第一作者简介 郑鸣宇,男,1999年生,硕士研究生,地质工程专业。E-mail: MY913615@163.com。
羌塘盆地下侏罗统曲色组是重要的烃源岩层系,但目前对该套烃源岩中有机质富集机理仍缺乏系统研究,制约了对该区油气成藏物质基础的认识。以羌塘盆地南羌塘坳陷毕洛错地区下侏罗统曲色组厚度约100 m的富有机质页岩为研究对象,综合岩心、TOC、主量元素和微量元素等数据,系统研究了页岩沉积时的古环境和古气候特征,分析了页岩中有机质富集的主控因素,建立了该区曲色组页岩有机质的差异富集模式。结果表明,页岩有机质含量具有2段性,2段有机质含量均呈自下而上递增趋势,其中下段(59~110 m)有机质含量总体较低(TOC处于0.3%~8.1%之间,均值为2.7%),包含3层薄层富有机质段; 而上段(0~59 m)有机质含量相对较高(TOC处于0.8%~16%之间,均值为4.9%)。曲色组沉积时期总体为潮湿气候环境,并受到热液作用的影响,下段的有机质富集主要与适量的陆源输入、氧化还原条件和古生产力有关; 上段的有机质富集主要受控于氧化还原条件和古生产力。曲色组上段与下段有机质富集机理的差异可能与古气候和海平面变化的驱动密切相关。
About the first author ZHENG Mingyu,born in 1999,is a master degree candidate and majoring in geological engineering. E-mail: MY913615@163.com.
The Lower Jurassic Quse Formation in the Qiangtang Basin is an important source rock series in the basin. However,a systematic study on the mechanism of organic matter enrichment in this source rock is still lacking,which limits the understanding of the material basis of hydrocarbon accumulation in this area. In this paper,the 100-meter thick organic matter-rich shale of the Lower Jurassic Quse Formation in the Biluoqiao area of the South Qiangtang Depression is used as a study subject. we systematically investigated the the palaeoenvironmental and palaeoclimatic characteristics of shale at the time of deposition,analyzed the main controlling factors of the organic matter enrichment in the shale,and established models of differential organic matter enrichment in the shale of Quse Formation based on the integrated core,TOC,major and trace elements data. The results show that the shale can be divided into two intervals by the organic matter content which increased upward at both intervals. The lower interval(59~110 m)had a generally low organic matter content(the TOC contents range from 0.3% to 8.1%,with an average of 2.7%),and contained three thin organic matter-rich intervals. However,the organic matter content in the upper interval(0~59 m)was relatively high(the TOC contents range from 0.8% to 16%,with an average of 4.9%). The deposition of Quse Formation generally occurred in a humid environment,and was influenced by hydrothermal processes. The organic matter enrichment in the lower interval was mainly related to moderate terrestrial inputs,redox conditions and palaeoproductivity,and the organic matter enrichment in the upper interval was mainly controlled by redox conditions and palaeoproductivity. The difference in the organic matter enrichment mechanism between the upper and lower intervals of the Quse Formation may be closely related to the driving forces of palaeoclimate and sea level changes.
西藏羌塘盆地是中国目前勘探程度最低的海相含油气盆地, 由于其保存了相对完整的中生界地层序列, 被认为具有较好的油气成藏物质基础(王剑等, 2020)。盆地内下侏罗统曲色组发育了一套富有机质页岩层系, 不仅是常规油气的烃源岩(李高杰等, 2020), 也可能是非常规油气的储集层(杜佰伟等, 2014)。烃源岩有机质显微组分综合分析表明, 曲色组烃源岩的有机质主要为II1型和II2型, 具有较高的总有机碳含量与生烃潜力, 被认为是羌塘盆地的优质烃源岩之一(唐友军等, 2019; 张晓等2019; 李高杰等, 2020; 沈安江等, 2023)。对曲色组烃源岩地球化学及生物标志化合物特征的分析显示, 该烃源岩作为该区古油藏油源(唐友军等, 2022; 杨易卓等, 2022), 其发育可能受到了火山活动的影响(唐友军等, 2019; 彭清华等, 2022)。李高杰等(2020)利用有机地球化学分析手段, 认为局限区域的障壁— 潟湖沉积环境是曲色组优质烃源岩形成的有利环境。尽管前人对曲色组烃源岩特征及成因进行了探索, 但是对曲色组内部的优质烃源岩发育段的分布特征以及有机质富集机理还缺乏系统研究, 阻碍了进一步认识油气甜点段的分布规律以及该区的油气勘探部署。
在前人研究的基础上, 综合岩心、元素地球化学数据、总有机碳含量(TOC), 对羌塘盆地南羌塘坳陷下侏罗统曲色组富有机质页岩层系中的优质烃源岩段分布特征、烃源岩沉积时的水体古气候、古盐度和热液条件以及有机质富集机理进行系统的研究, 建立了曲色组富有机质页岩的差异富集模式, 以期为羌塘盆地油气勘探提供一定的科学依据。
羌塘盆地位于青藏高原的腹地, 属于特提斯— 喜马拉雅构造域东段(王剑等, 2020)。盆地北边发育可可西里— 金沙江缝合带, 南边发育班公湖— 怒江缝合带(付修根等, 2020a; 潘应娣等, 2023)。从东西两侧向中部发育的中央隆起, 将羌塘盆地划分为北羌塘坳陷与南羌塘坳陷(万友利等, 2021)。
盆地中侏罗统主要为海相地层, 由下至上依次发育下统的曲色组(J1s), 中统色哇组(J2s)、布曲组(J2b)、夏里组(J2x), 上统索瓦组(J3s)(夏国清等, 2009)。曲色组岩性分上下2段, 上段主要以富有机质页岩夹泥岩为主, 下段主要以膏盐岩为主(王永胜和郑春子, 2008; 唐友军等, 2019)。
研究区位于南羌塘坳陷毕洛错东南方向的索日卡地区, 处于班公湖— 怒江缝合带和中央隆起之间。其中的曲色组主要为一套富有机质页岩层系, 沉积于半深水— 深水洼地(沈安江等, 2024; 魏学斌等, 2024), 既是本地区主要的烃源岩之一, 也是作者研究的目的层。
在前人研究的基础上, 对南羌塘坳陷毕洛错地区A浅孔下侏罗统曲色组厚约107 m的烃源岩层系自下而上以4~10 m为间隔选取代表性样品。使用仪器CS844系列碳硫分析仪开展TOC含量分析, 使用PANalytical X射线荧光光谱仪(XRF)开展主量元素含量分析, 使用Agilent 7900电感耦合等离子体质谱仪(ICP-MS)开展微量元素分析。使用富集因子(EF)表示沉积物中元素的富集程度(Xu et al., 2023), 采取澳大利亚后太古代页岩标准值进行归一化处理(Tribovillard et al., 2006)。计算公式如下:
注: Xsample元素含量; XPAAS后太古宙澳大利亚页岩标准值(Condie, 1993)
以Ti元素为参考元素, 利用后太古宙澳大利亚页岩(PAAS)进行标准化, 得出元素未受到陆源输入影响的非碎屑组分含量(Ma et al., 2016), 目前常用于生物源钡和生物源硅的等生产力指标计算(Dong et al., 2022)。计算公式如下:
注: Xxs元素的非碎屑组分含量; Xtotal元素含量; XPAAS后太古宙澳大利亚页岩标准值(Condie, 1993)
化学蚀变指数(CIA)常用于指示碎屑岩的化学风化强度(Nesbitt and Young, 1982), 岩石的风化程度通常与气候条件密切相关, 干旱寒冷的气候通常岩石的风化程度较弱, 而温暖潮湿的气候通常风化程度较强。考虑到成岩过程中, 钾交代作用的影响, 使得CIA数值偏低。因此计算时可采用Panahi等(2000)提出的公式进行校正。计算公式如下:
CIAcorr=Al2O3/(Al2O3+CaO*+Na2O+K2Ocorr)]×100)(3)
K2Ocorr=
注: 所有元素成分均指摩尔分数浓度; CaO* 指硅酸盐中的碳酸钙含量(如果CaORemain< Na2O, 则CaO* =CaORemain; 如果CaORemain> Na2O, 则CaO* =Na2O)。
通过前期的岩心观察, 识别出该段是由灰质页岩、膏质泥岩、泥质灰岩和含泥膏岩组成。A浅孔下侏罗统曲色组烃源岩层厚约107 m, 该段烃源岩TOC含量最低为0.3%, 最高可达到16%(图 1-c)。
通过垂向上对TOC的整体变化趋势分析, 发现2段烃源岩TOC含量自下而上整体均呈现递增的趋势, 且下段烃源岩TOC含量整体上比上段TOC含量低, 因此根据岩相组合与总有机质含量的不同, 将曲色组烃源岩划分为上下2段(图 2), 主要根据TOC含量2%、4%对有机质的富集程度进行了命名, 即高碳有机质和富碳有机质(黎茂稳等, 2022)。
烃源岩沉积下段为59~110 m, 识别出了3套富碳烃源岩段。第1套富碳烃源岩位于60.6~64.3 m, 此区段主要发育灰质页岩, TOC含量均值为7.72%。第2套富碳烃源岩位于79.1~81.1 m, 此区段主要发育膏质泥岩, TOC含量均值为5.1%。第3套富碳烃源岩位于92.6~96.7 m, 此区段主要发育灰质页岩和泥质灰岩, TOC含量均值为8.1%(图 1-c)。主量元素中Al2O3、SiO2与微量元素中Zr在纵向上均表现为快增— 缓降— 快增的曲线形态, 整体上呈现递增趋势; 去除陆源碎屑影响后的VEF(均值为1.1)整体呈中等程度富集、MoEF(均值为28.7)整体呈强富集, 曲线同样表现为快增— 缓降— 快增的形态; 此外, 元素比值Ni/Co、V/Cr、Ni/Al、Cu/Al、Zn/Al, 自下而上的曲线变化形态均与TOC相似, 整体上均呈递增趋势(图 2)。
烃源岩沉积上段为0~59 m, 识别出了2套富碳烃源岩段: 第1套富碳烃源岩位于0~4.8 m, 此区段主要发育灰质页岩, TOC含量均值为8.3%。第2套富碳烃源岩位于12.7~36.7 m, 此区段主要发育灰质页岩, TOC含量均值为8.6%(图 1-c)。主量元素中的Al2O3、SiO2与微量元素Zr的曲线振幅相较于下段更剧烈, 尽管此时整体上仍处于递增趋势, 但与TOC的协变性降低; 去除陆源碎屑影响后的VEF呈中等程度富集(均值为2.0)、MoEF(均值为40.4)呈强富集, 且富集区间集中于TOC高值段, 在曲线上整体表现为递增趋势; 此外, 元素比值Ni/Co、V/Cr、Ni/Al、Cu/Al、Zn/Al与TOC曲线变化形态相似(图 2)。
在钾交代作用影响下, 会使得化学蚀变指数(CIA)偏低。通过计算公式校正后得到更为准确的化学蚀变指数(CIAcorr)用于古气候的重建(Panahi et al., 2000)。此外 Ln(Al2O3/Na2O) 也是研究古气候的常用指标(马义权等, 2017)。本研究中样品CIAcorr值范围为78.6~83.3(均值为81.9), 其中大部分在80以上, 在垂向上均呈现先增加后稳定的趋势(图 3), 其中, 风化程度强说明下侏罗统曲色组烃源岩沉积整体上处于一个较为温暖潮湿的气候。此外, 古气候指标Ln(Al2O3/Na2O)在纵向上与校正后的化学蚀变指数(CIAcorr)变化趋势基本一致, 表明此时研究区整体处于一个较为稳定的温暖湿润气候。
Sr/Ba值、Ca/(Ca+Fe)值被广泛用于水体古盐度的研究(王子玉等, 1994; 文华国等, 2008; 谭梅等, 2023)。将Sr/Ba< 0.2、Ca/(Ca+Fe)< 0.4定义为淡水; 0.2< Sr/Ba< 0.5、0.4< Ca/(Ca+Fe)< 0.6定义为咸水; Sr/Ba> 0.5、Ca/(Ca+Fe)> 0.6定义为海水。整段烃源岩Sr/Ba值的范围在0.8~17.6之间(均值为3.8); Ca/(Ca+Fe)值在0.7~1之间(均值为0.8), 所有烃源岩样品的Sr/Ba值均大于0.5, Ca/(Ca+Fe)值均大于0.6(图 3)。表明下侏罗统曲色组烃源岩均在高盐度的海水环境中沉积, 这可能与早侏罗世受到南羌塘坳陷向北羌塘坳陷的区域性海侵(万友利等, 2018)密切相关。
热液作用是指地下热水或热溶液在地壳中发生的化学作用, 对于地球内部化学循环以及矿物资源形成起到重要作用(Chen et al., 2012)。通过Al-Fe-Mn三角投点图、Al/(Al+Fe+Mn)和Fe/Ti等指标来判断, 研究区是否受到热液成因的影响。曲色组样品投点落在Al-Fe-Mn三角图的非热液成因区、Al/(Al+Fe+Mn)指标均大于0.4与Fe/Ti指标均小于20(图 4-a), 表明研究区不受热液作用的影响(Adachi et al., 1986; Garbá n et al.., 2017; Lei et al., 2019; Shi et al., 2022)。然而考虑到中央隆起会给研究区带来陆源输入的原因(王剑等, 2018), 将Al-Fe-Mn三角图的所有数据计算成非碎屑组分含量后, 在Alxs-Fexs-Mnxs图上再次检验, 显示曲色组烃源岩的发育在一定程度上可能受到了热液作用的影响(图 4-b)。
4.3.1 陆源输入
通常, 陆源碎屑输入对有机质富集具有一定的稀释作用(彭光荣等, 2023)。Zr一般用来表示粗颗粒输入指标(陈诗越等, 2003), Al2O3通常用作为细颗粒输入指标(Canfield, 1994; Lei et al., 2019); 石英颗粒由于其较好的稳定性, 可用于追踪陆源输入的变化(李艳青等, 2011)。
通过对Zr、Al2O3、SiO2与TOC的相关性研究, 发现古陆源输入(粗颗粒、细颗粒、石英)对TOC富集的控制作用可能与其输入量密切相关(图 5)。适量的陆源输入可能会携带丰富的营养物质进入水体, 促进生物勃发, 从而富集有机质, 过量的陆源输入对有机质有明显的稀释作用。通过分别对曲色组烃源岩沉积的上段与下段的陆源输入指标与TOC进行相关性分析, 发现上段烃源岩有机质的富集与陆源输入指标相关性较差, 而下段的烃源岩有机质的富集与陆源输入指标呈正相关(图 6)。证明2段烃源岩有机质的富集主控因素不同, 下段的陆源输入是有机质富集的主控因素之一, 而上段有机质的富集可能主要受其他因素的控制。
从垂向上对陆源输入指标进行分析(图 2), 发现曲色组烃源岩下段在沉积过程中, 陆源输入先从低值快速增大至过量, 然后再缓慢降低, 最后在下段沉积末期陆源输入存在突然增大再降低的现象, 说明外来陆源输入可能存在多期输入的现象, 这可能与南羌塘坳陷下侏罗统曲色组沉积时期受到的区域性海侵密切相关。而上段烃源岩沉积过程中整体陆源输入整体上保持一个相对稳定的增长趋势, 在具体表现上呈现波动性的特点, 说明此时外来陆源输入较为稳定。
4.3.2 古氧化还原条件
古氧化还原条件间接影响有机质的保存, 从而对有机质的富集起到控制作用。为了分析古氧化还原条件, 常使用一些氧化还原敏感元素来进行分析。V元素在还原环境下可以被还原为V3+, 在氧化环境下可以被氧化为V5+; Mo元素同样也存在不同的价态, 其富集与缺氧环境有关, 因此V、Mo元素可以很好地用作氧化还原条件的评价指标(Hatch and Leventhal., 1992; Lé zin et al., 2013)。此外, 元素的比值也可以用作古氧化还原环境的识别指标, Ni/Co< 5与V/Cr< 2通常代表富氧环境、5< Ni/Co< 7与2< V/Cr< 4.25通常代表氧气含量相对较低的环境、Ni/Co> 7与V/Cr> 4.25通常代表一个缺氧环境(Yan et al., 2019; Zhang et al., 2019; 白静等, 2020)。
通过对VEF、MoEF、Ni/Co值、V/Cr值与TOC的相关性研究, 发现曲色组沉积时期的氧化还原状态对TOC的富集具有明显控制作用(图 5), 当氧气含量相对较低时, 促进了有机质的保存; 当氧气含量相对较高时, 不利于有机质的保存和富集。对曲色组烃源岩沉积上段与下段的氧化还原指标与TOC分别进行相关性分析, 发现上下2段的氧化还原指标均与TOC呈正相关(图 6), 在垂向上的变化趋势与TOC曲线变化基本一致(图 2)。尽管下段烃源岩沉积于氧气含量相对较高的富氧环境, 然而受陆源输入和古生产力的影响, 依然在下段形成了3段TOC的高值段, 说明在富氧条件下同样能够产生富有机质页岩。在整个曲色组烃源岩沉积过程中, 有机质的富集均与氧化还原反应的控制密切相关。
UEF和MoEF的协变图所示(图 7-a), 曲色组整段烃源岩沉积过程中Mo相对于U强烈富集, 在上下2段烃源岩沉积过程中, 均受到不同程度“ 颗粒穿梭” 的影响, 使得Mo元素发生强富集作用, Mo/U的高比值表明此时研究区处于与无限制海洋不同的“ 颗粒穿梭” 趋势(Algeo and Tribovillard., 2009; Tribovillard et al., 2012)。此外, 由于Mo对于氧化还原的反应比较敏感, 且在硫化条件下富集, 因此Mo与TOC的交汇图可用于古水文条件的研究, 依据其比值大小可将其限制环境分为强(Mo/TOC< 15× 10-4)、中(15× 10-4< Mo/TOC< 35× 10-4)和弱(Mo/TOC> 35× 10-4)3个等级(Algeo and Lyons, 2006)。曲色组烃源岩沉积下段的Mo/TOC值范围为1.4× 10-4~22.2× 10-4(均值为5.8× 10-4), 曲色组烃源岩沉积上段的Mo/TOC值范围为0.7× 10-4~6.5× 10-4(均值为3.3× 10-4), 整体上受到强限制环境约束。根据Mo与TOC的交汇图(图 7-b)可知, 研究区的海水封闭程度与黑海类似, 代表此时研究区处于一个封闭— 半封闭的海水环境中(Scott and Lyons, 2012)。毕洛错地区下侏罗统曲色组烃源岩发育于较封闭的凹陷区, 受到了一定的盆地限制(谭富文等, 2016; 伊海生和夏国清, 2022)。区域性海侵作用(万友利等, 2018), 使得深海区域的营养物质被携带进入研究区从而提高研究区的古生产力。
总体上来说, 曲色组下段烃源岩沉积时水体含氧量相对较高, 这可能与该时期的研究区总体处于潮湿环境密切相关。上段烃源岩主要沉积于水体缺氧的环境, 这可能与早侏罗世托尔期全球大洋缺氧事件和区域性海侵作用相关(Fu et al., 2014; 付修根等, 2020b, 2021), 水体缺氧有利于有机质的保存, 这可能是上段烃源岩总有机质含量普遍高于下段烃源岩的重要原因。
4.3.3 古生产力
海洋中的初级生产者们通过其生产作用间接控制有机质的输入, 从而间接控制有机质的富集, 因此查明古生产力情况对于研究有机质的富集具有重要作用。在还原条件下Ni、Cu、Zn是海洋生物有机质富集的主要营养元素(Wang et al., 2019)。由于其陆源碎屑组分含量远大于目前被测元素组分的总含量, 此时生物源钡和生物源硅作为评价古生产力的有效指标并不适用(Dong et al., 2022)。
利用较稳定的陆源输入元素指标Al去除陆源碎屑对古生产力的影响, 得出较为准确的Ni/Al、Cu/Al、Zn/Al等古生产力指标(Zhanget al., 2019)。通过对Ni/Al、Cu/Al、Zn/Al与TOC的相关性分析, 发现曲色组古生产力指标对TOC的富集控制机制, 在古生产力低值区域对TOC富集基本没有影响, 而在古生产力相对较高的范围内对TOC富集具有促进作用(图 5)。对曲色组烃源岩沉积上段与下段的古生产力指标与TOC分别进行相关性分析, 发现上下2段的古生产力指标均与TOC呈正相关(图 6)。在垂向上2段的整体变化趋势相对一致, 但曲色组烃源岩沉积下段的古生产力远小于曲色组烃源岩沉积上段的古生产力(图 2)。
在层序地层学、沉积学系统研究的基础上, 结合烃源岩沉积的古环境指标(古气候与古盐度、热液活动)和有机质富集指标(古陆源输入、古氧化还原、古生产力)认为研究区下侏罗统曲色组烃源岩有机质富集存在2个不同阶段。
曲色组烃源岩沉积的第1个阶段发生在下段(图 8-a)。该阶段TOC含量与陆源输入指标具有明显正相关, 说明陆源输入对有机质的富集有一定促进作用。总体潮湿背景下, 一定的淡水输入为研究区带来了营养物质, 有利于浮游生物勃发, 从而促进古生产力升高。但是该阶段的氧化还原指标显示水体主要为富氧环境, 使得有机质保存条件较差可能是导致下段部分层位TOC含量较低的主要原因。因此, 曲色组烃源岩下段有机质的富集主要受陆源输入、氧化还原与古生产力的共同作用, 沉积了以灰质页岩、膏质泥岩、泥质灰岩、含泥膏岩为主的岩石类型。
曲色组烃源岩沉积的第2个阶段发生在上段(图 8-b)。这一阶段沉积早期, 相对较高的氧气含量使有机质的保存受到影响, 使得此时有机质含量不高。该阶段TOC含量与陆源输入指标的相关性较低, 说明陆源输入对有机质富集的影响不大。该时期区域性海侵引起研究区海平面升高(万友利等, 2018), 造成底层水体含氧量减小。海侵带来的营养物质促进了水体表层生物勃发, 提高了古生产力。可能伴随早侏罗世托尔期全球大洋缺氧事件的出现(Fu et al., 2014; 付修根等, 2020b, 2021), 研究区内大量生物死亡, 在其死亡沉降过程中, 进一步消耗掉了水体中的溶解氧, 使得此时水体缺氧状态加剧, 有机质得以较好保存。因此, 曲色组烃源岩上段有机质的富集主要受到氧化还原条件与古生产力的控制, 沉积了以灰质页岩为主的岩石类型。
1)根据Mo/TOC的均值为4.3× 10-4, 表明羌塘盆地封闭程度与黑海类似, 属于一个强限制盆地。且曲色组烃源岩在缺氧环境下大于富氧环境下的总有机质含量, 说明在封闭缺氧的凹陷环境更有利于有机质的富集。
2)根据陆源输入指标与总有机质含量的相关性分析结果, 发现适量的陆源输入更有利于有机质富集; 根据氧化还原指标与总有机质含量的相关性分析结果, 发现当氧气含量相对较高时对于有机质的富集没有明显促进作用, 此外有机质在富氧环境中也不利于保存, 而当氧气含量相对较低时更有利于有机质的富集; 根据古生产力指标与总有机质含量的相关性分析结果, 发现较高的古生产力促进有机质的富集。
3)根据有机质富集机理分析, 识别出下侏罗统曲色组烃源岩的“ 二段式” 发育模式。在烃源岩沉积的第1阶段(烃源岩沉积下段), 氧气含量相对较高的环境下, 一定的淡水输入为研究区带来了营养物质, 间接促进了古生产力升高, 此时有机质的富集主要受到陆源输入、氧化还原作用与古生产力的共同控制。在烃源岩沉积的第2阶段(烃源岩沉积上段), 在氧气含量相对较低的还原环境下, 受到区域海水入侵与早侏罗世托尔期全球大洋缺氧事件共同影响, 此时有机质的富集主要是受到氧化还原条件与古生产力的控制。
(责任编辑 郑秀娟)