Vérard and co-workers proposed in an earlier issue of this journal a method to reconstruct the 3D palaeogeography “anywhere in the world at any time”. The present contribution is a discussion of some of the assumptions on which the method of Vérard et al. is based. The reason for this discussion is that the method will give, at least seemingly, illogical outcomes for numerous situations. Moreover, some assumptions used by Vérard and his team pose theoretical problems. It is deduced that the method developed by Vérard and co-workers may occasionally help, indeed, to obtain a rough picture of the altitude of the sedimentary surface on the continents and of the depth of the sedimentary surface in the oceans in the geological past. The outcomes should, however, be treated with utmost care as several of the assumptions on which the interpretative 3D method is based have no solid basis, so that even the rough outcomes of the method must be considered questionable.
A. J.van Loon. The Vérard et al. (2015) method for 3D palaeogeographic reconstructions: How solid is its base?[J]. Journal of Palaeogeography, 2015, 4(3): 244-247.
A. J.van Loon. The Vérard et al. (2015) method for 3D palaeogeographic reconstructions: How solid is its base?[J]. Journal of Palaeogeography, 2015, 4(3): 244-247.
1. BBlackey, R., 2008. Gondwana palaeogeography from assembly to breakup — A 500 m.y. odyssey, in: Fielding, C., Frank, T., Isbell, J., (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space. GSA, Special Paper, 441, pp. 1-28.
2. BBrunetti, M., Vérard, C., Baumgartner, P., 2015. Modelling the Middle Jurassic Ocean Circulation. Journal of Palaeogeography, in press.
3. DDera, G., Donnadieu, Y., 2012. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event. Paleoceanography, 27, PA2211.
5. HHafkenscheid, E., Warners-Ruckstuhl, K., van Oosterhoot, C., Bergman, S., Davies, H., Govers, R., Hochard, C., Kennan, L., Ross, M., Stampfli, G., Vérard, C., Webb, P., Wortel, R., 2013. Integrating plate tectonic reconstruction and mantle dynamics: A valuable aid in frontier exploration. Poster # EGU2013-3204 at the EGU General Assembly, Vienna.
6. SSellwood, B., Valdes, P., 2008. Jurassic climates. Proceedings of the Geologists’ Association, 119, 5-17.
7. SShanmugam, G., 2015. 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations: Discussion. Journal of Palaeogeography, 4(3), 234-243.
8. SShephard, G., Liu, L., Müller, R.D., Gurnis, M., 2012. Dynamic topography and anomalously negative depth of the Argentine Basin. Gondwana Research, 22(2), 658-663.
9. VVan Loon, A., 2015. The Vérard et al. (2015) method for 3D palaeogeographic reconstructions: How solid is its base? Journal of Palaeogeography, 4(3), 244-247.
10. Vérard, C., Hochard, C., Baumgartner, P., Stampfli, G., 2015. 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations. Journal of Palaeogeography, 4(1), 64-84.
11. Warners-Ruckstuhl, K., Govers, R., Wortel, R., 2012. Lithosphere-mantle coupling and the dynamics of the Eurasian plate. Geophysical Journal International, 189, 1253-1276.
12. Warners-Ruckstuhl, K., Govers, R., Wortel, R., 2013. Dynamics and stress field of the Eurasian plate. Poster # EGU2013-9094 at the EGU General Assembly, Vienna.
6. FFretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., Bell, R., Bianchi, C., Bingham, R.G., Blankenship, D.D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A.J., Corr, H.F.J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J.A., Hindmarsch, R.C.A., Holmlund, P., Holt, J.W., Jacobel, R.W., Jenkins, A., Jokat, W., Jordan, T., King, E.C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K.A., Leitchenkov, G., Leuschen, C., Luyendyk, P.J., Matsuoka, K., Mouginot, J., Nitsche, F.O., Nogi, Y., Nost, O.A., Popov, S.V., Rignot, E., Rippin, D.M., Rivera, A., Roberts, J., Ross, N., Siegert, M.J., Smith, A.M., Steinhaghe, D., Studinger, M., Sun, B., Tinto, B.K., Welch, B.C., Wilson, D., Young, D.A., Xiangbin, C., Zirizzotti, A., 2013. Bedmap 2: Improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7, 375-393.
7. HHallam, A., Cohen, J., 1989. The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Philosophical Transactions of the Royal Society B (Biological Sciences), 325, 437-455.
8. HHaq, B., Hardenbol, J., Vail, P., 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156-1167.
9. HHaq, B., Schutter, S., 2008. A chronology of Paleozoic sea-level changes. Science, 322, 64-68.
10. Harrison, C.G.A., 1990. Long term eustasy and epeirogeny in continents, in: US National Research Council Geophysics Study Committee: Sea-Level Change. USNRS, Washington, pp. 141-158.
11. Herrmann, A.D., Haupt, B.J., Patzkowski, M.E., Seidov, D., Slingerland, F.L., 2004. Response of Late Ordovician paleoceanography to changes in sea level, continental drift, and atmospheric pCO2: Potential causes for long-term cooling and glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 210, 385-401.
12. Kominz, M.A., 2004. Sea level variations over geologic time, in: Selley, R.C., Cocks, R., Plimer, I., (Eds.), Encyclopedia of Geology. Academic Press, Elsevier, pp. 2605-2613.
13. Kusky, T., 2005. Encyclopedia of Earth Science. Facts on File, New York.
14. Li, G., Yan, W., Zhong, L., Xia, Z., Wang, S., 2015. Provenance of heavy mineral deposits on the northwestern shelf of the South China Sea, evidence from single-mineral chemistry. Sedimentary Geology, 363, 112-124.
15. Mörner, N.A., 1995. The Baltic Ice Lake - Yoldia Sea transition. Quaternary International, 27, 95-98.
16. Müller, D., Sdrolias, M., Gaina, C., Steinberger, B., Heine, C., 2008. Long-term sea-level fluctuations driven by ocean basin dynamics. Science, 319, 1357-1362.
17. Poussart, P.F., Weaver, A.J., Bames, C.R., 1999. Late Ordovician glaciation under high atmospheric CO2: A coupled model analysis. Paleoceanography, 14, 542-558.
18. Raukas, A., 1995. Evolution of the Yoldia Sea in the eastern Baltic. Quaternary International, 27, 99-102.
19. Sahagian, D.L., 1988. Ocean temperature-induced changer in lithospheric thermal structure: A mechanism for long-term eustatic sea level change. Journal of Geology, 96, 254-261.
20. Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Damsté, J.S.S., Dickens, G.R., Huber, M., Reichart, G.J., Stein, R., Matthiessen, J., lourens, L.J., Pedentchouk, N., Backman, J., Moran, K., the Expedition 302 Scientists, 2006. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature, 441, 610-613.
22. Summerfield, M.A., 2014. Global Geomorphology. Routledge, Abingdon/New York.
23. Thompson, G.R., Turk, J., 2009. Earth Science and the Environment (4th Edition). Thomson Higher Education, Belmont, CA.
24. Van Loon, A.J., 2000. The strangest 0.05% of the geological history. Earth-Science Reviews, 50, 125-133.
25. Vérard, C., Hochard, C., Baumgartner, P.O., Stampfli, G.M., 2015. 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations. Journal of Palaeogeography, 4, 64-84.
26. Woronko, B., Pisarska-Jamrozy, M., Van Loon, A.J., 2015. Surface textures of quartz grains from sandurs and an ice-marginal valley in NW Poland as a tool for the reconstruction of sediment provenance and of transport processes. Geologos, 21, in press.
27. Young, S.A., Saltzman, S.R., Ausich, W.I., Desrochers, A, Kaljo, D., 2010. Did changes in atmospheric CO2 coincide with latest Ordovician glacial-interglacial cycles? Palaeogeography, Palaeoclimatology, Palaeoecology, 296, 376-388.
28. Zhou, X., Thomas, E., Rickaby, R.E.M., Winguth, A.M.E., Lu, Z., 2014. I/Ca evidence for upper ocean deoxygenation during the PETM. Paleoceanography, 29, 964-975.