Maura Brunettia,*, Christian Vérarda, Peter O. Baumgartnerb
a Institute for Environmental Sciences, University of Geneva, Bd Carl-Vogt 66, CH-1205 Geneva, Switzerland; b Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015 Lausanne, Switzerland
We present coupled ocean-sea-ice simulations of the Middle Jurassic (~165 Ma) when Laurasia and Gondwana began drifting apart and gave rise to the formation of the Atlantic Ocean. Since the opening of the Proto-Caribbean is not well constrained by geological records, configurations with and without an open connection between the Proto-Caribbean and Panthalassa are examined. We use a sea-floor bathymetry obtained by a recently developed three-dimensional (3D) elevation model which compiles geological, palaeogeographical and geophysical data. Our original approach consists in coupling this elevation model, which is based on detailed reconstructions of oceanic realms, with a dynamical ocean circulation model. We find that the Middle Jurassic bathymetry of the Central Atlantic and Proto-Caribbean seaway only allows for a weak current of the order of 2 Sv in the upper 1000 m even if the system is open to the West. The effect of closing the western boundary of the Proto-Caribbean is to increase transport related to barotropic gyres in the southern hemisphere and to change water properties, such as salinity, in the Neo-Tethys. Weak upwelling rates are found in the nascent Atlantic Ocean in the presence of this superficial current and we discuss their compatibility with deep-sea sedimentological records in this region.
.Adcroft, A., Campin, J.-M., Hill, C., Marshall, J., 2004. Implementation of an Atmosphere-Ocean General Circulation Model on the Expanded Spherical Cube. Monthly Weather Review, 132, 2845-2863.
[2]
.Barron, E. J., 1981. Paleogeography as a climatic forcing factor. Geologische Rundschau, 70, 737-747.
[3]
.Baumgartner, P. O., 2013. Mesozoic radiolarites - Accumulation as a function of sea surface fertility on Tethyan margins and in ocean basins. Sedimentology, 60, 292-318.
[4]
.Bjerrum, C. J., Surlyk, F., Callomon, J. H., Slingerland, R. L., 2001. Numerical paleoceanographic study of the Early Jurassic Transcontinental Laurasian seaway. Paleocenography, 16, 390-404.
[5]
.Bush, A. B. G., 1997. Numerical simulation of the Cretaceous Tethys circumglobal current. Science, 275, 807-810.
[6]
.Cecca, F., Martin Garin, B., Marchand, D., Lathuiliere, B., Bartolini, A., 2005. Paleoclimatic control of biogeographic and sedimentary events in Tethyan and peri-Tethyan areas during the Oxfordian (Late Jurassic). Palaeogeography, Palaeoclimatology, Palaeoecology, 222, 10-32.
[7]
.Chandler, M. A., Rind, D., Ruedy, R., 1992. Pangaean during the Early Jurassic: GCM simulations and the sedimentary record of paleoclimate. GSA Bulletin, 104, 543-559. 2.3.CO;2 target="_blank">
[8]
.Danabasoglu, G., 2004. A comparison of global ocean general circulation model solutions obtained with synchronous and accelerated integration methods. Ocean Modelling, 7, 323-341.
[9]
.Dera, G., Donnadieu, Y., 2012. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event. Paleocenography, 27, PA2211.
[10]
Donnadieu, Y., Dromart, G., GoddéRis, Y., PucéAt, E., Brigaud, B., Dera, G., Dumas, C., Olivier, N., 2011. A mechanism for brief glacial episodes in the Mesozoic greenhouse. Paleoceanography, 26, PA3212.
[11]
Donnadieu, Y., Pierrehumbert, R., Jacob, R., Fluteau, F., 2006. Modelling the primary control of palaeogeography on Cretaceous climate. Earth and Planetary Science Letters, 248, 426-437.
[12]
Enderton, D., Marshall, J., 2009. Explorations of Atmosphere-Ocean-ice Climates on an Aquaplanet and their Meridional Energy Transports. Journal of Atmospheric Sciences, 66, 1593-1611.
[13]
Erba, E., 1994. Nannofossils and superplumes: The early Aptian "nannoconid crisis". Paleoceanography, 9, 483-501.
[14]
Ferrari, O., Hochard, C., Stampfli, G., 2008. An alternative plate tectonic constrained model for the Paleozoic-Early Mesozoic Paleotethyan evolution of the Southeast Asia, with special attention to northern Thailand. Tectonophysics, 451, 346-365.
[15]
Flores-Reyes, K. E., 2009. Mesozoic oceanic terranes of southern Central America-Geology, geochemistry and geodynamics. University of Lausanne, Lausanne, Ph.D. Thesis, 317 pages.
[16]
Fran?ois, I. M., Walker, J. C. G., 1992. Modelling the Phanerozoic carbon cycle and climate: Constraints from the 87Sr/86Sr isotopic ratio of seawater. American Journal of Science, 292, 81-135.
[17]
Gent, P. R., McWilliams, J. C., 1990. Isopycnal mixing in Ocean Circulation Models. Journal of Physical Oceanography, 20, 150-160. 2.0.CO;2 target="_blank">
[18]
Griffies, S. M., Biastoch, A., B?ning, C., Bryan, F., Danabasoglu, G., Chassignet, E. P., England, M. H., Gerdes, R., Haak, H., Hallberg, R. W., Hazeleger, W., Jungclaus, J., Large, W. G., Madec, G., Pirani, A., Samuels, B. L., Scheinert, M., Gupta, A. S., Severijns, C. A., Simmons, H. L., Treguier, A. M., Winton, M., Yeager, S., Yin, J., 2009. Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modelling, 26, 1-46.
[19]
Hafkenscheid, E., Wortel, R., Spakman, W., 2006. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. Journal of Geophysical Research, 111, B08401.
[20]
Hay, W. W., Migdisov, A., Balukhovsky, A. N., Wold, C. N., Fl?gel, S., S?ding, E., 2006. Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life. Palaeogeography, Palaeoclimatology, Palaeoecology, 240, 3-46.
[21]
Hochard, C., 2008. GIS and geodatabases application to global scale plate tectonics modeling. University of Lausanne, Lausanne, Ph.D. Thesis, 164 pages.
[22]
Hotinski, R. M., Toggweiler, J. R., 2003. Impact of a Tethyan circumglobal passage on ocean heat transport and "equable" climates. Paleoceanography, 18, 1007.
[23]
Iturralde-Vinent, M. A., 2006. Meso-Cenozoic Caribbean paleogeography: Implications for the historical biogeography of the region. International Geology Review, 48, 791-827.
[24]
Iturralde-Vinent, M. A., Pszczólkowski, A., 2011. Geologíadel terreno Guaniguanico. In: Iturralde-Vinent, M. A., (Ed.), Compendio de Geología de Cuba y del Caribe. Editorial CITMATEL, La Habana, Cuba.
[25]
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, B., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ro-pelewski, C., Wang, J., Jenne, R., Joseph, D., 1996. The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77, 437-472. 2.0.CO;2 target="_blank">
[26]
Kneller, E. A., Johnson, C. A., Karner, G. D., Einhorn, J., Queffelec, T. A., 2012. Inverse methods for modeling non-rigid plate kinematics: Application to mesozoic plate reconstructions of the Central Atlantic. Computers and Geosciences, 49, 217-230.
[27]
Labails, C., Olivet, J.-L., Aslanian, D., Roest, W. R., 2010. An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters, 297, 355-368.
[28]
Large, W. G., McWilliams, J. C., Doney, S. C., 1994. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32, 363-404.
[29]
Large, W. G., Yeager, S. G., 2004. Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Technical Note, NCAR, Boulder, CO.
[30]
Levitus, S., Boyer, T. P., 1994. World Ocean Atlas, Volume 4: Temperature. U.S. Department of Commerce, Washington, D. C.
[31]
Markwick, P., Valdes, P., 2004. Palaeo-digital elevation models for use as boundary conditions in coupled ocean-atmosphere GCM experiments: A Maastrichian (Late Cretaceous) example. Palaeogeography, Palaeoclimatology, Palaeoecology, 213, 37-63.
[32]
Marshall, J., Adcroft, A., Hill, C., Perelman, L., Heisey, C., 1997a. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research, 102, 5753-5766.
[33]
Marshall, J., Hill, C., Perelman, L., Adcroft, A., 1997b. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research, 102, 5733-5752.
[34]
Moix, P., Beccaletto, L., Kozur, H. W., Hochard, C., Rosselet, F., Stampfli, G. M., 2008. A new classification of the Turkish terranes and sutures and its implication for the palaeotectonic history of the region. Tectonophysics, 451, 7-39.
[35]
Moore, G. T., Hayashida, D. N., Ross, C. A., Jacobson, S. R., 1992. Paleoclimate of the Kimmeridgian/Tithonian (Late Jurassic) world: I. Results using a general circulation model. Palaegeography, Palaeoclimatology, Palaeoecology, 93, 113-150.
[36]
Nardin, E., Goddéris, Y., Donnadieu, Y., Hir, G. L., Blakey, R.C., Pucéat, E., Aretz, M., 2011. Modelling the Early Paleozoic long-term climatic trend. Geological Society of America Bulletin, 123, 1181-1192.
[37]
Pindell, J., Maresh, W. V., Martens, U., Stanek, K., 2012. The Greater Antillean Arc: Early Cretaceous origin and proposed relationship to Central American subduction mélanges: Implications for models of Caribbean evolution. International Geology Review, 54, 131-143.
[38]
Pindell, J. L., Kennan, L., 2009. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update. Geological Society of London Special Publications, 328, 1-55.
[39]
Poulsen, C. J., Gendaszek, A. S., Jacob, R. L., 2003. Did the rifting of the Atlantic Ocean cause the Cretaceous thermal maximum? Geology, 31, 115-118. 2.0.CO;2 target="_blank">
[40]
Prokoph, A., Shields, G. A., Veizer, J., 2008. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Science Reviews, 87, 113-133.
[41]
Rees, P. M., Ziegler, A. M., Valdes, P. J., 2000. Jurassic phytogeography and climates: New data and model comparisons. In: Huber, B. T., MacLeod, K. G., Wing, S. T., (Eds.), Warm climates in Earth history. Cambridge University Press, Cambridge, pp. 297-318.
[42]
Rind, D., Chandler, M., 1991. Increased ocean heat transports and warmer climate. Journal of Geophysical Research, 96, 7437-7461.
[43]
Roscher, M., Stordal, F., Svensen, H., 2011. The effect of global warming and global cooling on the distribution of the latest Permian climate zones. Palaegeography, Palaeoclimatology, Palaeoecology, 309, 186-200.
Sellwood, B. W., Valdes, P. J., 2006. Mesozoic climates: General circulation models and the rock record. Sedimentary Geology, 190, 269-287.
[46]
Sellwood, B. W., Valdes, P. J., 2008. Jurassic climates. Proceedings of the Geologists’ Association, 119, 5-17.
[47]
Sellwood, B. W., Valdes, P. J., Price, G. D., 2000. Geological evaluation of multiple general circulation model simulations of Late Jurassic palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 156, 147-160.
[48]
Stampfli, G., Borel, G., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196, 17-33.
[49]
Stampfli, G., Borel, G., 2004. The TRANSMED transects in space and time: Constraints on the paleo-tectonic evolution of the Mediterranean domain. In: Cavazza, W., Roure, F., Spakman, W., Stampfli, G., Ziegler, P., (Eds.), The TRANSMED Atlas: The Mediterranean region from crust to mantle. Springer Verlag, Berlin.
[50]
Stampfli, G., Kozur, H., 2006. Europe from the Variscan to the Alpine cycles. Geological Society, London, Memoirs, 32, 57-82.
[51]
Stampfli, G. M., 2013. Response to the comments on "The formation of Pangea" by D.A. Ruban. Tectonophysics, 608, 1445-1447.
[52]
Stampfli, G. M., Hochard, C., Vérard, C., Wilhem, C., vonRaumer, J., 2013. The formation of Pangea. Tectonophysics, 593, 1-19.
[53]
Stocker, T., 2011. Introduction to Climate Modelling. Springer.
[54]
Valdes, P., 1993. Atmospheric General Circulation Models of the Jurassic. Royal Society of London Philosophical Transactions Series B, 341, 317-326.
[55]
Vérard, C., Flores, K., Stampfli, G. M., 2012. Geodynamic reconstructions of the South America-Antarctica plate system. Journal of Geodynamics, 53, 43-60.
[56]
Vérard, C., Hochard, C., Baumgartner, P. O., Stampfli, G., 2015a. 3D palaeogeographic reconstructions of the Phanerozoic versus sea-level and Sr-ratio variations. Journal of Palaeogeography, 4(1), 64-84.
[57]
Vérard, C., Hochard, C., Baumgartner, P. O., Stampfli, G., 2015b. Geodynamic evolution of the Earth over the Phanerozoic: Plate tectonic activity and palaeoclimate indicators. Journal of Palaeogeography, 4(2), 167-188.
[58]
Vérard, C., Stampfli, G. M., 2013a. Geodynamic reconstructions of the Australides - 1: Palaeozoic. Geosciences, 3, 311-330.
[59]
Vérard, C., Stampfli, G. M., 2013b. Geodynamic reconstructions of the Australides - 2: Mesozoic-Cainozoic. Geosciences, 3, 331-353.
[60]
vonRaumer, J., Stampfli, G., Hochard, C., Gutierrez-Marco, C., 2006. The Early Paleozoic in Iberia - A plate tectonic interpretation. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157, 575-584.
[61]
Webb, P., 2012. Mantle Circulation Models: Constraining mantle dynamics, testing plate motion history and calculating dynamic topography. School of Earth and Ocean Sciences, Cardiff University, Ph.D. Thesis, 256 pages.
[62]
Wilhem, C., 2010. Plate tectonics of the Altaids. University of Lausanne, Lausanne, Ph.D. Thesis, 347 pages.
[63]
Zhang, J., Hibler, W. D., 1997. On an efficient numerical method for modeling sea ice dynamics. Journal of Geophysical Research, 102, 8691-8702.