可能与火山活动和湖底热液作用有关; 张帅等(2018, 2020)在准噶尔盆地东部吉木萨尔凹陷中二叠统芦草沟组中发现热液喷流沉积白云岩, 认为其形成与幔源流体相关。

通过研读并梳理了大量前人资料, 综合归纳了近年来关于富有机制黑色页岩中的这类泥晶白云岩研究成果。通过对比国内外白云岩成因模式、全球湖相白云石的分布以及国内火山-热液型白云岩研究进展等方面, 旨在引起更多学者讨论该类白云岩成因, 探索其与页岩油气生成和构造背景示踪方面的科学问题。

1 白云岩成因模式

作为一种化学成分简单(CaMg[CO3]2)且地质时期分布广泛的矿物类型, 白云石自从其被发现并命名之后的200余年里, 其成因始终存在争议。由于厚度大且白云石成分较纯的白云岩(massive dolostone)主要分布于古生界和前寒武系, 而较新的地层中很少被发现(Given and Wilkinson, 1987; Warren, 2000)。该差异使得白云石被认为是一种典型的次生交代成因矿物。在实验室常温条件下模拟白云石生成的失败(Land, 1998), 表明在地表条件下白云石成核和沉淀存在动力学障碍。地质时期白云石的大量沉积与它现代沉积的缺失及不能在实验条件下模拟生成明显矛盾, 这就是著名的“ 白云石问题(dolomite problem)” (Petrash et al., 2017; Chang et al., 2020)。

目前关于白云岩成因主要为次生和原生成因2类(表 1; 表 2)。次生成因包括6类。根据白云石化的物理化学条件、Mg2+来源以及流体动力学机制可分为蒸发模式(Pray and Murry, 1965; Hsü and Siegenthaler, 1969)、渗透回流模式(Adams and Rhodes, 1960; Pray and Murry, 1965)、海水模式(Land, 1985)、混合水模式(Badiozamani, 1973)、埋藏模式(Zenger et al., 1980; Wierzbicki et al., 2006)和热液改造模式(Hardie, 1991; Smith, 2006; 赫云兰等, 2010)。不难看出, 次生成因主要强调蒸发作用所导致的元素过饱和。Kim 等(2023)通过数值模拟以及透射电子显微镜实验验证后, 提出溶液在过饱和与欠饱和状态之间频繁循环可促进白云石晶体快速生长, 从而为白云石在地表频繁改变的蒸发— 非蒸发环境中的形成提供了理论依据。进一步解释了为什么在实验中1000倍的过饱和条件下仍未能析出白云石(Land, 1998)。而埋藏模式与热液改造模式则是受到深部热液流体影响所致。

表 1 次生白云岩成因模式 Table1 Genetic models of secondary dolostone
表 2 原生白云岩成因模式 Table2 Genetic models of primary dolostone

原生白云岩成因目前主要包括微生物成因及热液沉积成因。 微生物可以通过自身新陈代谢机制促进白云石形成, 按照微生物代谢方式, 与白云石形成有关的微生物自身新陈代谢机制可分为硫酸盐还原反应(Vasconcelos and McKenzie, 1997; Mazzullo, 2000; Warthmann et al., 2000; Wright and Wacey, 2005)、甲烷生成作用(Mazzullo, 2000; Moore et al., 2004; Roberts et al., 2004; Kenward et al., 2009)、硫化物氧化(Moreira et al., 2004)和需氧异养模式(Sá nchez-Romá n et al., 2008; Petrash et al., 2017; 表 2)。

热液成因白云岩在地质学界中更为常见的是热液改造成因白云岩, 是指热液能够改变碳酸盐岩矿物的物理化学性质、结构构造和化学成分并形成白云岩(Smith, 2006)。但是近10余年诸多学者在许多含油气湖相盆地的重要页岩油型烃源岩中发现了与火山-热液活动相关的泥晶白云岩。其明显缺乏热液改造常见的重结晶特征(如“ 鞍状白云石” 等; 郑荣才等, 2003; 柳益群等, 2010; 钟大康等, 2015)。该类白云石具有明显的“ 原生” 特征, 且由于其成分较纯且分布较广而明显区别于微生物成因白云石。学者将富含这类白云石的白云岩称为火山-热液沉积型白云岩(郑荣才等, 2006; 柳益群等, 2010, 2011; 钟大康等, 2015; Jiao et al., 2023)。该类白云岩是来自深部的热液流体通过断裂或裂缝上涌后进入湖盆与湖水混合, 热液流体压力和温度降低导致白云石和伴生矿物连续沉淀后所形成(Yang et al., 2020)。这类白云岩的形成往往伴随着拉张构造运动。火山活动及深大断裂为热液上涌提供通道, 不仅带来了Ca、Si、Fe、Mg等白云石发育的物质基础(郑荣才等, 2006; 文华国等, 2009; Hollise et al., 2017), 而且热液可以提供较高的温度, 使湖底水温局部升高, 促进了白云石的成核与发育(Jiao et al., 2023)。

2 现代湖相白云石全球分布及形成环境特征

现代湖相白云石在全球主要大陆均有分布。目前有文献记录发育白云石的湖泊有近40个, 主要集中在北美、澳大利亚、欧洲、亚洲及非洲。将这些湖泊位置放于全球气候带分布图(图 1)中可发现, 它们主要分布于温带大陆性气候地区, 部分在热带草原气候地区和热带沙漠气候地区。在地中海、热带季风和热带雨林气候地区也有少量分布, 表明白云石多形成于温暖环境。进一步将这些湖泊位置放于全球干旱带分布图(图 2)中可发现, 它们主要围绕着干旱带分布, 表明一定的蒸发作用对白云石形成十分重要。

图 1 全球气候带及白云石发育湖泊分布
底图为全球卫星云图, 引自http://lpolaac.usgs.gov/products/astgtmv003/
Fig.1 Global distribution of climate zone and dolomite precipitated lakes

图 2 全球火山、干旱带及白云石发育湖泊分布
底图引自“ 标准地图服务” , 网址http://bzdt.ch.mnr.gov.cn/
Fig.2 Global distribution of volcanos, arid zone, and dolomite precipitated lakes

详细研究发现, 这些湖泊多数为封闭的浅水、蒸发咸水湖, 且呈碱性。但是位于美国加利福尼亚州东部的Deep Springs Lake(Meister et al., 2011)和位于北达科塔州的冰川湖Lake Agassiz(Liu et al., 2014)、位于奥地利的Lake Neusiedl(Zá molyi et al., 2017; Tolotti et al., 2021)和位于非洲加纳Lake Bosumtwi(Giresse and Makaya-Mvoubou, 2010)等均为开放湖泊, 同样发育有白云石。而位于非洲肯尼亚的开放湖泊Lake Bogoria(Cort et al., 2013, 2019; Renaut et al., 2017; Mccall, 2020)火山活动频繁, 湖泊中发育有典型的火山-热液矿物蒙脱石, 表明在白云石形成过程中可能受到了火山作用的影响。

然而, 上述湖相中发育的白云石含量普遍较低, 甚至仅为痕量。但位于意大利的开放湖Lake Specchio di Venere(Aiuppa et al., 2007; Cangemi et al., 2016, 2018)则沉积含量较高的白云石(Last, 1990)。该湖泊位于一个火山口内, 为非蒸发环境。湖泊沉积物除少量陆源碎屑外还含有火山物质, 在湖泊周围可见相当强烈的热液喷出活动, 表明其中大量生成的白云石与湖泊中火山热液作用密切相关。

目前相较于蒸发环境的浅水湖相白云石, 深水环境中形成的现代白云石报道非常少。这可能与目前深水湖盆沉积物、尤其是白云石研究采样较难和关注度较低有关。但富存于中国拉张盆地背景中的富有机质黑色页岩中的泥晶白云岩则具有半深湖— 深湖相沉积特征, 明显区别于目前主流的浅水原生白云岩成因。

3 火山-热液沉积型白云岩特征

火山-热液沉积型白云岩目前主要发现在新疆三塘湖盆地和准噶尔盆地、甘肃酒西盆地及内蒙古二连盆地(郑荣才等, 2003; 柳益群等, 2010, 2013; 钟大康等, 2015)。上述盆地中的白云岩具有如下几点明显的相似特征。

3.1 地质学特征

1)构造背景: 所处盆地在白云岩形成时期均与拉张构造背景有关, 均为经受伸展作用后形成的裂陷盆地(文华国等, 2014; 焦鑫等, 2017; Yang et al., 2020; 张帅等, 2020)。

2)地层组合: 白云岩均以层状或透镜状发育于富含有机质的细粒沉积岩中, 构成盆内重要的烃源岩。近年来富含有机质的细粒沉积岩被视为黑色页岩, 并作为页岩油或致密油油气藏生油岩及储集层进行生产与研究(周雪, 2022)。除三塘湖盆地芦草沟组是被夹于2套重要的陆相火山沉积地层以外, 其余白云岩发育层位均被夹于以砂岩— 粉砂岩为主的陆相沉积地层中(表 4)。

3.2 岩石矿物学特征

1)岩石学特征: 白云岩均以纹层状产出为主(图 3-A, 3-B, 3-C), 局部可见同沉积软变形构造(图 3-D), 表明白云石形成时期水体整体较为平静, 局部存在动荡。

图 3 火山-热液沉积型白云岩沉积学特征
A— 三塘湖盆地芦草沟组纹层状白云岩与深棕色富有机质纹层互层(Jiao et al., 2023), 单偏光; B— 酒西盆地下沟组纹层状泥晶白云岩(郑荣才等, 2018), 正交偏光; C— 二连盆地腾格尔组纹层状微晶白云岩(郭强等, 2012), 单偏光; D— 二连盆地腾格尔组纹层状微晶白云岩软变形沉积(郭强等, 2012), 单偏光
Fig.3 Sedimentary characteristics of the volcanic-hydrothermal sedimentary dolostones

2)白云石矿物学特征: 白云石均以泥晶为主, 粒径多小于3 μ m, 有序度较低(0.17~0.60; 表 4), 但其自形程度总体较好, 多为半自形— 自形晶(图 4-A, 4-B, 4-C, 4-D), 甚至可见纳米级自形菱形晶体(图 4-A)。此外, 局部层位的白云石发生了明显的次生变化。例如, 三塘湖盆地中1口钻井集中出现了蒙脱石富集层位, 其中的白云石重结晶后粒度介于10~40 μ m之间, 并且边部发生的蛇纹石化(图 5-A), 代表了火山及相关热液活动对白云石的局部改造作用(Jiao et al., 2023)。准噶尔盆地芦草沟组中的白云石与硅质沉积共存时, 重结晶为10~50 μ m的球粒, 并显示含铁量不同的生长环带(图 5-B), 代表了热液流体的多期次交代沉积(张帅等, 2020)。二连盆地腾格尔组中的白云石也出现了典型的热液蚀变成因鞍形白云石(图 5-C; Yang et al., 2020)。

图 4 火山-热液沉积型白云岩中泥晶白云石矿物学特征
A— 三塘湖盆地芦草沟组火山-热液沉积型白云岩中白云石呈约1 μ m的自形晶体(Jiao et al., 2023), SEM; B— 准噶尔盆地芦草沟组他形微粉晶白云石(张帅等, 2020), SEM; C— 酒西盆地下沟组火山-热液沉积型白云岩中粒径为5~10 μ m的菱形铁白云石(红色箭头)(文华国等, 2014), SEM; D— 二连盆地腾格尔组火山-热液沉积型白云岩中白云石晶体呈大小约3 μ m半自形— 自形晶体(魏巍等, 2017), SEM。SEM— 扫描电镜
Fig.4 Mineralogical characteristics of micro-crystalline dolomite in the volcanic-hydrothermal sedimentary dolostones

图 5 火山-热液沉积型白云岩中重结晶白云石特征
A— 三塘湖盆地芦草沟组火山-热液沉积型白云岩中白云石重结晶后边部被蛇纹石(红色箭头)交代(Jiao et al., 2023), XL; B— 准噶尔盆地芦草沟组硅质白云岩, 白云石呈球粒状, 自内向外由于含铁量不同而呈环带(张帅等, 2020), BS; C— 二连盆地腾格尔组火山— 热液沉积型白云岩中鞍状粗晶白云石, 边部呈弯曲弧形(郭强等, 2012), XL。XL— 正交偏光; BS— 电子探针背散射
Fig.5 Mineralogical characteristics of recrystallized dolomite in the volcanic-hydrothermal sedimentary dolostones

3)伴生矿物: 总体上4个研究区火山-热液沉积型白云岩中白云石较纯, 但均含有少量的伴生矿物。除了包含常见的陆源碎屑颗粒(石英、斜长石、钾长石)外, 还含有不同比例典型的火山-热液成因矿物(图 6-A至6-F; 郑荣才等, 2006; 柳益群等, 2011; Yang et al., 2020; 张帅等, 2020; Jiao et al., 2023)。例如普遍存在的方沸石为碱性热液流体直接沉淀的产物或火山灰被湖水早期蚀变的产物(Li et al., 2021)。蒙脱石作为三塘湖盆地芦草沟白云岩中主要的黏土类型(图 6-A), 其成因也是由碱性火山岩被酸性流体蚀变或由湖水中的火山灰蚀变而形成(Jiao et al., 2023)。同时, 具有明显鸡骨状结构的火山玻屑也出现在白云岩中(图 6-B)。此外, 准噶尔盆地芦草沟组白云岩中所含有的钠长石和水铵长石(图 6-C), 也同样为火山-热液作用的产物(张帅等, 2020)。酒西盆地下沟组白云岩中存在的钠长石、重晶石及透闪石(图 6-E, 6-F), 也说明了火山热液对白云岩形成与成岩环境的影响(文华国等, 2014)。

图 6 火山-热液沉积型白云岩伴生特殊矿物特征
A— 三塘湖盆地芦草沟组火山-热液沉积型白云岩, 浅灰色碱性长石(黄色箭头)和蒙脱石以不同比例填充于白云石晶间孔中(Jiao et al., 2023), BS; B— 三塘湖盆地芦草沟组火山-热液沉积型白云岩中富含鸡骨状玻屑与棱角状晶屑(Jiao et al., 2023), PL; C— 准噶尔盆地芦草沟组火山-热液沉积型白云岩中白云石(Dol)呈~5 μ m的半自形晶体, 与水铵长石(Kf+Bdt)、方沸石(Ana)和钠长石(Ab)共生(张帅等, 2020), BS; D— 准噶尔盆地芦草沟组火山-热液沉积型白云岩, 白云石(Dol)与方沸石(Ana)、钠长石等矿物共存(张帅等, 2020), XL; E— 酒西盆地下沟组火山-热液沉积型白云岩中呈斑晶产出透闪石(文华国等, 2014), XL; F— 二连盆地腾格尔组火山-热液沉积型白云岩中的方沸石(Ana)与钠沸石(N)(钟大康等, 2018), SEM。BS-电子探针背散射; PL— 单偏光; XL— 正交偏光; SEM— 扫描电镜
Fig.6 Mineralogical characteristics of associated minerals in the volcanic-hydrothermal sedimentary dolostones

4)有机物分布: 4个研究区白云岩中可见丰富的有机质纹层, 其中可见微生物藻类沉积(图 7), 并与火山-热液物质的分布呈较强的耦合关系(Jiao et al., 2020)。

图 7 火山-热液沉积型白云岩中有机碎屑及富藻有机质纹层
A— 三塘湖盆地芦草沟组火山-热液沉积型白云岩中纹层状富含有机物的微生物沉积(红色箭头)(Jiao et al., 2023), XL; B— 三塘湖盆地芦草沟组火山-热液沉积型白云岩富有机质层中海藻酸盐(红色箭头), 入射蓝光下的荧光图像(Jiao et al., 2023); C— 酒西盆地下沟组火山-热液沉积型白云岩中纹层状藻类沉积(郑荣才等, 2018), XL; D— 二连盆地腾格尔组火山-热液沉积型白云岩藻类纹层(郭强等, 2012), XL。XL— 正交偏光
Fig.7 Organic particles and algal-rich organic lamination in the volcanic-hydrothermal sedimentary dolostones

3.3 地球化学特征

除上述相似岩石学特征外, 4个研究区的火山-热液沉积型白云岩在碳、氧同位素、稀土元素及锶同位素地球化学方面也具有相似的特征和少数差异性。

1)碳、氧同位素: 4个研究区白云岩的碳、氧同位素具有明显的一致性(图 8), 即明显的δ 13C正异常(介于1.79‰ ~10.16‰ 之间, 平均4.69‰)和 δ 18O 负异常(介于-22.70‰ ~-2.32‰ 之间, 平均-10.51‰)。这与其他常见类型白云岩的碳、氧同位素值有明显的不同。例如: (1)塔里木盆地下奥陶统蓬莱坝组埋藏成因白云岩均为负异常的δ 13C值(介于-2.91‰ ~0.01‰ 之间, 平均-1.41‰)和 δ 18O 值(介于-12.81‰ ~-5.52‰ 之间, 平均-8.30‰ ; Qiao et al., 2021)。(2)形成于潮间带的硫酸盐还原菌型白云岩δ 13C值(介于-10.30‰ ~0.87‰ 之间)主要呈负异常特征, δ 18O值(介于-3.2‰ ~4.3‰ 之间)没有明显正、负异常特征(Mazzullo, 2000)。(3)具有明显δ 13C正异常的形成于浅海潮下带的产甲烷菌型微生物白云岩(Mazzullo, 2000)。(4)加拿大不列颠哥伦比亚省中泥盆统Slave Point组热液蚀变白云岩δ 13C值(介于-2.51‰ ~-0.31‰ 之间, 平均-1.04‰)和 δ 18O 值(介于-16.73‰ ~-13.00‰ 之间, 平均-14.43‰)均为负异常(Lonnee and Mache, 2006)。此外, 4个研究区内白云岩碳、氧同位素值没有明显的相关性关系(R2=0.1682, n=54), 也表明该类白云岩未受到明显的成岩作用改变(文华国等, 2014), 这与其整体以泥晶白云石为主的矿物学特征一致。

图 8 火山-热液沉积型白云岩与次生白云岩及微生物白云岩的碳、氧同位素特征Fig.8 Carbon and oxygen isotopic characteristics of the volcanic-hydrothermal sedimentary dolostones, secondary dolostones, and microbial mediated dolostones

一般而言, 白云岩碳同位素正异常往往是受到了微生物产甲烷菌活动的影响(Mazzullo, 2000); 而氧同位素负异常则常与热液活动或淡水注入有关(Boni et al., 2000; Davies and Smith, 2006; Hollis et al., 2017)。4个研究区火山-热液沉积型白云岩碳同位素分布范围较为集中, 其中三塘湖盆地芦草沟组白云岩δ 13C值介于3.70‰ ~9.90‰ 之间, 平均5.60‰ ; 准噶尔盆地芦草沟组白云岩的δ 13C值介于4.16‰ ~10.20‰ 之间, 平均7.30‰ ; 酒西盆地下沟组白云岩δ 13C值介于1.79‰ ~5.82‰ 之间, 平均4.04‰ ; 二连盆地腾格尔组白云岩δ 13C值介于1.40‰ ~8.60‰ 之间, 平均3.65‰ 。Jiao 等(2023)认为三塘湖盆地芦草沟组白云岩δ 13C值正偏可能是白云岩形成过程中受到了来自幔源流体及微生物产甲烷菌活动的共同影响; 张帅等(2020)认为在准噶尔盆地芦草沟组中有机质埋藏量较高, 其生物生产量高导致同期湖水贫12C(张晓宝等, 2000; 张帅等, 2018), 湖水参与白云岩成矿流体导致δ 13C正异常; 文华国等(2014)Yang 等(2020, 2021)均认为来自深部的热液流体上涌进入湖盆内后释放富12C的CO2导致白云岩δ 13C值正偏。综上, 微生物和深部流体活动可能作为导致4个研究区火山-热液沉积型白云岩碳同位素正异常的主要原因。

氧同位素整体分布范围较大, 三塘湖盆地芦草沟组白云岩 δ 18O 值介于-22.70‰ ~-3.10‰ 之间, 平均-14.00‰ ; 准噶尔盆地芦草沟组白云岩介于-9.81‰ ~-2.32‰ 之间, 平均-6.01‰ ; 酒西盆地下沟组白云岩 δ 18O 值介于-14.15‰ ~-5.89‰ 之间, 平均-10.24‰ ; 二连盆地腾格尔组白云岩介于-18.40‰ ~-4.30‰ 之间, 平均-12.60‰ 。结合矿物学特征发现, 粗晶白云石往往比微晶白云石更具负异常特征(图 8)。Jiao等(2023)认为三塘湖盆地芦草沟组白云岩 δ 18O 值负偏与热液流体的影响有关, 同时强烈的热液活动将导致氧同位素值更负。加之三塘湖盆地芦草沟组白云岩呈现出火山碎屑含量与白云石自形程度及有序度呈正相关的特点, 进一步说明白云石形成和生长过程中受到了强烈的火山-热液作用影响。张帅等(2020)文华国等(2014)Yang 等(2021)同样认为 δ 18O 值负异常与深部热液的局部高温作用相关。

2)稀土元素: 将4个研究区火山-热液沉积型白云岩的稀土元素数据进行PAAS标准化处理后分析显示: 这些白云岩的稀土元素蛛网图特征较为一致, 整体表现为Eu正异常较为明显的略平坦曲线(图 9)。该特征与埋藏模式重结晶白云岩(Qiao et al., 2021)较为类似, 而与湖相微生物碳酸盐岩具有轻微的Eu负异常特征(Chagas et al., 2016)明显不同。但由于4个研究区白云岩中白云石均以泥晶为主, 而非明显重结晶的白云石(图 6; 表 3), 因此两者在岩石学和矿物学特征缺乏相似性。其中三塘湖盆地芦草沟组白云岩δ Eu(介于1.09~1.62之间, 平均1.25; 焦鑫等, 2017)整体均表现为正异常。酒西盆地下沟组白云岩δ Eu(介于1.00~1.24之间, 平均1.16; 文华国等, 2014)整体为表现为正异常, 但是部分白云岩δ Eu介于1.05~0.95之间没有异常特征; 二连盆地腾格尔组白云岩δ Eu(介于1.01~1.41之间, 平均1.13; Yang et al., 2020)为4个研究区内白云岩δ Eu最低但仍表现为正异常。经过详细矿物学特征划分后发现, 以泥晶为主的白云岩δ Eu小于1.05, 而粗晶白云岩则大于1.05, 火山-热液沉积型白云岩δ Eu大小可能与白云石结晶程度呈正相关, 可能代表了热液高温的影响作用。

图 9 火山-热液沉积型白云岩、次生白云岩和微生物白云岩REE+Y模式Fig.9 REE+Y distribution patterns of the volcanic-hydrothermal sedimentary dolostones, secondary dolostones, and microbial mediated dolostones

表 3 全球发育白云石的湖泊特征统计 Table3 Characteristics of global dolomite precipitated lakes

3)锶同位素: 4个研究区火山-热液沉积型白云岩的全岩锶同位素值特征可分为2种类型(图 10)。第1类型为三塘湖盆地和准噶尔盆地芦草沟组白云岩。它们的 87Sr/86Sr 数值分布较为集中, 且整体与全球幔源岩Sr同位素值(0.703 50)较为接近(图 10; Palmer and Elderfield, 1985), 而远离壳源岩石。其中三塘湖盆地芦草沟组白云岩 87Sr/86Sr 介于0.704 829~0.704 963之间, 平均0.704 910(焦鑫等, 2017); 准噶尔盆地芦草沟组白云岩 87Sr/86Sr 介于0.705 474~0.706 177之间, 平均0.705 489(张帅等, 2020)。2个盆地中火山-热液沉积型白云岩中均可见火山-热液矿物, 表明其形成流体主要来源于幔源(柳益群等, 2011; 张帅等, 2020)。第2类型为酒西盆地下沟组与二连盆地腾格尔组白云岩。它们的白云岩 87Sr/86Sr值数据较为分散, 且整体上与壳源锶同位素平均值(图 10; 0.720± 0.005; Faure, 1986)较为接近。其中酒西盆地下沟组白云岩 87Sr/86Sr 介于0.713 829~0.714 650之间, 平均0.714 718(文华国等, 2014)。二连盆地腾格尔组白云岩 87Sr/86Sr 介于0.171 585~0.719 273之间, 平均0.179 225(Yang et al., 2021)。因此酒西盆地下沟组与二连盆地腾格尔组形成白云岩的流体应主要来自于壳源物质, 且由于物质相对复杂, 从而导致锶同位素分异较为明显。综合上述数据, 4个研究区火山-热液沉积型白云岩的Sr同位素特征整体区别于同时期全球Sr同位素, 而显示出湖水与幔源或壳源流体相混合的特征, 这可能与不同盆地的裂谷类型不同有关。

图 10 火山-热液沉积型白云岩锶同位素特征Fig.10 Strontium isotopic characteristics of the volcanic-hydrothermal sedimentary dolostones

4 火山-热液沉积型白云岩未来研究展望
4.1 火山-热液沉积型白云岩成因争议

经过多位学者10余年的研究, 火山-热液沉积型白云岩作为中国在陆相细粒沉积岩研究领域中的特色亮点发现, 目前已产出大量学术成果, 但依然存在争议(Jiao et al., 2023)。究其原因主要与现代缺乏实例、国外缺少同类报道以及地质时期样品中缺少火山-热液喷口等直接证据有关。作者分析可能原因如下: (1)目前中国所报道的该类白云岩均发育在各个研究盆地重要的深湖相烃源岩中, 因而得到了重视并被详细研究; 而国外重点研究的类似烃源岩则以海相为主, 并未发育这类白云岩。(2)关于原生白云岩的研究, 受到“ 将今论古” 思路的影响, 使得地质时期白云岩的出现往往被定义成与浅水蒸发环境和微生物作用有关。由于现代深湖沉积物研究和采样相对有一定难度且经济效益较低, 因此, 报道较少(Jiao et al., 2023)。然而, 报道较少并不能说明不存在该类白云石。文中所详述的该类白云岩特征明显区别于常见的次生白云石化成因白云岩, 又与浅水蒸发相微生物成因白云岩不同。作者团队希望能引起国内外同行的关注, 从而研究并找到更多该类白云岩, 为“ 白云石问题” 这一古老议题提供一种新的研究思路。

4.2 火山-热液沉积型白云岩代表的构造背景示踪

4个研究区火山-热液沉积型白云岩岩石学、矿物学特征经研究后发现, 三塘湖盆地和准噶尔盆地芦草沟组白云岩中均可见大量的火山碎屑及与白云岩交互呈纹层的凝灰岩和凝灰质泥岩。而酒西盆地下沟组和二连盆地腾格尔组中的白云岩中并未发现明显的火山物质(表 4)。说明火山作用影响了三塘湖盆地和准噶尔盆地白云岩沉积过程。同时, 地球化学特征中Sr同位素分析结果表明, 三塘湖盆地和准噶尔盆地芦草沟组白云岩的成岩流体来源以幔源为主, 而酒西盆地下沟组和二连盆地腾格尔组则更多为壳源影响。白云岩沉积时期的构造背景不同可能是导致上述差异的主要原因。

表 4 中国火山-热液沉积型白云岩盆地构造背景、岩石学及矿物学特征 Table4 Characteristics of basin tectonic background, petrology and mineralogy of the volcanic-hydrothermal sedimentary dolostone in China

虽然4个盆地在火山-热液沉积型白云岩形成时期均为拉张背景(文华国等, 2014; 焦鑫等, 2017; Yang et al., 2020; 张帅等, 2020), 但前人通过大量岩石学、地球化学与构造特征研究表明, 三塘湖盆地和准噶尔盆地在晚石炭世— 中二叠世经历了碰撞后的裂谷拉伸环境(Feng et al., 1989; Zhao et al., 2003; Choulet et al., 2012), 导致了伸展构造和下地壳的剥离(Karsli et al., 2010), 形成大量的火山作用和相关的火山灰。这种盆地的典型特征是因为存在壳源性火山灰和幔源性物质(Zhang et al., 2023), 这与三塘湖盆地和准噶尔盆地芦草沟组白云岩中可见火山物质及强烈的幔源Sr同位素特征一致。因此, 火山作用所带来的深源物质以火山灰的形式进入湖盆, 为白云石的形成提供了Mg和Fe离子的物质基础; 同时, 火山活动带来的热量也有助于白云石成核与进一步生长(Jiao et al., 2023)。而酒西盆地和二连盆地则可能代表了弧后裂谷盆地。该类盆地主要以幕式断裂、岩浆活动和热构造沉降为主要特征(Zhang et al., 2023)。其中酒西盆地是受到伸展断陷作用后发育而成的陆相断陷盆地。盆地中白云岩形成时期早白垩世为全球性大规模火山活动时期(文华国等, 2014)。二连盆地是一个中生代陆相裂谷盆地, 晚侏罗世和早白垩世期间, 该地区经历了太平洋板块在欧亚板块下的俯冲, 构造活动为热液流体上涌提供了通道(Yang et al., 2020)。酒西盆地下沟组和二连盆地腾格尔组火山-热液沉积型白云岩分布多与区内深大断裂发育较为一致。因此, 该类白云岩在沉积过程中受到了更加强烈的热液活动影响。热液流体沿着裂缝上涌并携带深部物质, 为白云岩形成提供了条件。依据该类白云岩所蕴含的地球化学信息, 可为所处盆地沉积时期的构造背景探讨提供新的研究思路与证据。

4.3 火山-热液沉积型白云岩与油气生成、聚集的关系

白云岩在以往都被视作良好的油气储集层, 如四川盆地龙王庙组(邹才能等, 2014)、 塔里木盆地寒武系和奥陶系等白云岩储集层(Jiang et al., 2018)。 但是4个研究区火山-热液沉积型白云岩不仅可以作为良好的储集层, 还具有一定的生油潜力(高阳等, 2016, 2020; 靳军等, 2018; 张记刚等, 2022)。 4 个研究区内白云岩夹层中可见黑色页岩, 在白云岩中也存在富藻类有机质纹层和有机碎屑(图 7), 说明在白云岩沉积时期伴随着生物活动。 三塘湖盆地和准噶尔盆地芦草沟组白云岩在形成过程存在大量火山活动形成的火山灰。 火山灰是大陆碰撞时岩浆活动的典型产物, 对碳氢化合物的初级生产力有重要影响(Huff et al., 1992; Lee et al., 2018)。 其中富含的营养物质可以使得浮游植物尤其是藻类的大量繁殖, 从而提高初级生产力, 进而提高页岩层系中有机质富集。 同时, 热液流体上涌的同时会携带大量的热能, 可以显著加速盆地烃源岩的演化, 促进油气生成(Liu et al., 2019)。 因此, 这类纹层状泥晶白云岩同样具有较高的生油潜力, 可作为一类生油岩进行研究与勘探。

5 小结

1)全球发育白云石的湖泊主要分布于受到蒸发作用影响的干旱带周围, 但仍有部分分布在非蒸发环境地区并与火山活动有关, 表明火山及相关热液活动同样可以影响白云岩形成。地质时期, 在中国的富有机质页岩中广泛存在的泥晶白云岩, 则代表了火山-热液活动影响下的半深湖— 深湖相沉积环境。这些白云岩保留了原始纹层, 均以层状或透镜状发育于富含有机质的细粒沉积岩中。其中的白云石均以泥晶为主, 有序度较低。伴生矿物主要包括常见的陆源碎屑矿物(石英、斜长石、钾长石)等, 还包含有明显的火山-热液成因矿物。

2)该类白云岩地球化学特征显示, 碳、氧同位素具有明显的碳正、氧负特征, 且分布范围非常接近; 稀土元素趋势图显示整体较为平缓, 并具有明显的Eu正异常, 与微生物白云岩和次生白云岩有非常明显的差异。Sr同位素结果显示三塘湖盆地和准噶尔盆地芦草沟组白云岩热液主要为幔源物质; 而酒西盆地下沟组和二连盆地腾格尔组白云岩热液来源为壳源且成分相对复杂, 并具有明显的湖水与幔源或壳源物质混合特征。

3)该类白云岩均形成于拉张构造背景, 受到火山-热液活动不同程度的影响。三塘湖盆地和准噶尔盆地为碰撞后形成的裂谷盆地, 酒西盆地和二连盆地则可能为弧后裂谷背景下的盆地。丰富的火山灰可以使浮游植物尤其是藻类大量繁殖, 从而提高初级生产力, 为页岩油生成与聚集提供物质基础。来自深源的热液流体上涌携带大量的热能可以加速烃源岩演化, 促进油气生成。因此, 该类白云岩可作为有效的烃源岩做进一步研究。

致谢 感谢成都理工大学郑荣才教授、文华国教授和中国石油大学(北京)钟大康教授、杨喆博士在热液沉积学研究领域常年给予本研究团队的指导与帮助。感谢3位匿名评审专家富有建设性的修改意见。

(责任编辑 郑秀娟)

参考文献
[1] 高阳, 王英伟, 王玉多, 谢天寿, 刘刚, 王黎. 2016. 吉木萨尔凹陷芦草沟组致密储集层岩石力学特征. 新疆石油地质, 37(2): 158-162.
[Gao Y, Wang Y W, Wang Y D, Xie T S, Liu G, Wang L. 2016. Rock mechanics characteristics of Lucaogou tight oil reservoir in Jimusaer Sag, Junggar Basin. XinJiang Petroleum Geology, 37(2): 158-162] [文内引用:1]
[2] 高阳, 叶义平, 何吉祥, 钱根葆, 覃建华, 李映艳. 2020. 准噶尔盆地吉木萨尔凹陷陆相页岩油开发实践. 中国石油勘探, 25(2): 133-141.
[Gao Y, Ye Y P, He J X, Qian G B, Tan J H, Li Y Y. 2020. Development practice of continental shale oil in Jimsar sag in the Junggar Basin. China Petroleum Exploration, 25(2): 133-141] [文内引用:1]
[3] 郭佳, 宋双, 王一博, 詹路锋, 芮志峰. 2018 准噶尔盆地吉木萨尔凹陷梧桐沟组层序地层划分. 地质学刊, 42(4): 558-567.
[Guo J, Song S, Wang Y B, Zhan L F, Rui Z F. 2018. Sequence stratigraphic division of the Wutonggou Formation in the Jimsar sag of Junggar Basin. Journal of Geology, 42(4): 558-567] [文内引用:1]
[4] 郭强, 钟大康, 张放东, 刘新刚, 范凌霄, 李君军. 2012. 内蒙古二连盆地白音查干凹陷下白垩统湖相白云岩成因. 古地理学报, 14(1): 59-68.
[Guo Q, Zhong D K, Zhang F D, Liu X G, Fan L X, Li J J. 2012. Origin of the Lower Cretaceous lacustrine dolostones in Baiyinchagan Sag of Erlian Basin, Inner Mongolia. Journal of Palaeogeography(Chinese Edition), 14(1): 59-68] [文内引用:1]
[5] 赫云兰, 刘波, 秦善. 2010. 白云石化机理与白云岩成因问题研究. 北京大学学报(自然科学版), 46(6): 1010-1020.
[Hao Y L, Liu B, Qin S. 2010. Study on the Dolomitization and dolostone genesis. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(6): 1010-1020] [文内引用:1]
[6] 贾承造, 郑民, 张永峰. 2012. 中国非常规油气资源与勘探开发前景. 石油勘探与开发, 39(2): 129-136.
[Jia C Z, Zheng M, Zhang Y F. 2012. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Petroleum Exploration and Development, 39(2): 129-136] [文内引用:1]
[7] 姜在兴, 张建国, 孔祥鑫, 谢环羽, 程浩, 王力. 2023. 中国陆相页岩油气沉积储层研究进展及发展方向. 石油学报, 44(1): 45-71.
[Jiang Z X, Zhang J G, Kong X X, Xie H Y, Cheng H, Wang L. 2023. Research progress and development direction of continental shale oil and gas deposition and reservoirs in China. Acta Petrolei Sinica, 44(1): 45-71] [文内引用:1]
[8] 焦鑫, 柳益群, 靳梦琪, 周鼎武. 2017. 新疆三塘湖薄层状岩浆—热液白云质喷流沉积岩. 沉积学报, 35(6): 1087-1096.
[Jiao X, Liu Y Q, Jin M Q, Zhou D W. 2017. Thin layered magma-hydrothermal dolomitic exhaled sedimentary rocks in Santang Lake, Xinjiang. Acta Sedimentologica Sinica, 35(6): 1087-1096] [文内引用:5]
[9] 金之钧, 张谦, 朱如凯, 董琳, 付金华, 刘惠民, 云露, 刘国勇, 黎茂稳, 赵贤正, 王小军, 胡素云, 唐勇, 白振瑞, 孙冬胜, 李晓光. 2023. 中国陆相页岩油分类及其意义. 石油与天然气地质, 44(4): 801-819.
[Jin Z J, Zhang Q, Zhu R K, Dong L, Fu J H, Liu H M, Yun L, Liu G Y, Li M W, Zhao X Z, Wang X J, Hu S Y, Tang Y, Bai Z R, Sun D S, Li X G. 2023. Classification of lacustrine shale oil reservoirs in China and its significance. Oil and Gas Geology, 44(4): 801-819] [文内引用:1]
[10] 靳军, 杨召, 依力哈木·尔西丁, 李璐璐, 刘明. 2018. 准噶尔盆地吉木萨尔凹陷致密油储层纳米孔隙特征及其含油性. 地球科学, 43(5): 1594-1601.
[Jin J, Yang Z, Yilihamu E, Li L L, Liu M. 2018. Nanopore characteristics and oil-bearing properties of tight oil reservoirs in Jimsar Sag, Junggar Basin. Earth Science, 43(5): 1594-1601] [文内引用:1]
[11] 李昌伟, 陶士振, 董大忠, 管全中. 2015. 国内外页岩气形成条件对比与有利区优选. 天然气地球科学, 26(5): 986-1000.
[Li C W, Tao S Z, Dong D Z, Guan Q Z. 2015. Comparison of the formation of shale gas between domestic and favorable areas evaluation. Natural Gas Geoscience, 26(5): 986-1000] [文内引用:1]
[12] 柳益群, 李红, 朱玉双, 胡亭, 傅国斌, 刘洪福, 周小虎, 郑朝阳, 樊婷婷. 2010. 白云岩成因探讨: 新疆三塘湖盆地发现二叠系湖相喷流型热水白云岩. 沉积学报, 28(5): 861-867.
[Liu Y Q, Li H, Zhu Y S, Hu T, Fu G B, Liu H F, Zhou X H, Zheng C Y, Fan T T. 2010. Permian lacustrine eruptive hydrothermal dolomite, Santanghu Basin, Xinjiang Province. Acta Sedimentologica Sinica, 28(5): 861-867] [文内引用:5]
[13] 柳益群, 焦鑫, 李红, 袁明生, Yang W, 周小虎, 梁浩, 周鼎武, 郑朝阳, 孙芹, 汪双双. 2011. 新疆三塘湖跃进沟二叠系地幔热液喷流型原生白云岩. 中国科学: 地球科学, 41(12): 1862-1871.
[Liu Y Q, Jiao X, Li H, Yuan M S, Yang W, Zhou X H, Liang H, Zhou D W, Zheng C Y, Sun Q, Wang S S. 2011. Primary dolostone formation related to mantle-originated exhalative hydrothermal activities, Permian Yuejingou section, Santanghu area, Xinjiang, NW China. Science China: Earth Science, 41(12): 1862-1871] [文内引用:4]
[14] 柳益群, 周鼎武, 焦鑫, 南云, 杨晚, 李红, 周小虎. 2013. 一类新型沉积岩: 地幔热液喷积岩: 以中国新疆三塘湖地区为例. 沉积学报, 31(5): 773-781.
[Liu Y Q, Zhou D W, Jiao X, Nan Y, Yang W, Li H, Zhou X H. 2013. A new type of sedimentary rocks: mantle-originated hydroclastites and hydrothermal exhalates, Santanghu Area, Xinjiang, NW China. Acta Sedimentologica Sinica, 31(5): 773-781] [文内引用:1]
[15] 罗群, 张泽元, 袁珍珠, 许倩, 秦伟. 2022. 致密油甜点的内涵, 评价与优选: 以酒泉盆地青西凹陷白垩系下沟组为例. 岩性油气藏, 34(4): 1-12.
[Luo Q, Zhang Z Y, Yuan Z Z, Xu Q, Qin W. 2022. Connotation, evaluation and optimization of tight oil sweet spots: a case study of Cretaceous Xiagou Formation in Qingxi Sag, Jiuquan Basin. Lithologic Reservoirs, 34(4): 1-12] [文内引用:1]
[16] 魏巍, 朱筱敏, 朱世发, 孙书洋, 何明薇, 杨德相, 吴建平, 王名巍. 2017. 二连盆地阿南凹陷下白垩统腾格尔组湖相云质岩成因. 地球科学, 42(2): 258-272.
[Wei W, Zhu X M, Zhu S F, Sun S Y, He M W, Yang D X, Wu J P, Wang M W. 2017. Origin of lacustrine dolomitic rocks of the Lower Cretaceous Tengge’er Formation in Anan sag, Erlian Basin. Earth Science, 42(2): 258-272] [文内引用:1]
[17] 文华国, 郑荣才, 吴国瑄, 夏佩芬, 陈浩如, 廖一. 2009. 酒泉盆地青西凹陷下沟组湖相热水沉积岩锶同位素地球化学特征. 沉积学报, 27(4): 642-649.
[Wen H G, Zheng R C, Wu G X, Xia P F, Chen H R, Liao Y. 2009. Strontium isotope geochemistry of lacustrine hydrothermal sedimentary rocks of Xiagou Formation, Qingxi Sag, Jiuquan Basin. Acta Sedimentologica Sinica, 27(4): 642-649] [文内引用:1]
[18] 文华国, 郑荣才, Qing H R, 范铭涛, 李雅楠, 宫博识. 2014. 青藏高原北缘酒泉盆地青西凹陷白垩系湖相热水沉积原生白云岩. 中国科学: 地球科学, 44(4): 591-604.
[Wen H G, Zheng R C, Qing H R, Fan M Z, Li Y N, Gong B S. 2014. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi sag, Jiuquan Basin on the northern Tibetan Plateau. Science China: Earth Sciences, 44(4): 591-604] [文内引用:10]
[19] 张记刚, 杜猛, 陈超, 秦明, 贾宁洪, 吕伟峰, 丁振华. 向勇. 2022. 吉木萨尔凹陷二叠系芦草沟组页岩储层孔隙结构定量表征. 岩性油气藏, 34(4): 89-102.
[Zhang J G, Du M, Chen C, Qin M, Jia N H, Lu W F, Ding Z H, Xiang Y. 2022. Quantitative characterization of pore structure of shale reservoirs of Permian Lucaogou Formation in Jimsar Sag. Lithologic Reservoirs, 34(4): 89-102] [文内引用:1]
[20] 张帅, 柳益群, 焦鑫, 周鼎武, 张旭, 陆申童, 周宁超. 2018. 准噶尔盆地吉木萨尔凹陷中二叠统芦草沟组云质岩沉积环境及白云石成因探讨. 古地理学报, 20(1): 33-48.
[Zhang S, Liu Y Q, Jiao X, Zhou D W, Zhang X, Lu S T, Zhou N C. 2018. Sedimentary environment and formation mechanisim of dolomitic rocks in the Middle Permian Lucaogou Formation, Jimusar Depression, Junggar Basin. Journal of Palaeogeography(Chinese Edition), 20(1): 33-48] [文内引用:2]
[21] 张帅, 柳益群, 李红, 焦鑫, 周鼎武. 2020. 准噶尔盆地东部中二叠统幔源热液沉积白云岩. 古地理学报, 22(1): 111-128.
[Zhang S, Liu Y Q, Li H, Jiao X, Zhou D W. 2020. Mantle-originated hydrothermal-sedimentary dolostone in the Middle Permian in eastern Junggar Basin, China. Journal of Palaeogeography(Chinese Edition), 22(1): 111-128] [文内引用:10]
[22] 张晓宝, 王志勇, 徐永昌. 2000. 特殊碳同位素组成白云岩的发现及其意义. 沉积学报, 18(3): 449-452.
[Zhang X B, Wang Z Y, Xu Y C. 2000. The discovery and significance of special carbon isotope composition of dolomite. Acta Sedimentologica Sinica, 18(3): 449-452] [文内引用:1]
[23] 赵文智, 朱如凯, 张婧雅, 杨静儒. 2023. 中国陆相页岩油类型、勘探开发现状与发展趋势. 中国石油勘探, 28(4): 1-13.
[Zhao W Z, Zhu R K, Zhang J Y, Yang J R. 2023. Classification, exploration and development status and development trend of continental shale oil in China. China Petroleum Exploration, 28(4): 1-13] [文内引用:1]
[24] 郑荣才, 王成善, 朱利东, 刘红军, 方国玉, 杜文博, 王崇孝, 汪满福. 2003. 酒西盆地首例湖相“白烟型”喷流岩—热水沉积白云岩的发现及其意义. 成都理工大学学报(自然科学版), 30(1): 1-8.
[Zheng R C, Wang C S, Zhu L D, Liu H J, Fang G Y, Du W B, Wang C X, Wang M F. 2003. Discovery of the first example of “White Smoke Type”of exhalative rock(Hydrothermal sedimentary dolostone)in Jiuxi Basin and its significance. Journal of Chendu University of Technology(Science and Technology Edition), 30(1): 1-8] [文内引用:3]
[25] 郑荣才, 文华国, 范铭涛, 汪满福, 吴国瑄, 夏佩芬. 2006. 酒西盆地下沟组湖相白烟型喷流岩岩石学特征. 岩石学报, 22(12): 3027-3038.
[Zheng R C, Wen H G, Fan M T, Wang M F, Wu G X, Xia P F. 2006. Lithological characteristics of sublacustrine white smoke type exhalative rock of the Xiagou Formation in Jiuxi Basin. Acta Petrologica Sinica, 22(12): 3027-3038] [文内引用:4]
[26] 郑荣才, 文华国, 李云, 常海亮. 2018. 甘肃酒西盆地青西凹陷下白垩统下沟组湖相喷流岩物质组分与结构构造. 古地理学报, 20(1): 1-18.
[Zheng R C, Wen H G, Li Y, Chang H L. 2018. Compositions and texture of lacustrine exhalative rocks from the Lower Cretaceous Xiagou Formation in Qingxi sag of Jiuxi Basin, Gansu. Journal of Palaeogeography(Chinese Edition), 20(1): 1-18] [文内引用:1]
[27] 钟大康, 姜振昌, 郭强, 孙海涛, 杨喆. 2015. 内蒙古二连盆地白音查干凹陷热水沉积白云岩的发现及其地质与矿产意义. 石油与天然气地质, 36(4): 587-595.
[Zhong D K, Jiang Z C, Guo Q, Sun H T, Yang Z. 2015. Discovery of hydrothermal dolostones in Baiyinchagan sag of Erlian Basin, Inner Mongolia, and its geologic and mineral significance. Oil & Gas Geology, 36(4): 587-595] [文内引用:4]
[28] 钟大康, 杨喆, 孙海涛, 张硕. 2018. 热水沉积岩岩石学特征: 以内蒙古二连盆地白音查干凹陷下白垩统腾格尔组为例. 古地理学报, 20(1): 19-32.
[Zhong D K, Yang Z, Sun H T, Zhang S. 2018. Petrological characteristics of hydrothermal-sedimentary rocks: A case study of the Lower Cretaceous Tengger Formation in the Baiyinchagan Sag of Erlian Basin, Inner Mongolia. Journal of Palaeogeography(Chinese Edition), 20(1): 19-32] [文内引用:1]
[29] 周雪. 2022. 美国页岩油勘探开发现状及其对中国的启示. 现代化工, 42(7): 5-9.
[Zhou X. 2022. The status quo of shale oil exploration and development in the United States and its implications for China. Modern Chemical Industry, 42(7): 5-9] [文内引用:1]
[30] 邹才能, 董大忠, 王社教, 李建忠, 李新景, 王玉满, 李登华, 程克明. 2010. 中国页岩气形成机理, 地质特征及资源潜力. 石油勘探与开发, 37(6): 641-653.
[Zou C N, Dong D Z, Wang S J, Li J Z, Li X J, Wang Y M, Li D H, Cheng K M. 2010. Geological characteristics formation mechanism and resource potential of shale gas in China. Petroleum Exploration and Development, 37(6): 641-653] [文内引用:1]
[31] 邹才能, 杜金虎, 徐春春, 汪泽成, 张宝民, 魏国齐, 王铜山, 姚根顺, 邓胜徽, 刘静江, 周慧, 徐安娜, 杨智, 姜华, 谷志东. 2014. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现. 石油勘探与开发, 41(3): 278-293.
[Zou C N, Du J H, Xu C C, Wang Z C, Zhang B M, Wei G Q, Wang T S, Yao G S, Deng S H, Liu J J, Zhou H, Xu A N, Yang Z, Jiang H, Gu Z D. 2014. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China. Petroleum Exploration and Development, 41(3): 278-293] [文内引用:1]
[32] 邹才能, 潘松圻, 荆振华, 高金亮, 杨智, 吴松涛, 赵群. 2020. 页岩油气革命及影响. 石油学报, 41(1): 1-12.
[Zou C N, Pan S Q, Jing Z H, Gao J L, Yang Z, Wu S T, Zhao Q. 2020. Shale oil and gas revolution and its impact. Acta Petrolei Sinica, 41(1): 1-12] [文内引用:1]
[33] 邹才能, 马锋, 潘松圻, 张新顺, 吴松涛, 傅国友, 王红军, 杨智. 2023a. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展. 地学前缘, 30(1): 128-142.
[Zou C N, Ma F, Pan S Q, Zhang X S, Wu S T, Fu G Y, Wang H J, Yang Z. 2023a. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China. Earth Science Frontiers, 30(1): 128-142] [文内引用:1]
[34] 邹才能, 杨智, 张国生, 朱如凯, 陶士振, 袁选俊, 侯连华, 董大忠, 郭秋麟, 宋岩, 冉启全, 邱振, 吴松涛, 马锋, 白斌, 王岚, 熊波, 潘松圻, 刘翰林, 王小妮. 2023b. 非常规油气地质学理论技术及实践. 地球科学, 48(6): 2376-2397.
[Zou C N, Yang Z, Zhang G S, Zhu R K, Tao S Z, Yuan X J, Hou L H, Dong D Z, Guo Q L, Song Y, Ran Q Q, Qiu Z, Wu S T, Ma F, Bai B, Wang L, Xiong B, Pan S Q, Liu H L, Wang X N. 2023b. Theory, technology and practice of unconventional petroleum geology. Earth Science, 48(6): 2376-2397] [文内引用:1]
[35] Adams J F, Rhodes M L. 1960. Dolomitization by seepage refluxion. AAPG Bulletin, 44: 1912-1920. [文内引用:1]
[36] Aiuppa A, D'Alessand ro W, Gurrieri S, Madonia P, Parello F. 2007. Hydrologic and geochemical survey of the lake “Specchio di Venere”(Pantelleria island , Southern Italy). Environmental Geology, 53(4): 903-913. [文内引用:1]
[37] Amiri V, Nakhaei M, Lak R, Kholghi M. 2016. Geophysical, isotopic, and hydrogeochemical tools to identify potential impacts on coastal groundwater resources from Urmia hypersaline Lake, NW Iran. Environmental Science Pollution Research, 23: 16738-16760. [文内引用:1]
[38] Badiozamani K. 1973. The dorag dolomitization model application to the Middle Ordovician of Wisconsin. Journal of Sedimentary Petrology, 43(4): 965-984. [文内引用:1]
[39] Balch D P, Cohen A S, Schnurrenberger D W, Haskell B J, Valero Garces B L, Warren Beck J, Cheng H, Lawrence Edwards R. 2005. Ecosystem and paleohydrological response to Quaternary climate change in the Bonneville Basin, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 221(1-2): 99-122. [文内引用:1]
[40] Boni M, Parentea G, Bechstadtb T. 2000. Hydrothermal dolomites in SW Sanlinia(Italy): evidence for a widespread late-Variscan fluid flow event. Sedimentary Geology, 131: 181-200. [文内引用:1]
[41] Bouton A, Vennin E, Boulle J, Pace A, Bourillot R, Thomazo C, Brayard A, Désaubliaux G, Goslar T, Yokoyama Y, Dupraz C, Visscher P T. 2016. Linking the distribution of microbial deposits from the great Salt Lake(utah, usa)to tectonic and climatic processes. Biogeosciences, 13(19): 5511-5526. [文内引用:1]
[42] Bwire Ojiambo S, Berry Lyons W, Welch K A, Poreda R J, Johannesson K H. 2003. Strontium isotopes and rare earth elements as tracers of groundwater lake water interactions, Lake Naivasha, Kenya. Applied Geochemistry, 18(11): 1789-1805. [文内引用:1]
[43] Cangemi M, Censi P, Reimer A, D'Alessand ro W, Hause-Reitner D, Madonia P, Oliveri Y, Pecoraino G, Reitner J. 2016. Carbonate precipitation in the alkaline lake Specchio di Venere(Pantelleria Island , Italy)and the possible role of microbial mats. Applied Geochemistry, 67: 168-176. [文内引用:1]
[44] Cangemi M, Madonia P, Speziale S. 2018. Geochemistry and mineralogy of a complex sedimentary deposit in the alkaline volcanic Lake Specchio di Venere(Pantelleria Island , south Mediterranean). Journal of Limnology, 77(2): 220-231. [文内引用:1]
[45] Chagas A A P, Webb G E, Burne R V, Southam G. 2016. Modern lacustrine microbialites: towards a synthesis of aqueous and carbonate geochemistry and mineralogy. Earth-Science Reviews, 162: 338-363. [文内引用:1]
[46] Chang B, Li C, Liu D, Fosterc I, Tripati A, Lloyd M K, Maradiaga I, Luo G M, An Z H, She Z B, Xie S Ch, Tong J N, Huang J H, Algeo T J, Lyons T W, Immenhauser A. 2020. Massive formation of early diagenetic dolomite in the Ediacaran ocean: constraints on the “dolomite problem”. Proceedings of the National Academy of Sciences, 117(25): 14005-14014. [文内引用:1]
[47] Chivas A R, Deckker P D, Nind M, Thiriet D, Watson G. 1986. The pleistocene palaeoenvironmental record of Lake Buchanan: an atypical Australian playa. Palaeogeography, Palaeoclimatology, Palaeoecology, 54(1-4): 131-137. [文内引用:1]
[48] Choulet F, Faure M, Cluzel D, Chen Y, Lin W, Wang B. 2012. From oblique accretion to transpression in the evolution of the Altaid collage: new insights from West Junggar, northwestern China. Gondwana Research, 21(2-3): 530-547. [文内引用:1]
[49] Cohen T J, Mogensen L, Arnold L J, Li Z H, Janseng J D, Mayh J H. 2022. Topographic insights in the Frome-Callabonna system and the elevation of a newly surveyed highstand shoreline. Transactions of the Royal Society of South Australia, Incorporated: incorporating the records of the South Australian Museum, 146(1): 90-108. [文内引用:1]
[50] Cort G D, Bessems I, Keppens E, Mees F, Cumming B, Verschuren D. 2013. Late-Holocene and recent hydroclimatic variability in the central Kenya Rift Valley: the sediment record of hypersaline lakes Bogoria, Nakuru and Elementeita. Palaeogeography, Palaeoclimatology, Palaeoecology, 388: 69-80. [文内引用:1]
[51] Cort G D, Mees F, Renaut R W, Sinnesael M, Meeren T V D, Goderis S, Keppens E, Mbuthia A, Verschuren D. 2019. Late-Holocene sedimentation and sodium carbonate deposition in hypersaline, alkaline Nasikie Engida, southern Kenya Rift Valley. Journal of Paleolimnology, 62(3): 279-300. [文内引用:1]
[52] Darehshouri S, Michelsen N, C Schüth, Tajrishy M, Achulz S. 2023. Evaporation from the dried-up lake bed of Lake Urmia, Iran. Science of the Total Environment, 858(3): 159960. [文内引用:1]
[53] Davies G R, Smith L B Jr. 2006. Structurally controlled hydrothermal dolomite reservoir facies: an overview. AAPG Bulletin, 90: 1641-1690. [文内引用:1]
[54] Deckker P D. 1988. Biological and sedimentary facies of Australian salt lakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 62(1-4): 237-270. [文内引用:1]
[55] Deckker P D. 2019. Groundwater interactions control dolomite and magnesite precipitation in saline playas in the Western District Volcanic Plains of Victoria, Australia. Sedimentary Geology, 380: 105-126. [文内引用:1]
[56] Deckker P D, Last W M. 1988. Modern dolomite deposition in continental, saline lakes, western Victoria, Australia. Geology, 16(1): 29-32. [文内引用:1]
[57] Deckker P D, Bauld J, Burne R V. 1982. Pillie Lake, Eyre Peninsula, South Australia: modern environment and biota, dolomite sedimentation and Holocene history. Transactions of the Royal Society of South Australia, 106: 169-181. [文内引用:1]
[58] Deckker P D, Magee J W, Shelley J M G. 2011. Late Quaternary palaeohydrological changes in the large playa Lake Frome in central Australia, recorded from the Mg/Ca and Sr/Ca in ostracod valves and biotic remains. Journal of Arid Environments, 75(1): 38-50. [文内引用:1]
[59] Devogel S B, Magee J W, Manley W F, Manley W F, Miller G H. 2004. A GIS-based reconstruction of late Quaternary paleohydrology: lake eyre, arid central Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(1-2): 1-13. [文内引用:1]
[60] Dunham E C, Fones E M, Fang Y, Lindsay M R, Steuer C, Fox N, Willis M, Walsh A, Colman D R, Baxter B K, Lageson D, Mogk D, Rupke A, Xu H F, Boyd E S. 2020. An ecological perspective on dolomite formation in Great Salt Lake, Utah. Frontiers in Earth Science, 8: 24. [文内引用:1]
[61] Eickmann B, Bach W, Rosner M, Peckmann J. 2009. Geochemical constraints on the modes of carbonate precipitation in peridotites from the logatchev hydrothermal vent field and gakkel ridge. Chemical Geology, 268(1-2): 97-106. [文内引用:1]
[62] Faure G. 1986. Principles of Isotope Geology. New York: John Wiley and Sons, 160-230. [文内引用:1]
[63] Feibel C S. 2011. A geological history of the Turkana Basin: evolutionary Anthropology. News and Reviews, 20(6): 206-216. [文内引用:1]
[64] Feng Y, Coleman R G, Tilton G, Xiao X. 1989. Tectonic evolution of the west Junggar region, Xinjiang, China. Tectonics, 8(4): 729-752. [文内引用:1]
[65] Fussmann D, von Hoyningen-Huene A J E, Reimer A, Schneider D, Babková H, Peticzka R, Maier A, Arp G, Daniel R, Meister P. 2020. Authigenic formation of Ca-Mg carbonates in the shallow alkaline Lake Neusiedl, Austria. Biogeosciences, 17: 2085-2106. [文内引用:1]
[66] García-Aguilar J M, Guerra-Merchán A, Serrano F, Palmqvist P, Flores-Moya A, Martínez-Navarro B. 2013. Hydrothermal activity and its palaeoecological implications in the latest Miocene to Middle Pleistocene lacustrine environments of the Baza Basin(Betic Cordillera, SE Spain). Quaternary Science Reviews, 96: 204-221. [文内引用:1]
[67] Gibert L, Ferràndez C, García-Veigas J, Scott G R. 2015. No sedimentary evidence for hydrothermal refugia in the Plio-Pleistocene deposits of the Baza Basin(SE Spain). Quaternary Science Reviews, 112: 226-235 [文内引用:1]
[68] Giresse P, Makaya-Mvoubou. 2010. Sediment and particulate organic carbon fluxes in various lacustrine basins of tropical Africa and in the Gulf of Guinea. Global and Planetary Change, 72(4): 341-355. [文内引用:1]
[69] Given R K, Wilkinson B H. 1987. Dolomite abundance and stratigraphic age, constraints on rates and mechanisms of Phanerozoic dolostone formation. Journal of Sedimentary Research, 57: 1068-1078. [文内引用:1]
[70] Hardie L A. 1991. On the significance of evaporates. Annual Review of Earth and Planetary Science, 19: 131-168. [文内引用:1]
[71] Hargrave J E, Hicks M K, Scholz C A. 2014. Lacustrine carbonates from Lake Turkana, Kenya: a depositional model of carbonates in an extensional basin. Journal of Sedimentary Research, 84(3): 224-237. [文内引用:1]
[72] Hetényi M, Nyilas T, Sajgó. 2010. Organic geochemical evidence of late Pleistocene-Holocene environmental changes in the Lake Balaton region(Hungary). Organic Geochemistry, 41(9): 915-923. [文内引用:1]
[73] Hollis C, Bastesen E, Boyce A, Corlett H, Gawthorpe R, Hirani J, Rotevatn A, Whitaker F. 2017. Fault-controlled dolomitization in a rift basin. Geology, 45(3): 219-222. [文内引用:2]
[74] Hsü K J, Siegenthaler C. 1969. Preliminary experiments on hydrodynammic movement induced by evaporation and bearing on the dolomite problem. Sedimentology, 12: 448-453. [文内引用:1]
[75] Huff W D, Bergstrom S M, Kolata D R. 1992. Gigantic Ordovician volcanic ash fall in North America and Europe: biological, tectonomagmatic, and event-stratigraphic significance. Geology, 20(10): 875-878. [文内引用:1]
[76] Jiang L, Worden R H, Cai C F, Shen A J, Crowley S F. 2018. Diagenesis of an evaporite-related carbonate reservoir in deeply buried cambrian strata, tarim basin, northwest China. AAPG Bulletin, 102(1): 77-102. [文内引用:1]
[77] Jiao X, Liu Y Q, Yang W, Zhou D W, Bai B, Zhang T S, Zhao M R, Li Z Y, Meng Z Y, Yang Y Y, Li Z X. 2020. Fine-grained volcanic-hydrothermal sedimentary rocks in Permian Lucaogou Formation, Santanghu Basin, NW China: implications on hydrocarbon source rocks and accumulation in lacustrine rift basins. Marine and Petroleum Geology, 114: 104201. [文内引用:1]
[78] Jiao X, Liu Y Q, Yang W, Li H, Meng Z Y, Zhao M R, Li Z X. 2023. Microcrystalline dolomite in a Middle Permian volcanic lake: insights on Primary Dolomite Formation in a non-evaporitic environment. Sedimentology, 70: 48-77. [文内引用:10]
[79] Jiménez-Millán J, Abad I, García-Tortosa F J, Nieto F, Jiménez-Espinosa R. 2020. Clay saline diagenesis in lake Plio-Pleistocene sediments rich in organic matter from the Guadix-Baza Basin(Betic Cordillera, SE Spain). Applied Clay Science, 195: 105739. [文内引用:1]
[80] Karakaya M Ç, Bozdaġ A, Ercana H Ü, Karakaya N, Delikan A. 2019. Origin of Miocene halite from Tuz Golu basin in Central Anatolia, Turkey: evidences from the pure halite and fluid inclusion geochemistry. Journal of Geochemical Exploration, 202: 1-12. [文内引用:1]
[81] Karsli O, Dokuz A, Uysal I, Aydin F, Kand emir R, Wijbrans J. 2010. Generation of the early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos, 114(1-2): 109-120. [文内引用:1]
[82] Kavazos C R J, Huggett M J, Mueller U, Horwitz P. 2017. Biogenic processes or terrigenous inputs?Permanent water bodies of the Northern Ponds in the Lake MacLeod basin of Western Australia. Marine and Freshwater Research, 68(7): 1366-1376. [文内引用:1]
[83] Kenward P A, Goldstein R G, Gonzalez L A, Roberts J A. 2009. Precipitation of low temperature dolomite from an anaerobic microbial consortium: the role of methanogenic archaea. Geobiology, 7: 556-565. [文内引用:1]
[84] Kim J, Kimura Y, Puchala B, Yamazaki T, Becker U, Sun W. 2023. Dissolution enables dolomite crystal growth near ambient conditions. Science, 382(6673): 915-920. [文内引用:1]
[85] Korte C, Jasper T, Kozur H W, Veizer J. 2006. 87Sr/86Sr record of Permian seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 240: 89-107. [文内引用:1]
[86] Lancaster N. 2002. How dry was dry?Late Pleistocene palaeoclimates in the Namib Desert. Quaternary Science Reviews, 21(7): 769-782. [文内引用:1]
[87] Land L S. 1985. The origin of massive dolomite. Journal of Geological Education, 33: 112-125. [文内引用:1]
[88] Land L S. 1998. Failure to precipitate dolomite at 25 ℃ from dilute solution despite 1000-fold oversaturation after 32 years. Aquatic Geochemistry, 4: 361-368. [文内引用:2]
[89] Last W M. 1990. Lacustrine dolomite: an overview of modem, Holocene, and Pleistocene occurrences. Earth-Science Reviews, 27: 221-263. [文内引用:1]
[90] Last W M, Schweyen T H. 1985. Late Holocene history of Waldsea Lake, Saskatchewan, Canada. Quaternary Research, 24(2): 219-234. [文内引用:1]
[91] Last W M, Ginn F M. 2005. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology. Saline Systems, 1(1): 10. [文内引用:1]
[92] Last W M, Deleqiat J, Greengrass K, Sukhan S. 2002. Re-examination of the recent history of meromictic Waldsea Lake, Saskatchewan, Canada. Sedimentary Geology, 148(1-2): 147-160. [文内引用:1]
[93] Lee C T A, Jiang H H, Ronay E, Minisini D, Stiles J, Neal M. 2018. Volcanic ash as a driver of enhanced organic carbon burial in the cretaceous. Scientific Reports, 8(1): 4197. [文内引用:1]
[94] Li H, Liu Y Q, Yang K, Liu Y J, Niu Y Z. 2021. Hydrothermal mineral assemblages of calcite and dolomite-analcime-pyrite in Permian lacustrine Lucaogou mudstones, eastern Junggar Basin, Northwest China. Mineralogy and Petrology, 115: 63-85. [文内引用:1]
[95] Liu J Y, Liu Q Y, Zhu D Y, Meng Q Q, Huang X W. 2019. Influences of the deep fluid on organic matter during the hydrocarbon generation and evolution process. Natural Gas Geoscience, 30(4): 478-492. [文内引用:1]
[96] Liu X J, Fisher T G, Lepper K, Lowell T V. 2014. Geochemical characteristics of glacial Lake Agassiz sediments and new ages for the Moorhead Phase at Fargo, North Dakota, USA. Canadian Journal of Earth Sciences, 51(9): 850-861. [文内引用:1]
[97] Lonnee J, Machel H G. 2006. Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field, Middle Devonian Slave Point Formation, British Columbia, Canada. AAPG Bulletin, 90(11): 1739-1761. [文内引用:1]
[98] Lowenstein T K, Dolginko L A C, Garcia-Veigas J. 2016. Influence of magmatic-hydrothermal activity on brine evolution in closed basins: Searles Lake, California. Geological Society of America Bulletin, 128: 9-10. [文内引用:1]
[99] Magee J W, Bowler J M, Miller G H, Willians D L G. 1995. Stratigraphy, sedimentology, chronology and palaeohydrology of Quaternary lacustrine deposits at Madigan Gulf, Lake Eyre, south Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 113(1): 3-42. [文内引用:1]
[100] May J H, Barrett A, Cohen T J, Jones B G, Price D, Gliganic L A. 2015. Late Quaternary evolution of a playa margin at Lake Frome, South Australia. Journal of Arid Environments, 122: 93-108. [文内引用:1]
[101] Mazzullo S J. 2000. Organogenic dolomitization in peritidal to deep-sea sediments. Sedimentary, 70: 10-23. [文内引用:5]
[102] Mccall J. 2020. Lake Bogoria, Kenya: hot and warm springs, geysers and Holocene stromatolites. Earth Science Reviews, 103(1-2): 71-79. [文内引用:1]
[103] Mccormack J, Bontognali T, Immenhauser A, Kwiecien O. 2018. Controls on cyclic formation of Quaternary early diagenetic dolomite. Geophysical Research Letters, 45: 3625-3634. [文内引用:1]
[104] McGee D, Quade J, Lawrence Edwards R, Broecker W S, Cheng H, Reiners P W, Evenson N. 2012. Lacustrine cave carbonates: novel archives of paleohydrologic change in the Bonneville Basin(Utah, USA). Earth and Planetary Science Letters, 351-352: 182-194. [文内引用:1]
[105] Mclaren S, Wallace M W, Pillans B J, Gallagher J, Mirand a J A, Warne M T. 2009. Revised stratigraphy of the Blanchetown Clay, Murray Basin: age constraints on the evolution of paleo Lake Bungunnia. Australian Journal of Earth Sciences, 56: 259-270. [文内引用:1]
[106] Mclaren S, Wallace M W, Gallagher S J, Mirand a J A, Holdgate G R, Gow L J, Snowball I, Sand gren P. 2011. Palaeogeographic, climatic and tectonic change in southeastern Australia: the Late Neogene evolution of the Murray Basin. Quaternary Science Reviews, 30(9-10): 1086-1111. [文内引用:1]
[107] Mclaren S, Wallace M W, Reynolds T. 2012. The Late Pleistocene evolution of palaeo megalake Bungunnia, southeastern Australia: a sedimentary record of fluctuating lake dynamics, climate change and the formation of the modern Murray River. Palaeogeography, Palaeoclimatology, Palaeoecology, 317-318: 114-127. [文内引用:1]
[108] Meister P, Reyes C, Beaumon W, Rincon M, Collins L, Berelson W, Stott L, Corsetti F, Nealson K H. 2011. Calcium and magnesium-limited dolomite precipitation at Deep Springs Lake, California. Sedimentology, 58(7): 1810-1830. [文内引用:1]
[109] Moore T S, Murray R W, Kurtz A C, Schrag D P. 2004. Anaerobic methane oxidation and the formation of dolomite. Earth and Planetary Science Letters, 229: 141-154. [文内引用:1]
[110] Moreira N F, Walter L M, Vasconcelos C, McKenzie J A, McCall P J. 2004. Role of sulfide oxidation in dolomitization: sediment and pore-water geochemistry of a modern hypersaline lagoon system. Geology, 32: 701-704. [文内引用:1]
[111] Palmer M R, Elderfield H. 1985. Sr isotope composition of sea water over the past 75 Myr. Nature, 314: 526-528. [文内引用:1]
[112] Petrash D A, Bialik O M, Bontognali T, Vasconcelos C, Roberts J A, McKenzie J A, Konhauser K O. 2017. Microbially catalyzed dolomite formation: from near-surface to burial. Earth-Science Reviews, 171: 558-582. [文内引用:2]
[113] Pouclet A, Bellon H, Bram K. 2016. The Cenozoic volcanism in the Kivu rift: assessment of the tectonic setting, geochemistry, and geochronology of the volcanic activity in the South-Kivu and Virunga regions. Journal of African Earth Sciences, 121: 219-246. [文内引用:1]
[114] Pray L C, Murry R C. 1965. Dolomitization and limestone diagenesis. Society of Economic Paleontologists and Mineralogists(Special Publication), 13: 112-123. [文内引用:2]
[115] Qiao Z F, Zhang S N, Shen A J, Shao G M, She M, Cao P, Sun X W, Zhang J, Guo R X, Tan X C. 2021. Features and origins of massive dolomite of Lower Ordovician Penglaiba Formationin the Northwest Tarim Basin: evidence from petrography and geochemistry. Petroleum Science, 18: 1323-1341. [文内引用:2]
[116] Renaut R W, Owen R B, Ego J K. 2017. Geothermal activity and hydrothermal mineral deposits at southern Lake Bogoria, Kenya Rift Valley: impact of lake level changes. Journal of African Earth Sciences, 129: 623-646. [文内引用:1]
[117] Roberts J A, Bennett P C, Gonzalez L A, Macpherson G L, Milliken K L. 2004. Microbial precipitation of dolomite in methanogenic groundwater. Geology, 32: 277-280. [文内引用:1]
[118] Ross K A, Schmid M, Ogorka S, Muvundja F A, Anselmetti F S. 2015. The history of subaquatic volcanism recorded in the sediments of Lake Kivu;East Africa. Journal of Paleolimnology, 54(1): 137-152. [文内引用:1]
[119] Roy P D, Smykatz-Kloss W, Sinha R. 2006. Late Holocene geochemical history inferred from Sambhar and Didwana playa sediments, Thar Desert, India: Comparison and synthesis. Quaternary International, 144: 84-98. [文内引用:1]
[120] Sánchez-Román M, Vasconcelos C, Schmid T, Dittrich M, McKenzie J A. 2008. Aerobic microbial dolomite at the nanometer scale: implications for the geologic record. Geology, 36: 879-882. [文内引用:1]
[121] Schuster M, Nutz A. 2017. Lacustrine wave-dominated clastic shorelines: modern to ancient littoral land forms and deposits from the Lake Turkana Basin(East African Rift System, Kenya). Journal of Paleolimnology, 59: 221-243. [文内引用:1]
[122] Smith L B Jr. 2006. Origin and reservoir characteristics of Upper Ordovician Trenton-Black river hydrothermaldolomite reservoirs in New York. AAPG Bulletin, 90(11): 1691-1718. [文内引用:2]
[123] Smith R E, Tyler J J, Reeves J, Blockley S, Jacobsen G E. 2016. First Holocene cryptotephras in mainland Australia reported from sediments at Lake Keilambete, Victoria, Australia. Quaternary Geochronology, 40: 82-91. [文内引用:1]
[124] Stone A E C, Thomas D S G. 2013. Casting new light on late Quaternary environmental and palaeohydrological change in the Namib Desert: a review of the application of optically stimulated luminescence in the region. Journal of Arid Environments, 93: 40-58. [文内引用:1]
[125] Talbot M R, Kelts K. 1986. Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi, Ghana. Geology, 14(11): 912-916. [文内引用:1]
[126] Tekin E, Ayyildiz T, Gündoġan İ, Orti F. 2007. Modern halolites(halite oolites)in the Tuz Gölü, Turkey. Sedimentary Geology, 195(3/4): 101-112. [文内引用:1]
[127] Tolotti M, Guella G, Herzig A, Rodeghiero M, Rose N L, Soja G, Zechmeister T, Yang H D, Teubner K. 2021. Assessing the ecological vulnerability of the shallow steppe Lake Neusiedl(Austria-Hungary)to climate-driven hydrological changes using a palaeolimnological approach. Journal of Great Lakes Research, 47(5): 1327-1344. [文内引用:1]
[128] Üner S. 2018. Evolution of Colpan barrier and lagoon complex(Lake Van-Turkey): sedimentological and hydrological approach. Quaternary International, 486(30): 73-82. [文内引用:1]
[129] Vasconcelos C, McKenzie J A. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions(Lagoa Vermelha, Rio de Janeiro, Brazil). Journal of Sedimentary Research, 67(3): 378-390. [文内引用:1]
[130] Wacey D, Wright D T, Boyce A J. 2007. A stable isotope study of microbial dolomite formation in the Coorong Region, South Australia. Chemical Geology, 244(1-2): 155-174. [文内引用:1]
[131] Warren J. 2000. Dolomite: occurrence evolution and economically important associations. Earth-Science Reviews, 52: 1-81. [文内引用:1]
[132] Warthmann R, Van Lith Y, Vasconcelos C, McKenzie J A, Karpoff A M. 2000. Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28: 1091-1094. [文内引用:1]
[133] Wierzbicki R, Dravis J, Al-Aasm I. 2006. Burial dolomitization and dissolution of Upper Jurassic Abenakiplat form carbonates, deep Panuke reservoir, Nova Scotia, Canada. AAPG Bulletin, 90(11): 1843-1861. [文内引用:1]
[134] Wilkins D, Deckker P D, Fifield L K, Gouramanis C, Olley J. 2012. Comparative optical and radiocarbon dating of laminated Holocene sediments in two maar lakes: Lake Keilambete and Lake Gnotuk, south-western Victoria, Australia. Quaternary Geochronology, 9: 3-15. [文内引用:1]
[135] Wright D T, Wacey D. 2005. Precipitation of dolomite using sulphate reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology, 52: 987-1008. [文内引用:1]
[136] Xie Z L, He J, Lue C W, Zhang R Q, Zhou B, Mao H F, Song W J, Zhao W C, Hou D K, Wang J H, Li Y F. 2015. Organic carbon fractions and estimation of organic carbon storage in the lake sediments in Inner Mongolia Plateau, China. Environmental Earth Sciences, 73(5): 2169-2178. [文内引用:1]
[137] Yang Z, Zhong D K, Whitaker F, Lu Z, Zhang S, Tang Z C, Liu R C, Li Z. 2020. Syn-sedimentary hydrothermal dolomites in a lacustrine rift basin: petrographic and geochemical evidence from the lower Cretaceous Erlian Basin, Northern China. Sedimentology, 67(1): 305-329. [文内引用:8]
[138] Yang Z, Whitaker F F, Liu R, Phillips J C, Zhong D K. 2021. A new model for formation of lacustrine primary dolomite by subaqueous hydrothermal venting. Geophysical Research Letters, 48(6): e2020GL091335. [文内引用:3]
[139] Yu B H, Yuan J L. 2013. Current situation of China’s shale gas exploration and development. Applied Mechanics and Materials, 318: 469-472. [文内引用:1]
[140] Zámolyi A, Salcher B, Draganits E, Exner U, Wagreich M, Gier S, Fiebig M, Lomax J, Surányi G, Diel M, Zámolyi F. 2017. Latest Pannonian and Quaternary evolution at the transition between Eastern Alps and Pannonian Basin: new insights from geophysical, sedimentological and geochronological data. International Journal of Earth Sciences, 106: 1695-1721. [文内引用:1]
[141] Zenger D H, Dunham J B, Ethington R L. 1980. Concepts and models of dolomitization. Society of Economic Paleontologists and Mineralogists(Special Publication), 28: 259-297. [文内引用:1]
[142] Zhang M, Liu D D, Liu Q Y, Jiang S, Wang X, Wang Y W, Ma C, Wu A B, Zhang K, Ma Y Q. 2023. Magmatism and hydrocarbon accumulation in sedimentary basins: a review. Earth-Science Reviews, 244: 104531. [文内引用:2]
[143] Zhang X W, Scholz C A, Hecky R E, Wood D A, Zal H J, Ebinger C J. 2014. Climatic control of the late Quaternary turbidite sedimentology of Lake Kivu, East Africa: implications for deep mixing and geologic hazards. Geology, 42(9): 811-814. [文内引用:1]
[144] Zhao Z H, Guo Z J, Zhang C. 2003. Tectonic evolution of the Santanghu Basin, East Xinjiang and it’s implication for the hydrocarbon accumulation. Acta Scicentiarum Naturalum Universitis Pekinensis, 39(2): 219-228. [文内引用:1]