This study presents a review on palaeogeographic implications and temporal variations of glaucony covering both modern and ancient records. Phanerozoic glaucony preferably forms in a shelf depositional setting. Deep marine conditions and low seawater temperature discourage formation of glaucony. Around 75% of glaucony is recorded from the Cretaceous to the Holocene sediments, which are related to the abundance of the most common substrates, faecal pellets and bioclasts. TFe2O3 (total), Al2O3, K2O and MgO contents of glaucony vary appreciably through geological time. While TFe2O3 content of most Mesozoic and Cenozoic glaucony exceeds 20%, it is always less than 20% in Precambrian varieties. High K2O, Al2O3, MgO and low TFe2O3 distinguishes the Precambrian glaucony from its Phanerozoic counterpart. Precambrian glaucony, preferably formed within a K-feldspar substrate, is always rich in potassium irrespective of its degree of evolution, while high K-content in Phanerozoic evolved glaucony indicates significant stratigraphic condensation. K2O vs. TFe2O3 relationship of glaucony exhibits three different evolutionary trends corresponding to three common modes of origin. Depositional conditions may influence the composition of glaucony as slightly reducing conditions favours Fe enrichment, whereas oxidising conditions causes Fe depletion in glaucony.
The authors are indebted to their host institutes for infrastructure facilities. Santanu Banerjee is thankful to Department of Science and Technology, Government of India for financial support through Grant IR/S4/ESF-16/2009(2). Authors are thankful to DST-IITB National Facility for EPMA, Department of Earth Sciences, Indian Institute of Technology Bombay. The authors are thankful to P.G. Eriksson and Ian D. Somerville for their constructive criticisms and useful suggestions on earlier version of the manuscript.
Corresponding Authors:
* Corresponding author.
E-mail: santanu@iitb.ac.in (S. Banerjee)
Cite this article:
Santanu Banerjee*,Udita Bansal,Anup Thorat. A review on palaeogeographic implications and temporal variation in glaucony composition[J]. Journal of Palaeogeography, 2016, 5(1): 43-71.
Santanu Banerjee*,Udita Bansal,Anup Thorat. A review on palaeogeographic implications and temporal variation in glaucony composition[J]. Journal of Palaeogeography, 2016, 5(1): 43-71.
Afanasjeva, N.I., Zorina, S.O., Gubaidullina, A.M., Naumkina, N.I., Suchkova, G.G., 2013. Crystal chemistry and genesis of glauconite from "Melovatka" section (Cenomanian, of South- Eastern Russian Plate). Litosfera 2, 65-75.
[2]
Ahmad, F., Farouk, S., Abd El-Moghny, M.W., 2014. A regional stratigraphic correlation for the upper Campanian phosphorites and associated rocks in Egypt and Jordan. Proceedings of the Geologists' Association 125, 419-431.
[3]
Aitchison, J.C., 1988. An Eocene storm-generated littoral placer, Northeast Otago, New Zealand. Journal of Geology and Geophysics 31 (3), 381-383.
[4]
Altaner, S., Demosthenous, C., Pozzuoli, A., Rolandi, G., 2013.
[5]
Alteration history of Mount Epomeo Green Tuff and a related polymictic breccia, Ischia Island, Italy: evidence for debris avalanche. Bulletin of Volcanology 75, 718.
[6]
Amaral, G., 1967. Potassium-argon age measurements on some Brazilian glauconites. Earth and Planetary Science Letters 3, 190-192.
[7]
Amireh, B.S., 1997. Sedimentology and palaeogeography of the regressiveetransgressive Kurnub Group (Early Cretaceous) of Jordan. Sedimentary Geology 112, 69-88.
[8]
Amireh, B.S., Jarrar, Gh., Henjes-Kunst, F., Schneider, W., 1998. KAr dating, X-ray diffractometry, optical and scanning electron microscopy of glauconies from the Early Cretaceous Kurnub Group of Jordan. Geological Journal 33, 49-65. 3.0.CO;2-Y target="_blank">
[9]
Amorosi, A., 1994. The glaucony-bearing horizon of the Lower Miocene Bisciaro Formation (UmbriaeMarche Apennines). Giornale di Geologia 56, 7e16.
[10]
Amorosi, A., 1995. Glaucony and sequence stratigraphy: a conceptual framework of distribution in siliciclastic sequences. Journal of Sedimentary Research 65, 419-425.
[11]
Amorosi, A., 1997. Detecting compositional, spatial, and temporal attributes of glaucony: a tool for provenance research. Sedimentary Geology 109, 135-153.
[12]
Amorosi, A., 2011. The problem of glaucony from the Shannon Sandstone (Campanian Wyoming). Terra Nova 23, 100-107.
[13]
Amorosi, A., 2012. The occurrence of glaucony in the stratigraphic record: distribution patterns and sequenceestratigraphic significance. International Association of Sedimentologists Special Publications 45, 37e54.
[14]
Amorosi, A., Centineo, M.C., 1997. Glaucony from the Eocene of the Isle of Wight (southern UK): implications for basin analysis and sequenceestratigraphic interpretation. Journal of the Geological Society of London 154, 887e896.
[15]
Amorosi, A., Centineo, M.C., D'Atri, A., 1997. Lower Miocene glaucony-bearing deposits in the SE Tertiary piedmont basin (northern Italy). Rivista Italiana di Paleontologia e Stratigrafia 103, 101-110.
[16]
Amorosi, A., Guidi, R., Mas, R., Falanga, E., 2012. Glaucony from the Cretaceous of the Sierra de Guadarrama (Central Spain) and its application in a sequenceestratigraphic context. International Journal of Earth Sciences 1, 415-427.
[17]
Amorosi, A., Sammartino, I., Tateo, F., 2007. Evolution patterns of glaucony maturity: a mineralogical and geochemical approach. Deep-Sea Research Part II: Topical Studies in Oceanography 54, 1364-1374.
[18]
Amouric, M., Parron, C., 1985. Structure and growth mechanism of glauconite as seen by high resolution transmission electron microscopy. Clays and Clay Minerals 33, 473-482.
[19]
Anan, T.I., 2014. Facies analysis and sequence stratigraphy of the CenomanianeTuronian mixed siliciclasticecarbonate sediments in West Sinai, Egypt. Sedimentary Geology 307, 34-46.
[20]
Anderson, R.P., Fairchild, I.J., Toscac, N.J., Knoll, A.H., 2013. Microstructures in metasedimentary rocks from the Neoproterozoic Bonahaven Formation, Scotland: microconcretions, impact spherules, or microfossils? Precambrian Research 233, 59-72.
[21]
Arning, E.T., Lu¨ ckge, A., Breuer, C., Gussone, N., Birgel, D., Peckmann, J., 2009. Genesis of phosphorite crusts off Peru. Marine Geology 262, 68-81.
[22]
Asensio, J.N.P., Aguirre, J., Schmiedl, G., Civis, J., 2012. Messinian paleoenvironmental evolution in the Lower Guadalquivir Basin (SW Spain) based on benthic foraminifera. Palaeogeography Palaeoclimatology Palaeoecology 326-328, 135-151.
[23]
Ashuri, M., Sharafi, M., Mahboubi, A., Mousavi Harami, R., Nadjafi, M., 2010. Study of genesis and mechanism of glauconite formation in the Aitamir Formation at southeast of Dargaz. Iranian Journal of Crystallography and Mineralogy 18, 247e254.
[24]
Bailey, S.W., 1980. Summary of recommendations of AIPEA nomenclature committee on clay minerals. American Mineralogists 65, 1-7.
[25]
Baioumy, H.M., 2007. Ironephosphorus relationship in the iron and phosphorite ores of Egypt. Chemie der Erde 67, 229-239.
[26]
Baioumy, H.M., Boulis, S.N., 2012a. Glauconites from the Bahariya Oasis: an evidence for Cenomanian marine transgression in Egypt. Journal of African Earth Sciences 70, 1-7.
[27]
Baioumy, H.M., Boulis, S.N., 2012b. Non-pelletal glauconites from the Campanian Quessir Formation, Egypt: implication for glauconitization. Sedimentary Geology 249-250, 1-9.
[28]
Bajda, T., K?apyta, Z., 2013. Adsorption of chromate from aqueous solutions by HDTMA-modified clinoptilolite, glauconite and montmorillonite. Applied Clay Science 86, 169-173.
[29]
Baker, J.C., Uwins, P.J.R., Joe Hamilton, P., 1997. Freshwater sensitivity of glauconitic hydrocarbon reservoirs. Journal of Petroleum Science and Engineering 18, 83-91.
[30]
Baldermann, A., Grathoff, G.H., Nickel, C., 2012. Micromilieucontrolled glauconitization in fecal pellets at Oker (Central Germany). Clay Minerals 47, 513-538.
[31]
Baldermann, A., Warr, L.N., Grathoff, G.H., Dietzel, M., 2013. The rate and mechanism of deep-sea glauconite formation at the Ivory CoateGhana marginal ridge. Clays and Clay Minerals 61, 258-276.
[32]
Ball, J.R., 1941. Silurian lithology in western Tennessee and adjacent States. Geological Society of America Bulletin 52, 1117e1128.
[33]
Bandopadhyay, P.C., 2007. Interpretation of authigenic vs. allogenic green peloids of ferric clay in the Proterozoic Penganga Group, southern India. Clay Minerals 42, 471-485.
[34]
Bandy, O.L., 1972. Neogene planktonic foraminiferal zones, California, and some geologic implications. Palaeogeography Palaeoclimatology Palaeoecology 12, 131-150.
[35]
Banerjee, S., Bansal, U., Pande, K., Meena, S.S., 2016. Compositional variability of glauconites within the Upper Cretaceous Karai Shale Formation, Cauvery Basin, India: implications for evaluation of stratigraphic condensation. Sedimentary Geology 331, 12-29.
[36]
Banerjee, S., Chattoraj, S.L., Saraswati, P.K., Dasgupta, S., Sarkar, U., 2012b. Substrate control on formation and maturation of glauconites in the Middle Eocene Harudi Formation, western Kutch, India. Marine and Petroleum Geology 30, 144-160.
[37]
Banerjee, S., Chattoraj, S.L., Saraswati, P.K., Dasgupta, S., Sarkar, U., Bumby, A., 2012a. The origin and maturation of lagoonal glauconites: a case study from the Oligocene Maniyara Fort Formation, western Kutch, India. Geological Journal 47, 357e371.
[38]
Banerjee, S., Jeevankumar, S., Eriksson, P.G., 2008. Mg-rich ferric illite in marine transgressive and highstand systems tracts: examples from the Paleoproterozoic Semri Group, central India. Precambrian Research 162, 212-226.
[39]
Banerjee, S., Mondal, S., Chakraborty, P.P., Meena, S.S., 2015. Distinctive compositional characteristics and evolutionary trend of Precambrian glaucony: example from Bhalukona Formation, Chhattisgarh basin, India. Precambrian Research 271, 33-48.
[40]
Banning, A., Ru¨ de, T.R., D€olling, B., 2013. Crossing redox boundaries d aquifer redox history and effects on iron mineralogy and arsenic availability. Journal of Hazardous Materials 262, 905-914.
[41]
Bansal, U., Banerjee, S., 2014. Influence of depositional environment on geochemical characteristics of glauconites: study from Karai Shale (Cauvery Basin) and Lameta Formation (Narmada Basin). In: Abstract Volume, 31st Convention of Indian Association of Sedimentologists, November 12-14. University of Pune, pp. 138-139.
[42]
Bansal, U., Banerjee, S., Pande, K., 2014. Geochemical characteristics of glauconite within transgressive deposits of Early to Late Cretaceous Karai Shale, Cauvery Basin, India. In: Abstract Volume 19th International Sedimentological Congress, August 18-22, Geneva, p. 45.
[43]
Baqri, S.R.H., Husain, V., Bilqees, R., Jan, N., Ahmad, N., 1994. Petrographic and chemical characteristics of glauconitic and phosphatic sediments of the Kussak Formation, Khewra Gorge, Salt Range, Pakistan. Pakistan Journal of Scientific and Industrial Research 37, 291-296.
[44]
Barringer, J.L., Mumford, A., Young, L.Y., Reilly, P.A., Bonin, J.L., Rosman, R., 2010. Pathways for arsenic from sediments to groundwater to streams: biogeochemical processes in the Inner Coastal Plain, New Jersey, USA. Water Research 44, 5532-5544.
[45]
Barusseau, J.P., Giresse, P., Faure, H., Lezine, A.M., Masse, J.P., 1988. Marine sedimentary environments on some parts of the tropical and equatorial Atlantic margins of Africa during the Late Quaternary. Continental Shelf Research 8, 1-21.
[46]
Basa, T., Greensmith, J.T., Finzi, C.V., 1997. The sub-surface Holocene Middle sands of Dungeness. Proceedings of the Geologists' Association 108, 105-112.
[47]
Basu, A., Bickford, M.E., 2014. Contributions of zircon UePb geochronology to understanding the volcanic and sedimentary history of some Purana basins, India. Journal of Asian Earth Sciences 91, 252-262.
[48]
Bau, M., Alexander, B., Chesley, J.T., Dulski, P., Brantley, S.L., 2004. Mineral dissolution in the Cape Cod aquifer, Massachusetts, USA: I. Reaction stoichiometry and impact of accessory feldspar and glauconite on strontium isotopes, solute concentrations, and REY distribution. Geochimica et Cosmochimica Acta 68, 1199-1216.
[49]
Bell, D.L., Goodell, G., 1967. A comparative study of glauconite and the associated clay fraction in modern marine sediments. Sedimentology 9, 169-202.
[50]
Bentor, K., Kastner, M., 1965. Notes on the mineralogy and origin of glauconite. Journal of Sedimentary Petrology 35, 155-166.
[51]
Berg-Madsen, V., 1983. High-alumina glaucony from the Middle Cambrian of Orland and Bornholm, southern Baltoscandia. Journal of Sedimentary Petrology 53, 875-893.
[52]
Berra, F., Zanchi, A., Mattei, M., Nawab, A., 2007. Late Cretaceous transgression on a Cimmerian high (Neka Valley, Eastern Alborz, Iran): a geodynamic event recorded by glauconitic sands. Sedimentary Geology 199, 189-204.
[53]
Bhattacharyya, A., Chanda, S.K., Friedman, G.M., 1986. Dolomitized glauconite granules: a new kind of peloid from Proterozoic strata of Central India. Journal of Sedimentary Petrology 56, 480-485.
[54]
Birch, G.F., 1979. The nature and origin of mixed apatite/ glauconite pellets from the continental shelf off South Africa. Marine Geology 29, 313-334.
[55]
Bitschene, P.R., Holmes, M.A., Breza, J.R., 1992. Composition and origin of Cr-rich glauconitic sediments from the southern Kerguelen Plateus (Site 748). Proceedings of the Ocean Drilling Program, Scientific Results 120, 113-134.
[56]
Bjerkli, K., ?stmo-Saeter, J.S., 1973. Formation of glauconite in foraminiferal shells on the continental shelf off Norway. Marine Geology 14, 169-178.
[57]
B?hm, F., 1986. The grimming: upper Triassic to Middle Jurassic history of a Carbonate platform (Northern Alps, Austria). Facies 15, 195-231.
[58]
Bornhold, B.D., Giresse, P., 1985. Glauconitic sediments on the continental shelf off Vancouver Island, British Columbia, Canada. Journal of Sedimentary Petrology 55, 653-664.
[59]
Boukhalfa, K., Amorosi, A., Soussi, M., Ismail-Lattr^ache, K.B., 2015. Glauconitic-rich strata from Oligo-Miocene shallowmarine siliciclastic deposits of the northern margin of Africa (Tunisia): geochemical approach for basin analysis. Arabian Journal of Geosciences 8, 1731-1742.
[60]
Boyer, P.S., Guinness, E.A., Blosse, M.A.L., Stolzman, R.A., 1977. Greensand fecal pellets from New Jersey. Journal of Sedimentary Petrology 47, 267e280.
[61]
Bozkaya, € O., Yalc? in, H., 2013. Geochemical monitoring of clays for diagenetic evolution of the PaleozoiceLower Mesozoic sequence in the northern Arabian plate: Hazro and Amanos regions, Southeastern Turkey. Journal of African Earth Sciences 86, 10-24.
[62]
Brandano, M., Civitelli, G., 2007. Non-seagrass meadow sedimentary facies of the Pontinian Islands, Tyrrhenian Sea: a modern example of mixed carbonateesiliciclastic sedimentation. Sedimentary Geology 201, 286-301.
[63]
Brasier, M.D., 1980. The Lower Cambrian transgression and glauconite-phosphatic facies in Western Europe. Journal of the Geological Society London 137, 695-703.
[64]
Breheret, J.G., 1991. Glauconitization episodes in marginal settings as echoes of Mid-Cretaceous anoxic events recorded in the Vocontian Basin. Geological Society, London, Special Publications 58, 415-425.
[65]
Buatier, M., Honnorez, J., Ehret, G., 1989. Fe-smectiteeglauconite transition in hydrothermal green clays from the Galapagos spreading center. Clays and Clay Minerals 37, 532-541.
[66]
Burnett, W.C., 1980. Apatite-glauconite associations off Peru and Chile: Palaeo-oceanographic implications. Journal of Geological Society London 137, 757e764.
[67]
Burst, J.F., 1958a. ‘Glauconite’ pellets: their mineral nature and applications to stratigraphic interpretations. American Association of Petroleum Geologists Bulletin 42, 310-327.
[68]
Burst, J.F., 1958b. Mineral heterogeneity in glauconite pellets. American Mineralogists 43, 481-497.
[69]
Cairncross, B., Hart, R.J., Willis, J.P., 1990. Geochemistry and sedimentology of coal seams from the Permian Witbank Coalfield, South Africa, a means of identification. International Journal of Coal Geology 16, 309-325.
[70]
Cao, J., Zhang, Y.S., Song, T.R., Wang, J.T., 2010. Mineralogical evidences and significance of transgression event in the Cretaceous basins of eastern Heilongjiang Province, China. Geological Bulletin of China 29, 1024-1030 (in Chinese with English abstract).
[71]
Caracciolo, L., Le Pera, E., Muto, F., Perri, F., 2011. Sandstone petrology and mudstone geochemistry of the PeruceKorycany Formation (Bohemian Cretaceous Basin, Czech Republic). International Geology Review 53, 1003-1031.
[72]
Carson, G.A., Crowley, S.F., 1993. The glauconite-phosphate association in hardgrounds: examples from the Cenomanian of Devon, southwest England. Cretaceous Research 14, 69-89.
[73]
Carter, L., 1975. Sedimentation on the continental terrace around New Zealand: a review. Marine Geology 19, 209-237.
[74]
Cas, R.A.S., Landis, C.A., Fordyce, R.E., 1989. A monogenetic, Surtla-type, Surtseyan volcano from the EoceneeOligocene WaiarekaeDeborah volcanics, Otago, New Zealand: a model. Bulletin of Volcanology 51, 281-298.
[75]
Cecil, M.R., Ducea, M.N., 2011. KeCa ages of authigenic sediments: examples from Paleozoic glauconite and applications to low-temperature thermochronometry. International Journal of Earth Sciences 100 (8), 1783-1790.
[76]
Chafetz, H.S., 1978. A trough cross-stratified glaucarenite: a Cambrian tidal inlet accumulation. Sedimentology 25, 545-559.
[77]
Chafetz, H.S., 2007. Paragenesis of the Morgan Creek Limestone, Late Cambrian, Central Texas: constraints on the formation of glauconite. Deep-Sea Research II 54, 1350-1363.
[78]
Chafetz, H.S., Reid, A., 2000. Syndepositional shallow water precipitation of glauconitic minerals. Sedimentary Geology 136, 29-42.
[79]
Chang, S.S., Shau, Y.H., Wang, M.K., Ku, C.T., Chiang, P.N., 2008. Mineralogy and occurrence of glauconite in central Taiwan. Applied Clay Science 42, 74-80.
[80]
Charpentier, D., Buatier, M.D., Jacquot, E., Gaudin, A., Wheat, C.G., 2011. Conditions and mechanism for the formation of ironrich montmorillonite in deep-sea sediments (Costa Rica margin); coupling high-resolution mineralogical characterization and geochemical modelling. Geochimica et Cosmochimica Acta 75, 1397e1410.
[81]
Chattoraj, S.L., Banerjee, S., Saraswati, P.K., 2009. Glauconites from the Late PalaeoceneeEarly Eocene Naredi Formation, western Kutch and their genetic implications. Journal of Geological Society of India 73, 567e574.
[82]
Chen, H.Z., Chen, S.P., 1997. Mineralogical and distributive characteristics of glauconite in sediment in Taiwan Strait. Journal of Oceanography in Taiwan Strait 16 (3), 355-362.
[83]
Chen, L.R., Duan, W.M., 1987. Formation of glauconite as infillings of organism. Acta Sedimentologica Sinica 5 (3), 171-179 (in Chinese with English abstract).
[84]
Chen, L.R., Yu, X., Shi, Y.M., 1980. Glauconite in the sediments of East China Sea. Chinese Journal of Geology 15 (3), 205-217 (in Chinese with English abstract).
[85]
Chen, R.J., 1980. Characteristics of glauconites from some regions and their significance in analyzing the facies environment. Chinese Journal of Geology 15 (1), 65-75 (in Chinese with English abstract).
[86]
Chen, R.J., 1983. Study of glauconites from Beibu bay of the South China Sea. Chinese Journal of Geology 18 (3), 267e272 (in Chinese with English abstract).
[87]
Chen, R.J., Fan, D.L., Wang, D.G., Wang, Z.C., 1988. Mineralogical study of glauconite in a CambrianeOrdovician profile at Xiaoyangqiao area, Dayangcha, Jilin Province. Chinese Journal of Geology 23 (1), 68-80 (in Chinese with English abstract).
[88]
Cimb_aln?′kov_a, A., 1971. Chemical variability and structural heterogeneity of glauconites. American Mineralogist 56, 1385-1398.
[89]
Clark, M., Robertson, A., 2005. Uppermost CretaceouseLower Tertiary Ulukis? la Basin, SoutheCentral Turkey: sedimentary evolution of part of a unified basin complex within an evolving Neotethyan suture zone. Sedimentary Geology 173, 15-51.
[90]
Compton, J.S., Wiltshire, J.G., 2009. Terrigenous sediment export from the western margin of South Africa on glacial/ interglacial cycles. Marine Geology 266, 212-222.
[91]
Conrad, J., Hein, J., Chaudhuri, A., Deb, S.P., Mukhopadhyay, J., Deb, G.K., Beukes, N.J., 2011. Constraints on the development of Proterozoic basins in Central India from 40Ar/39Ar analysis of authigenic glauconitic minerals. Geological Society of America Bulletin 123, 158-167.
[92]
Cook, P.J., Marshall, J.F., 1981. Geochemistry of iron and phosphorus-rich nodules from the East Australian continental shelf. Marine Geology 41, 205-221.
[93]
_Cosovi_c, V., Drobne, K., 1995. Palaeoecological significance of morphology of orthophragminids from the Istrian Peninsula (Croatia and Slovenia). Geobios 18, 93-99.
[94]
_Cosovi_c, V., Drobne, K., Moro, A., 2004. Palaeoenvironmental model for Eocene foraminiferal limestones of the Adriatic carbonate platform (Istrian Peninsula). Facies 50, 61-75.
[95]
Courbe, C., Velde, B., Meunier, A., 1981. Weathering of glauconites: reversal of the glauconitization process in a soil profile in western France. Clay Minerals 16, 231-243.
[96]
Cuadros, J., Dekov, V.M., Arroyo, X., Nieto, F., 2011. Smectite formation in submarine hydrothermal sediments: samples from the HMS Challenger Expedition (1872-1776). Clays and Clay Minerals 59, 147e164.
[97]
Czury?owicz, K., Lejzerowicz, A., Kowalczyk, S., Wysocka, A., 2014. The origin and depositional architecture of Paleogene quartz-glauconite sands in the Lubart_ow area, eastern Poland. Geological Quarterly 58, 125-144.
[98]
Das, P.K., Duarah, B.P., 1993. Glauconites in some carbonate rocks of Garo Hills. Bulletin of Pure and Applied Sciences, Section F: Geological Sciences 12F, 25-30.
[99]
Dasgupta, S., Chaudhuri, A.K., Fukuoka, M., 1990. Compositional characteristics of glauconitic alterations of K-feldspar from India and their implications. Journal of Sedimentary Petrology 60, 277e281.
[100] Day, E.S., James, N.P., Narbonne, G.M., Dalrymple, R.W., 2004. A sedimentary prelude to Marinoan glaciation, Cryogenian (Middle Neoproterozoic) Keele Formation, Mackenzie Mountains, northwestern Canada. Precambrian Research 133, 223-247.
[101] De Ros, L.F., Morad, S., A1-Aasm, I.S., 1997. Diagenesis of siliciclastic and volcaniclastic sediments in the Cretaceous and Miocene sequences of the NW African margin (DSDP Leg 47A, Site 397). Sedimentary Geology 112, 137e156.
[102] Deb, S.P., Fukuoka, M., 1998. Fe-illites in a Proterozoic deep marine slope deposit in the Penganga Group of the Pranhita Godavari Valley: their origin and environmental significance. The Journal of Geology 106, 741-750.
[103] Debrabant, P., Paquet, J., 1975. L'association glauconitesphosphates- carbonates (Albien de la Sierra de Espuna, Espagne meridionale). Chemical Geology 15, 61-75.
[104] Deconinck, J.F., Strasser, A., 1987. Sedimentology, clay mineralogy and depositional environment of Purbeckian green marls (Swiss and French Jura). Eclogae Geologicae Helvetiae 80, 753-772.
[105] Delamette, M., 1989. Trace fossil assemblages from the Albian phosphate-rich sandstones of the Helvetic Shelf (Western Alps). Cretaceous Research 10, 207e219.
[106] Demirpolat, S., 1991. Surface and near-surface sediments from the continental shelf off the Russian River, northern California. Marine Geology 99, 163-173.
[107] Dias, J.M.A., Nittrouer, C.A., 1984. Continental shelf sediments of northern Portugal. Continental Shelf Research 3, 147e165.
[108] D?′ez-Canseco, D., Arz, J.A., Benito, M., D?′az-Molina, M., Arenillas, I., 2014. Tidal influence in redbeds: a palaeoenvironmental and biochronostratigraphic reconstruction of the Lower Tremp Formation (SoutheCentral Pyrenees, Spain) around the Cretaceous/Paleogene boundary. Sedimentary Geology 312, 31-49.
[109] Dill, C.E., 1969. The formation and distribution of glauconite on the North Carolina continental shelf and slope. Abstract in: Geological Society of America Special Paper 121, 431-432.
[110] Dill, H.G., Scheel, M., K€othe, A., Botz, R., Henjes-Kunst, F., 1996. An integrated environment analysis lithofacies, chemofacies, biofacies of the Oligocene calcareousesiliciclastic shelf deposits in northern Germany. Palaeogeography Palaeoclimatology Palaeoecology 31, 145-174.
[111] Dix, G.R., Parras, A., 2014. Integrated diagenetic and sequence stratigraphy of a Late OligoceneeEarly Miocene, mixedsediment platform (Austral Basin, southern Patagonia): resolving base-level and paleoceanographic changes, and paleoaquifer characteristics. Sedimentary Geology 307, 17e33.
[112] Drits, V.A., Ivanovskaya, T.A., Sakharov, B.A., Zvyagina, B.B., Derkowski, A., Go_rkova, N.V., Pokrovskaya, E.V., Savichev, A.T., Zaitseva, T.S., 2010. Nature of the structural and crystal-chemical heterogeneity of the Mg-rich glauconite (Riphean, Anabar Uplift). Lithology and Mineral Resources 45, 555-576.
[113] Duarte, M.A., Mart?′nez, M.L., 2002. KeAr dating and geological significance of clastic sediments of the Paleocene Sepultura Formation, Baja California, M_exico. Journal of South American Earth Sciences 15, 725-730.
[114] Duplay, J., Buatier, M., 1990. The problem of differentiation of glauconite and celadonite. Chemical Geology 84, 264-266.
[115] Dustira, A.M., Wignall, P.B., Joachimski, M., Blomeier, D., Fr€oder, C.H., Bond, D.P.G., 2013. Gradual onset of anoxia across the PermianeTriassic Boundary in Svalbard, Norway. Palaeogeography Palaeoclimatology Palaeoecology 374, 303-313.
[116] Dypvik, H., Nagy, J., Krinsley, D.H., 1992. Origin of the Myklegardfjellet Bed, a basal Cretaceous marker on Spitsbergen. Polar Research 11 (1), 21-31.
[117] Eder, V.G., Mart?′n-Algarra, A., S_anchez-Navas, A., Zanin, Y.N., Zamirailova, A.G., Lebedev, Y.N., 2007. Depositional controls on glaucony texture and composition, Upper Jurassic, West Siberian Basin. Sedimentology 54, 1365-1387.
[118] Egenhoff, S., 2004. The Ordovician succession on Baltica d carbonate ramp or epicontinental sea?. In: The 26th Nordic Winter Meeting, Uppsala, Abstract Volume: GFF, vol. 126, pp. 160-161.
[119] Ehlmann, A., Hulings, N., Glover, E., 1963. Stages of glauconite formation in modern foraminiferal sediments. Journal of Sedimentary Petrology 33, 87e96.
[120] Eickmann, B., Bach, W., Kiel, S., Reitner, J., Peckmann, J., 2009. Evidence for cryptoendolithic life in Devonian pillow basalts of Variscan orogens, Germany. Palaeogeography Palaeoclimatology Palaeoecology 283, 120-125.
[121] El Albani, A., Fu¨ rsich, F.T., Colin, J.P., Meunier, A., Hochuli, P., Closas, C.M., Mazin, J.-M., Billon-Bruyat, J.-P., 2004. Palaeoenvironmental reconstruction of the basal Cretaceous vertebrate bearing beds in the northern part of the Aquitaine Basin (SW France): sedimentological and geochemical evidence. Facies 50, 195-215.
[122] El Albani, A., Meunier, A., Fu¨ rsich, F., 2005. Unusual occurrence of glauconite in a shallow lagoonal environment (Lower Cretaceous, northern Aquitaine Basin, SW France). Terra Nova 17, 537e544.
[123] El Kadiri, K., Serrano, F., Hlila, R., Liemlahi, H., Chalouan, A., Lopez-Garrido, A.C., Guerra-Merch, A., Sanz-de-Galdeano, C., Kerzazi, K., El Mrihi, A., 2005. Lithostratigraphy and sedimentology of the latest Cretaceouseearly Burdigalian Tamezzakht succession (Northern Rif, Morocco): consequences for its sequence stratigraphic interpretation. Facies 50, 477e503.
[124] El-Azabi, M.H., El-Araby, A., 2007. Depositional framework and sequence stratigraphic aspects of the ConiacianeSantonian mixed siliciclastic/carbonate Matulla sediments in Nezzazat and Ekma blocks, Gulf of Suez, Egypt. Journal of African Earth Sciences 47, 179-202.
[125] El-Ghali, M.A.K., Morada, S., Mansurbega, H., Cajae, M.A., Sirat, M., Ogle, N., 2009. Diagenetic alterations related to marine transgression and regression fluvial and shallow marine sandstones of the Triassic Buntsandstein and Keuper sequence, the Paris Basin, France. Marine and Petroleum Geology 26, 289-309.
[126] Engalychev, S.Y., Panova, E.G., 2011. Geochemistry and genesis of sandstones of eastern part of Main Devonian field in the northwestern part of the Russian Plate. Lito-sfera 5, 16-29.
[127] Eoff, J., 2014. Sequence stratigraphy of the Upper Cambrian (Furongian; Jiangshanian and Sunwaptan) Tunnel City Group, Upper Mississippi Valley: transgressing assumptions of cratonic flooding. Sedimentary Geology 302, 87e101.
[128] Erba, E., 1994. Nannofossils and superplumes: the early Aptian "nannoconid crisis". Paleoceanography 9, 483-501.
[129] Erbacher, J., Thurow, J., Littke, R., 1996. Evolution patterns of radiolaria and organic matter variations: a new approach to identify sea level changes in Mid-Cretaceous pelagic environments. Geology 24, 499-502. 2.3.CO;2 target="_blank">
[130] Eriksson, M.E., Lindskog, A., Calner, M., Mellgren, J.I.S., Bergstr?m, S.M., Terfelt, F., Schmitz, B., 2012. Biotic dynamics and carbonate microfacies of the conspicuous Darriwilian (Middle Ordovician) ‘T€aljsten’ interval, SoutheCentral Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology 367e368, 89-103.
[131] Ershova, V.B., 2008. Glauconite from Latorpian Regional Stage (Lower Ordovician) from Leningrad district. Vestnik Sankt- Peterburgskogo Universiteta, Seriya Geologiya i Geografiya 1, 15-19.
[132] Fanning, D.S., Rabenhorst, M.C., Balduff, D.M., Wagner, D.P., Orr, R.S., Zurheide, P.K., 2010. An acid sulfate perspective on landscape/seascape soil mineralogy in the U.S. Mid-Atlantic region. Geoderma 154, 457e464.
[133] Farouk, S., 2015. Upper Cretaceous sequence stratigraphy of the Galala Plateaux, western side of the Gulf of Suez, Egypt. Marine and Petroleum Geology 60, 136-158.
[134] Ferrow, E., Vajda, V., Koch, C.B., Peucker-Ehrenbrink, B., Willumsen, P.S., 2011. Multiproxy analysis of a new terrestrial and a marine CretaceousePaleogene (KePg) boundary site from New Zealand. Geochimica et Cosmochimica Acta 75, 657e672.
[135] Fiet, N., Quidelleur, X., Pariz, O., Bulot, L.G., Gillot, P.Y., 2006. Lower Cretaceous stage durations combining radiometric data and orbital chronology: towards a more stable relative time scale? Earth and Planetary Science Letters 246, 407e417.
[136] Fischer, H., 1987. Excess KeAr ages of glauconite from the Upper Marine Molasse and evidence for glauconitization of mica. Geologische Rundschau 76 (3), 885-902.
[137] Fitch, F.J., Hooker, P.J., Miller, J.A., Brereton, N.R., 1978. Glauconite dating of PalaeoceneeEocene rocks from East Kent and the time-scale of Palaeogene volcanism in the North Atlantic region. Journal of the Geological Society 135, 499-512.
[138] Foland, K.A., Linder, J.S., Laskowski, T.E., Grant, N.K., 1984. 40Ar/39Ar dating of glauconites: measured 39Ar recoil loss from well-crystallized specimens. Chemical Geology 2, 241-264.
[139] F€ollmi, K.B., Breymann, M.V., 1992. Phosphates and glauconites of Sites 798 and 799. Proceedings of the Ocean Drilling Program, Scientific Results 127e128, 63-74.
[140] Franzosi, C., Castro, L.N., Celeda, A.M., 2014. Technical evaluation of glauconites as alternative potassium fertilizer from the Salamanca Formation, Patagonia, Southwest Argentina. Natural Resources Research 23, 311-320.
[141] Friis, H., Poulsen, M.L.K., Svendsen, J.B., Hamberg, L., 2007. Discrimination of density flow deposits using elemental geochemistry d implications for subtle provenance differentiation in a narrow submarine canyon, Paleogene, Danish North Sea. Marine and Petroleum Geology 24, 221-235.
[142] Furquim, S.A.C., Barbi_ero, L., Graham, R.C., Neto, J.P.Q., Ferreira, R.P.D., Furian, S., 2010. Neoformation of micas in soils surrounding an alkaline-saline lake of Pantanal wetland, Brazil. Geoderma 158, 331-342.
[143] Fu¨ rsich, F.T., 1984. Palaeoecology of Boreal invertebrate faunas from the Upper Jurassic of central East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology 48, 309-364.
[144] Garc?′a-Garc?′a, F., De Gea, G.A., Ruiz-Ortiz, P.A., 2011. Detached forced-regressive shoreface wedges at the southern Iberian continental palaeomargin (Early Cretaceous, Betic Cordillera, S Spain). Sedimentary Geology 236, 197e210.
[145] Garrison, R.E., Kennedy, W.J., Palmer, T.J., 1987. Early lithification and hardgrounds in Upper Albian and Cenomanian Calcarenites, Southwest England. Cretaceous Research 8, 103-140.
[146] Garzanti, E., Angiolini, L., Brunton, H., Sciunnach, D., Balini, M., 1998. The Bashkirian "Fenestella Shales" and the Moscovian "Chaetetid Shales" of the Tethys Himalaya (South Tibet, Nepal and India). Journal of Asian Earth Sciences 16, 119-141.
[147] Garzanti, E., Haas, R., Jadoul, F., 1989. Ironstones in the Mesozoic passive margin sequence of the Tethys Himalaya (Zanskar, Northern India): sedimentology and metamorphism. In: Young, T.P., Taylor, W.E.G. (Eds.), Phanerozoic Ironstones, Geological Society Special Publication, 46, pp. 229-244.
[148] Gaudin, A., Buatier, M.D., Beaufort, D., Petit, S., Grauby, O., Decarreau, A., 2005. Characterization and origin of Fe3tmontmorillonite in deep-water calcareous sediments (Pacific Ocean, Costa Rica Margin). Clays and Clay Minerals 53, 452-465.
[149] Ge, R.Q., 2004. Occurrence and geological significance of glauconite in Cenozoic Group of Jiyang depression. Acta Sedimentologica Sinica 22, 276-280 (in Chinese with English abstract).
[150] Gebhart, G., 1982. Glauconitic condensation through high-energy events in the Albian near Clars (Escragnolles, Vat, SE France). In: Einsele, G., Seilacher, A. (Eds.), Cyclic and Event Stratification. Springer Verlag, Berlin, pp. 286-298.
[151] Geptner, A.R., Ivanovskaya, T.A., Pokrovskaya, E.V., Kuralenko, N.P., 2008. Glauconite from Paleogene volcanoterrigenous rocks in western Kamchatka. Lithology and Mineral Resources 43 (3), 228-249.
[152] Ghabeishavi, A., Moghaddam, H.V., Taheri, A., 2009. Facies distribution and sequence stratigraphy of the ConiacianeSantonian succession of the Bangestan Palaeohigh in the Bangestan Anticline, SW Iran. Facies 55, 243-257.
[153] Gier, S., Worden, R.H., Johns, W.D., Kurzweil, H., 2008. Diagenesis and reservoir quality of Miocene sandstones in the Vienna Basin, Austria. Marine and Petroleum Geology 25, 681-695.
[154] Giresse, P., Bassetti, M.A., Chanier, F., Gaullier, V., Maillard, A., Thinon, I., Lofi, J., Lymer, G., Reynaud, J.-Y., Negri, A., Saavedra-Pellitero, M., 2015. Depositional environment and age of some key Late Pliocene to Early Quaternary deposits on the underfilled Cedrino paleovalley (Orosei): insight into the Neogene geodynamic evolution of Sardinia. Quaternary International 357, 220-236.
[155] Giresse, P., Wiewi_ora, A., 2001. Stratigraphic condensed deposition and diagenetic evolution of green clay minerals in deep water sediments on the Ivory CoasteGhana Ridge. Marine Geology 179, 51-70.
[156] Giresse, P., Wiewi_ora, A., Grabska, D., 2004. Glauconitization processes in the northwestern Mediterranean (Gulf of Lions). Clay Minerals 39, 57e73.
[157] Giresse, P., Wiewi_ora, A., Lacka, B., 1988. Mineral phases and processes within green peloids from two recent deposits near the Congo River Mouth. Clay Minerals 23, 447e458.
[158] Glenn, C.R., Arthur, M.A., 1990. Anatomy and origin of a Cretaceous phosphorite-greensand giant, Egypt. Sedimentology 37, 123-154.
[159] Godek, G., Beauchamp, B., 2011. Iron from land: the origin of Middle Permian (Trold Fiord) glauconite in the Sverdrup Basin, Arctic Canada. Recovery d 2011 CSPG CSEG CWLS Convention. Godet, A., F€ollmi, K.B., Bodin, S., de Kaenel, E., Matera, V., Adatte, T., 2010. Stratigraphic sedimentological and palaeoenvironmental constraints on the rise of the Urgonian platform in the western Swiss Jura. Sedimentology 57, 1088-1125.
[160] Godet, A., F€ollmi, K.B., Stille, P., Bodin, S., Matera, V., Adatte, T., 2011. Reconciling strontium-isotope and KeAr ages with biostratigraphy: the case of the Urgonian platform, Early Cretaceous of the Jura Mountains, Western Switzerland. Swiss Journal of Geosciences 104, 147e160.
[161] Gomez, F.J., Astini, R.A., 2015. Sedimentology and sequence stratigraphy from a mixed (carbonateesiliciclastic) rift to passive margin transition: the Early to Middle Cambrian of the Argentine Precordillera. Sedimentary Geology 316, 39-61.
[162] Grant, N.K., Laskowski, T.E., Foland, K.A., 1984. RbeSr and KeAr ages of Paleozoic glauconites from Ohio-Indiana and Missouri, USA. Chemical Geology 65, 303.
[163] Griffioen, J., Klein, J., Van Gaans, P.F., 2012. Reaction capacity characterization of shallow sedimentary deposits in geologically different regions of the Netherlands. Journal of Contaminant Hydrology 127, 30-46.
[164] Guimaraes, E.M., Velde, B., Hillier, S., 2000. Diagenetic/ anchimetamorphic changes on the Proterozoic glauconite and glaucony from the Paranoa grour mid-western Brazil. Brazilian Journal of Geology 30 (3), 363-366.
[165] Gulbrandsen, R.A., Goldich, S.S., Thomas, H.H., 1963. Glauconite from the Precambrian Belt Series, Montana. Science 140, 390-391.
[166] Guo, X.P., 1991. An approach to the depositional environment of the cretaceous Kizilsu Group: the lowermost marine horizon of the Cretaceous in the western Tarim Basin. Acta Geological Sinica 65 (2), 188-198 (in Chinese with English abstract).
[167] Gygi, R.A., Marchand, D., 1982. Les faunes de Cardioceratinae (Ammonoidea) du Callovien terminal et de I'Oxfordien inf_erieur et moyen (Jurassique) de la Suisse septentrionale: Stratigraphie, pal_eo_ecologie, taxonomie pr_eliminaire. Geobios 15 (4), 517e571.
[168] Hallam, A., Maynard, J.B., 1987. The iron ores and associated sediments of the Chichali formation (Oxfordian to Valanginian) of the Trans-Indus Salt Range, Pakistan. Journal of the Geological Society, London 144, 107e114.
[169] Harding, S.C., 2014. Ichnology, Mineralogy, and Paleoenvironmental Implications of the Verdine and Glaucony Facies in Sedimentary Rocks (Ph.D., Dissertation). University of Utah, p. 237.
[170] Harris, L.C., Whiting, B.M., 2000. Sequence-stratigraphic significance of Miocene to Pliocene glauconite-rich layers, on- and offshore of the US Mid-Atlantic Margin. Sedimentary Geology 134, 129-147.
[171] Harris, W.B., 1976. RbeSr glauconite isochron, Maestrichtian unit of Peedee Formation (Upper Cretaceous), North Carolina. Geology 4, 761-762. 2.0.CO;2 target="_blank">
[172] Harris, W.B., Bottino, M.L., 1974. RbeSr study of Cretaceous Lobate Glauconite Pellets, North Carolina. Geological Society of America Bulletin 85, 1475-1478. 2.0.CO;2 target="_blank">
[173] Hart, M.B., 1999. The evolution and biodiversity of Cretaceous planktonic foraminifera. Geobios 32, 247e255.
[174] Henderson, R.A., 1998. Eustatic and palaeoenvironmental assessment of the Mid-Cretaceous Bathurst Island Group of the Money Shoals Platform, northern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 138, 115-138.
[175] Hesse, R., Von Rad, U., Fabricius, F.H., 1971. Holocene sedimentation in the Strait of Otranto between the Adriatic and Ionian Seas (Mediterranean). Marine Geology 10, 293-355.
[176] Hesselbo, S.P., Huggett, J.M., 2001. Glaucony in ocean-margin sequence stratigraphy (OligoceneePliocene, Offshore New Jersey, USA; ODP Leg 174A). Journal of Sedimentary Research 71, 598-606.
[177] Howe, J.A., Pudsey, C.J., Cunningham, A.P., 1997. PlioceneeHolocene contourite deposition under the Antarctic Circumpolar Current, western Falkland Trough, South Atlantic Ocean. Marine Geology 138, 27e50.
[178] Hower, J., 1961. Some factors concerning the nature and the origin of glauconite. American Mineralogist 46, 313-334.
[180] Huggett, J.M., Gale, A.S., 1997. Petrology and palaeoenvironmental significance of glaucony in the Eocene succession at Whitecliff Bay, Hampshire Basin, U.K. Journal of the Geological Society of London 154, 897e912.
[181] Huggett, J.M., Gale, A.S., McCarty, D., 2010. Petrology and palaeoenvironmental significance of authigenic iron-rich clays, carbonates and apatite in the Claiborne Group, Middle Eocene, NE Texas. Sedimentary Geology 228, 119-139.
[182] Hughes, A.D., Whitehead, D., 1987. Glauconitization of detrital silica substrates in the Barton Formation (Upper Eocene) of the Hampshire Basin, southern England. Sedimentology 34, 825-835.
[183] Huisman, D.J., Vermeulen, F.J.H., Baker, J., Veldkomp, A., Krooneberg, S.B., Klaver, G.Th, 1997. A geological interpretation of heavy metal concentrations in soils and sediments in the southern Netherlands. Journal of Geochemical Exploration 59, 163-174.
[184] Humez, P., Lagneau, V., Lions, J., Negrel, P., 2013. Assessing the potential consequences of CO2 leakage to freshwater resources: a batch-reaction experiment towards an isotopic tracing tool. Applied Geochemistry 30, 178-190.
[185] Humphreys, B., Balson, P.S., 1985. Authigenic glaucony in the East Anglian Crags. Proceedings of the Geologists' Association 96 (2), 183-188.
[186] Ireland, B.J., Curtis, C.D., Whiteman, J.A., 1983. Compositional variation within some glauconites and illites and implications for their stability and origins. Sedimentology 30, 769-786.
[187] Isaac, M.J., Moore, P.R., Joass, Y.J., 1991. Tahora Formation: the basal facies of a Late Cretaceous transgressive sequence, northeastern New Zealand. New Zealand Journal of Geology and Geophysics 34 (2), 227e236.
[188] Ivanovskaya, T.A., Geptner, A.R., 2004. Glauconite at different stages of lithogenesis in Lower Cambrian rocks of western Lithuania. Lithology and Mineral Resources 39, 191-202.
[189] Ivanovskaya, T.A., Geptner, A.R., Savichev, A.T., Pokrovskii, B.G., Pokrovskaya, E.V., 2014. Siderite micro-concretions in the glauconite-bearing clayey-silty rocks of the Khaipakh Formation (Middle Riphean, Olenek Uplift). Lithology and Mineral Resources 49, 519-545.
[190] Ivanovskaya, T.A., Go_rkova, N.V., Karpova, G.V., Pokrovskaya, E.V., 2006. Layer silicates (glauconite, illite, and chlorite) in terrigenous rocks of the Arymash Formation (Olenek Uplift). Lithology and Mineral Resources 6, 601-623.
[191] Ivanovskaya, T.A., Zaitseva, T.S., Zvyagina, B.B., Sakharov, B.A., 2012. Crystal chemical peculiarities of globular layer silicates of the glauconiteeillite composition (Upper Proterozoic, northern Siberia). Lithology and Mineral Resources 6, 491-512.
[192] Jamoussi, F., 1991. Etude g_eologique et g_eotechnique des substances min_erales utiles de la r_egion de Gafsa (Sud de la Tunisie), min_eralogie, g_eochimie et application industrielle (Th_ese de doctorat de sp_ecialit_e en g_eologie). Facult_e des sciences de Tunis, p. 298 (in French).
[193] Jarrar, G., Amireh, B., Zachmann, D., 2000. The major, trace and rare earth element geochemistry of glauconites from the Early Cretaceous Kurnub Group of Jordan. Geochemical Journal 34, 207e222.
[194] Jiang, Z., Chen, D., Qiu, L., Liang, H., Ma, J., 2007. Source-controlled carbonates in a small Eocene half-graben lake basin (Shulu Sag) in central Hebei Province, North China. Sedimentology 54, 265-292.
[195] Jim_enez-Mill_an, J., Castro, J.M., 2008. K-feldspar alteration to gel material and crystallization of glauconitic peloids with berthierine in Cretaceous marine sedimentsesedimentary implications (Prebetic Zone, Betic Cordillera, SE Spain). Geological Journal 43, 19-31.
[197] John, C.M., Karner, G.D., Browning, E., Leckie, R.M., Mateo, Z., Carson, B., Lowery, C., 2011. Timing and magnitude of Miocene eustasy derived from the mixed siliciclasticecarbonate stratigraphic record of the northeastern Australian margin. Earth and Planetary Science Letters 304, 455-467.
[198] Kale, V., Peshwa, V.V., 1995. Bhima Basin. Geological Society of India, Bangalore, p. 142.
[199] Kalia, P., Kintso, R., 2006. Planktonic foraminifera at the Paleocene/Eocene boundary in the Jaisalmer Basin, Rajasthan, India. Micropaleontology 52, 521-536.
[200] Kaya, A., Friedman, G.M., 1997. Sedimentation and significance of the nuia-bearing units in the lower Middle Ordovician antelope valley limestone (AVL) in Central Nevada, USA. Carbonates and Evaporites 12 (2), 276-295.
[201] Kelly, J.C., Webb, J.A., 1999. The genesis of glaucony in the Oligo- Miocene Torquay Group, southeastern Australia: petrographic and geochemical evidence. Sedimentary Geology 125, 99-114.
[202] Kelly, J.C., Webb, J.A., Maas, R., 2001. Isotopic constraints on the genesis and age of autochthonous glaucony in the Oligo- Miocene Torquay Group, south-eastern Australia. Sedimentology 48, 325-338.
[203] Ketzer, J.M., Holz, M., Morad, S., Al-Aasm, I.S., 2003. Sequence stratigraphic distribution of diagenetic alterations in coalbearing, paralic sandstones: evidence from the Rio Bonito Formation (Early Permian), southern Brazil. Sedimentology 50, 855-877.
[204] Khalifa, M.A., 1983. Origin and occurrence of glauconite in the green sandstone associated with unconformity, Bahariya Oases, Western Desert, Egypt. Journal of African Earth Sciences 1, 321-325.
[205] Kim, Y., Lee, Y.I., 2000. Ironstones and green marine clays in the Dongjeom Formation (Early Ordovician) of Korea. Sedimentary Geology 130, 65-80.
[206] Kirkham, A., 2003. Glauconitic spherules from the Triassic of the Bristol area, SW England: probable microtektite pseudomorphs. Proceedings of the Geologists' Association 114, 11-21.
[207] Kitamura, A., 1998. Glaucony and carbonate grains as indicators of the condensed section: Omma Formation, Japan. Sedimentary Geology 122, 151-163.
[208] Knox, R.W.O.B., 1979. Igneous grains associated with zeolites in the Thanet Beds of Pegwell Bay, northeast Kent. Proceedings of the Geologists' Association 90, 55-59.
[209] Kordi, M., Turner, B., Salem, A.M.K., 2011. Linking diagenesis to sequence stratigraphy in fluvial and shallow marine sandstones: evidence from the CambrianeOrdovician lower sandstone unit in southwestern Sinai, Egypt. Marine and Petroleum Geology 28, 1554-1571.
[210] Korkutis, V., 1981. Late Precambrian and Early Cambrian in the East European platform. Precambrian Research 15, 75-94.
[211] Kossovskaya, A.G., Drits, V.A., 1970. The variability of micaceous minerals in sedimentary rocks. Sedimentology 15, 83-101.
[212] Lantzsch, H., Hanebuth, T.J.J., Henrich, R., 2010. Sediment recycling and adjustment of deposition during deglacial drowning of a low-accumulation shelf (NW Iberia). Continental Shelf Research 30, 1665-1679.
[213] Leckie, R.M., Bralower, T.J., Cashman, R., 2002. Oceanic anoxic events and plankton evolution: biotic response to tectonic forcing during the Mid-Cretaceous. Paleoceanography 17, 13-29.
[214] Lee, C.H., Choi, S., Suh, M., 2002. High iron glaucony from the continental shelf of the Yellow Sea off the southwestern Korean Peninsula. Journal of Asian Earth Science 20, 507e515.
[215] Lee, Y.I., Paik, I.S., 1997. High alumina glaucony from the Early Ordovician Mungok Formation, Korea. Geoscience Journal 1 (2), 108-114.
[216] Legrand Sr., H.E., 1989. An innovative hydrogeologic setting for disposal of low-level radioactive wastes. Environmental Geology and Water Sciences 13 (3), 233-239.
[217] Lewis, D.W., Belliss, S.E., 1984. Mid Tertiary unconformities in the Waitaki Subdivision, North Otago. Journal of the Royal Society of New Zealand 14 (3), 251-276.
[218] Li, M.R., Wang, S.S., Qiu, J., 1996. The ages of glauconites from Tieling and Jingeryu Formations, BeijingeTianjin Area. Acta Petrologica Sinica 12 (3), 416-423 (in Chinese with English abstract).
[220] Lim, D.I., Park, Y.A., Choi, J.Y., Chu, J.W., Khim, B.K., 2000. Glauconite grains in continental shelf sediments around the Korean Peninsula and their depositional implications. Geo- Marine 20, 80-86.
[221] Lo, S.C., 1980. Microbial fossils from the lower Yudoma Suite, earliest Phanerozoic, eastern Siberia. Precambrian Research 13, 109-166.
[222] Long, D.G.F., Yip, S.S., 2009. The Early Cambrian Bradore Formation of southeastern Labrador and adjacent parts of Quebec: architecture and genesis of clastic strata on an Early Paleozoic wave-swept shallow marine shelf. Sedimentary Geology 215, 50-69.
[223] Longu_ep_ee, H., Cousineau, P.A., 2006. Constraints on the genesis of ferrian illite and aluminum-rich glauconite: potential impact on sedimentology and isotopic studies. The Canadian Mineralogist 44, 967e980.
[224] Lorenzen, J., Kuhnt, W., Holbourn, A., Fl€ogel, S., Moullade, M., Tronchetty, G., 2013. A new sediment core from the Bedoulian (Lower Aptian) stratotype at Roquefort-La B_edoule, SE France. Cretaceous Research 39, 6-16.
[225] Loveland, P.J., 1981. Weathering of a soil glauconite in southern England. Geoderma 25, 35-54.
[226] Lu, W., Smith, E.H., 1996. Modeling potentiometric titration behavior of glauconite. Geochimica et Cosmochimica Acta 60 (18), 3363-3373.
[227] Lurcock, P.C., Wilson, G.S., 2013. The palaeomagnetism of glauconitic sediments. Global and Planetary Change 110, 278-288.
[228] Ly, C.K., 1981. Sources of beach sand from the central and eastern coasts of Ghana, West Africa. Marine Geology 44, 229-240.
[229] MacGregor, A.R., 1983. The Waitakere Limestone, a temperate algal carbonate in the lower Tertiary of New Zealand. Journal of the Geological Society, London 140, 387e399.
[230] Mackenzie, K.J.D., Cardile, C.M., Brown, I.W.M., 1988. Thermal and m€ossbauer studies of iron-containing hydrous silicates: VII. Glauconite. Thermochimica Acta 136, 247e261.
[231] Maher Jr., H.D., Hays, T., Shuster, R., Mutrux, J., 2004. Petrography of Lower Cretaceous sandstones on Spitsbergen. Polar Research 23 (2), 147e165.
[232] Mancini, E.A., Tew, B.H., 1993. Eustasy versus subsidence: Lower Paleocene depositional sequences from southern Alabama, eastern Gulf Coastal Plain. Geological Society of America Bulletin 105, 3-17. 2.3.CO;2 target="_blank">
[233] Marivaux, L., El Essid, M., Marzougui, W., Ammar, H.K., Adnet, S., Marandat, B., Merzeraud, G., Ramdarshan, A., Tabuce, R., Liaud, M.V., Yans, J., 2014. A morphological intermediate between Eosimiiform and Simiiform Primates from the Late Middle Eocene of Tunisia: Macroevolutionary and paleobiogeographic implications of Early Anthropoids. American Journal of Physical Anthropology 154, 387e401.
[234] Martinec, P., Vavro, M., Scucka, J., Maslan, M., 2010. Properties and durability assessment of glauconitic sandstone: a case study on Zamel sandstone from the Bohemian Cretaceous Basin (Czech Republic). Engineering Geology 115, 175.
[235] Martins, V., Abrantes, I., Granjeia, C., Martins, P., Nagai, R., Sousa, S.H.M., Laut, L.L.M., Dias, J.M.A., Dias, J.M., Silva, E.F., Rocha, F., 2012. Records of sedimentary dynamics in the continental shelf and upper slope between AveiroeEspinho (N Portugal). Journal of Marine Systems 96-97, 48-60.
[236] Mc Conchie, D.M., Lewis, D.W., 1980. Varieties of glauconite in Late Cretaceous and Early Tertiary rocks of the South Island of New Zealand and new proposals for classification. New Zealand Journal of Geology and Geophysics 23, 413-438.
[237] McMaster, R.L., LaChance, T.P., 1968. Seismic reflectivity studies on northwestern African continental shelf, Strait of Gibraltar to Mauritania. American Association of Petroleum Geologists Bulletin 52, 2387e2396.
[239] McRae, S.G., Lambert, J.L.M., 1968. A study of some glauconites from Cretaceous and Tertiary formations in South-East England. Clay Minerals 7, 431-440.
[240] Mei, M.X., Yang, F.J., Gao, J.H., Meng, Q.F., 2008. Glauconites formed in the high-energy shallow-marine environment of the Late Mesoproterozoic: a case study from Tieling Formation at Jixian section in Tianjin, North China. Earth Science Frontiers 15 (4), 146-158.
[241] Mendes, I., Gonzalez, R., Dias, J.M.A., Lobo, F., Martins, V., 2004. Factors influencing recent benthic foraminifera distribution on the Guadiana shelf (southwestern Iberia). Marine Micropaleontology 51, 171-192.
[242] Meng, X.Q., 2006. Geological characteristics and significance of glauconites in stromatolite rock-reef of Mesoproterozoic Tieling Formation in Jixian County. Northwestern Geology 3, 112-116 (in Chinese with English abstract).
[243] Merriman, R.J., 1983. The origin of glauconitic material in Crag deposits from East Anglia. Proceeding of Geologist's Association 94 (1), 13-19.
[244] Meshri, I.D., Comer, J.B., 1990. A subtle diagenetic trap in the Cretaceous glauconite sandstone of Southwest Alberta. Earth Science Reviews 29, 199-214.
[245] Metwalli, M.H., Abdel-Hadi, Y.E., 1975. The significance of the variation of crude oil gravities of some oil fields in the Northern Western Desert, A. R. Egypt. In: 9th Arab Petroleum Congress, Dubai, 113(B-3), pp.1-10.
[246] Meunier, A., El Albani, A., 2007. The glauconiteeFe-illiteeFesmectite problem: a critical review. Terra Nova 19, 95-104.
[247] Michal?′k, J., Lintnerov_a, O., Reh_akov_a, D., Boorov_a, D., Simo, V., 2012. Early Cretaceous sedimentary evolution of a pelagic basin margin (the Man?′n Unit, central Western Carpathians, Slovakia). Cretaceous Research 38, 68-79.
[248] Mishra, U.K., Sen, S., 2001. Dinosaur bones from Meghalaya. Current Science 80 (8), 1053-1056.
[249] Misi, A., Azmy, K., Kaufman, A.J., Oliveira, T.F., Sanches, A.L., Oliveira, G.D., 2014. Review of the geological and geochronological framework of the Vazante sequence, Minas Gerais, Brazil: implications to metallogenic and phosphogenic models. Ore Geology Reviews 63, 76-90.
[250] Misik, M., Sucha, V., 1994. Glauconite from the red nodular limestones of Jurassic age (Manin Gorge, western Carpathians). Geologica Carpathica Clays 1, 85-92.
[251] Montag, R.L., Seidemann, D.E., 1981. A test of the reliability of RbeSr dates for selected glauconite morphologies of the Upper Cretaceous (Navesink Formation) of New Jersey. Earth and Planetary Science Letters 52, 285-290.
[252] Morton, A.C., Merriman, R.J., Mitchell, J.G., 1984. Genesis and significance of glauconitic sediments of the Southwest Rockall Plateau. Initial Reports of the Deep Sea Drilling Project 81, 645-652.
[253] Morton, J.P., Long, L.E., 1980. RbeSr dating of Paleozoic glauconite from the Llano region, Central Texas. Geochimica et Cosmochimica Acta 44, 663-672.
[254] Muza, J.P., Wise Jr., S.W., 1983. An authigenic gypsum, pyrite, and glauconite association in a Miocene deep sea biogenic ooze from the Falkland Plateau, Southwest Atlantic Ocean. Deep Sea Drilling Proceedings 71, 361-375.
[255] Najarro, M., Rosales, I., Chivelet, J.M., 2011. Major palaeoenvironmental perturbation in an Early Aptian carbonate platform: prelude of the Oceanic Anoxic Event 1a? Sedimentary Geology 235, 50-71.
[256] Neill, G.M., Ruffell, A., 2004. Authigenic phosphate nodules (Late Cretaceous, northern Ireland) as condensed succession microarchives. Cretaceous Research 25, 439-452.
[258] Newman, T.G., Ghail, R.C., Skipper, J.A., 2013. Deoxygenated gas occurrences in the Lambeth Group of Central London, UK. Quarterly Journal of Engineering Geology and Hydrogeology 46, 167e177.
[259] Nichols, G., 2012. Sedimentology and Stratigraphy, Second ed. Wiley- Blackwell. 419 p.
[261] Glauconite composition and morphology, shocked quartz, and the origin of the Cretaceous(?) Main Fossiliferous Layer (MFL) in southern New Jersey, USA. Journal of Sedimentary Research 81, 479-494.
[262] Odin, G.S., Fullagar, P.D., 1988. Geological significance of the glaucony facies. In: Odin, G.S. (Ed.), Green Marine Clays: Developments in Sedimentology, vol. 45, pp. 295-332.
[263] Odin, G.S., L_etolle, R., 1980. Glauconitization and Phosphatization Environments: a Tentative Comparison, 29. SEPM Special Publications, pp. 227e237.
[264] Odin, G.S., Matter, A., 1981. De Glauconiarum Origine. Sedimentology 28, 611-641.
[265] Odin, G.S., Velde, B., Bonhomme, M., 1977. Radiogenic argon in glauconites as a function of mineral recrystallization. Earth and Planetary Science Letters 37 (1), 154-158.
[266] Odom, I.E., 1976. Microstructure, mineralogy and chemistry of Cambrian glauconite pellets and glauconite, Central USA. Clays and Clay Minerals 24, 232-238.
[267] Odom, I.E., 1984. Glauconite and celadonite minerals. In: Bailey, S.W. (Ed.), Reviews in Mineralogy, 13. MICAS, pp. 545-572.
[268] Olsson, R.K., 1989. Depositional sequences in the Cretaceous post-rift sediments on the New Jersey Atlantic margin. Studies related to continental margins. Marine Geology 90, 113-118.
[269] Orberger, B., Pagel, M., 2000. Diagenetic evolution of Cretaceous siltstones from drill core MAR 501 (South-Eastern France). Journal of Geochemical Exploration 69-70, 115-118.
[270] Ostwald, J., 1990. The biogeochemical origin of the Groote Eylandt manganese oxide pisoliths and ooliths, northern Australia. Ore Geology Review 5, 469-490.
[271] €Ozgu¨ ner, A.M., Varol, B., 2009. The genesis, mineralization, and stratigraphic significance of phosphatic/glauconitic condensed limestone unit in the Manavgat Basin, SW Turkey. Sedimentary Geology 221, 40-56.
[272] Parize, O., Fiet, N., Fri_es, G., Imbert, P., Latil, J.L., Rubino, J.L., Viana, A., 2005. Depositional dynamics of glaucony-rich deposits in the Lower Cretaceous of the Nice arc, southeast France. Cretaceous Research 25, 179-189.
[273] Parker, R.J., 1975. The petrology and origin of some glauconitic and glauco-conglomeratic phosphorites from the South African continental margin. Journal of Sedimentary Petrology 45, 230-242.
[274] Parrish, J.T., Droser, M.L., Bottjer, D.J., 2001. A Triassic upwelling zone: the Shublik Formation, Arctic Alaska, USA. Journal of Sedimentary Research 71, 272-285.
[275] Parron, C., Amouric, M., 1990. Crystallochemical heterogeneity of glauconites and the related problem of glauconite-celadonite distinction. Chemical Geology 84, 286-289.
[276] Parry, W.T., Reeves, C.C., 1966. Lacustrine Glauconitic mica from pluvial lake Mound, Lynn and Terry counties, Texas. The American Mineralogist 51, 229-235.
[277] Pasquini, C., Lualdi, A., Vercesi, P., 2004. Depositional dynamics of glaucony-rich deposits in the Lower Cretaceous of the Nice Arc, Southeast France. Cretaceous Research 25, 179-189.
[278] Peters, S.E., Gaines, R.R., 2012. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion. Nature 484, 363-366.
[279] Plint, A.G., 1983. Facies, environments and sedimentary cycles in the Middle Eocene, Bracklesham Formation of the Hampshire Basin: evidence for global sea-level changes? Sedimentology 30, 625-653.
[280] Porrenga, D.H., 1967. Glauconite and chamosite as depth indicators in the marine environment. Marine Geology 5, 495-501.
[281] Porrenga, D.H., 1968. Non-marine glauconitic illite in the Lower Oligocene of Aardebrug, Belgium. Clay Minerals 7, 421-430.
[282] Prélat, A., Hodgson, D.M., Hall, M., Jackson, C.A.L., Baunack, C., Tveiten, B., 2015. Constraining sub-seismic deep-water stratal elements with electrofacies analysis: a case study from the Upper Cretaceous of the M?l?y Slope, offshore Norway. Marine and Petroleum Geology 59, 268-285.
[283] Purdy, C.B., Mignerey, A.C., Helz, G.R., Drummond, D.D., Kubik, P.W., Elmore, D., Hemmick, T., 1987. 36 Cl: a tracer in groundwater in the Aquia Formation of Southern Maryland. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 29, 372-375.
[284] Rao, V.P., Lamboy, M., Dupeuble, P.A., 1993. Verdine and other associated authigenic (glaucony, phosphate) facies from the surficial sediments of the southwestern continental margin of India. Marine Geology 111, 133-158.
[285] Rao, V.P., Thamban, M., Lamboy, M., 1995. Verdine and glaucony facies from surficial sediments of the eastern continental margin of India. Marine Geology 127, 105-113.
[286] Rasmussen, E.S., Dybkjaer, K., 2005. Sequence stratigraphy of the Upper OligoceneeLower Miocene of eastern Jylland, Denmark: role of structural relief and variable sediment supply in controlling sequence development. Sedimentology 52, 25-63.
[287] Rasser, M.W., Piller, E.W., 2004. Crustose algal frameworks from the Eocene Alpine Foreland. Palaeogeography, Palaeoclimatology, Palaeoecology 206, 21-39.
[288] Rathore, S.S., Prabhu, B.N., Vijan, A.R., Vic, K.C., Misra, K.N., 1999. KeAr age of Ukra glauconites from the Kutch Basin, India. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences 108, 49-55.
[289] Rawlley, R.K., 1994. Mineralogical investigations on an Indian glauconitic sandstone of Madhya Pradesh State. Applied Clay Science 8, 449-465.
[290] Rea, D.K., Dehn, J., Driscoll, N.W., Farrell, J.W., Janecek, T.R., Pospichal, R.J.J., Resiwati, P., 1990. Paleoceanography of the eastern Indian Ocean from ODP Leg 121 drilling on Broken Ridge. Bulletin of Geological Society of America 102, 679-690. 2.3.CO;2 target="_blank">
[291] Reeder, S.W., Hitchon, B., Levinson, A.A., 1972. Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada d I. Factors controlling inorganic composition. Geochimica et Cosmochimica Acta 36, 325-865.
[292] Reid, C.M., James, N.P., Beauchamp, B., Kyser, T.K., 2007. Faunal turnover and changing oceanography: Late Palaeozoic warmto- cool water carbonates, Sverdrup Basin, Canadian Arctic Archipelago. Palaeogeography, Palaeoclimatology, Palaeoecology 249, 128-159.
[293] Retzler, A., Wilson, M.A., Avni, Y., 2013. Chondrichthyans from the Menuha Formation (Late Cretaceous: SantonianeEarly Campanian) of the Makhtesh Ramon region, southern Israel. Cretaceous Research 40, 81-89.
[294] Reynolds, R.C., 1963. Potassium-rubidium ratios and polymorphism in illites and microclines from the clay size fractions of proteroeoic carbonate rocks. Geochimica et Cosmochimica Acta 27, 1097e1112.
[295] Richards, J.R., Gee, R.D., 1985. Galena lead isotopes from the eastern part of the Nabberu Basin, Western Australia. Australian Journal of Earth Sciences 32 (1), 47e54.
[296] Riedinger, N., Pfeifer, K., Kasten, S., Garming, J.F.L., Vogt, C., Hensen, C., 2005. Diagenetic alteration of magnetic signals by anaerobic oxidation of methane related to a change in sedimentation rate. Geochimica et Cosmochimica Acta 69 (16), 4117e4126.
[297] Rifai, I.R., Shaaban, M.N., 2007. Authigenic dolomite cementation in the Upper Cretaceous Phosphate Formation, Western Desert, Egypt. Sedimentary Geology 202, 702-709.
[298] Roban, R., Dobrinescu, M.C.M., 2012. Lower Cretaceous lithofacies of the black shales rich Audia Formation, Tarcau Nappe, eastern Carpathians: genetic significance and sedimentary palaeoenvironments. Cretaceous Research 38, 52-67.
[299] Robert, M., 1973. The experimental transformation of mica toward smectite; relative importance of total charge and tetrahedral substitution. Clays and Clay Minerals 21, 167e174.
[300] Rolf, R.M., Kimball, C.W., Odom, I.E., 1977. Mossbauer characteristics of Cambrian glauconite, central USA. Clays and Clay Minerals 25, 131-137.
[301] Rongchuan, L., Shixin, W., Yuanfu, H., Weimin, D., Lirong, C., 1986. A M€ossbauer investigation of the formation process of glauconite. Hyperfine Interactions 29 (1-4), 1085-1088.
[302] Rothe, P., 1973. Sedimentation in the deep-sea areas adjacent to the Canary and Cape Verde islands. Marine Geology 14, 191-206.
[303] Rousset, D., Leclerc, S., Clauer, N., Lancelot, J., Cathelineau, M., Aranyossy, J.F., 2004. Age and origin of Albian glauconites and associated clay minerals inferred from a detailed geochemical analysis. Journal of Sedimentary Research 74 (5), 631-642.
[304] Saha, O., Shukla, U.K., Rani, R., 2010. Trace fossils from the Late Cretaceous Lameta Formation, Jabalpur Area, Madhya Pradesh: paleoenvironmental implications. Journal Geological Society of India 76, 607e620.
[305] Saito, Y., Nishimura, A., Matsumoto, E., 1989. Transgressive sand sheet covering the shelf and upper slope off Sendai, Northeast Japan. Marine Geology 89, 245-258.
[306] Salamon, M.A., 2007. First record of bourgueticrinid crinoids from the Cenomanian of southern Poland. Cretaceous Research 28, 495-499.
[307] Samanta, A., Sarkar, A., Bera, M.K., Rai, J., Rathore, S.S., 2013. Late PaleoceneeEarly Eocene carbon isotope stratigraphy from a near-terrestrial tropical section and antiquity of Indian mammals. Journal of Earth System Science 122, 163-171.
[308] S_anchez-Navas, A., Algarra, A.M., Eder, V., Reddy, B.J., Nieto, F., Zanin, Y.N., 2008. Color, mineralogy and composition of Upper Jurassic West Siberian glauconite: useful indicators of paleoenvironment. The Canadian Mineralogist 46, 1545-1564.
[309] S_anchez-Navas, A., Algarra, M.A., Nieto, F., 1998. Bacteriallymediated authigenesis of clays in phosphate stromatolites. Sedimentology 45, 519-533.
[310] Saraev, S.V., Baturina, T.P., 2008. Lithology and geochemistry of Triassic deposits in the southwest of the West Siberian geosyneclise. Russian Geology and Geophysics (Geologiya i Geofizika) 49 (6), 357e370 (477e494).
[311] Sarkar, S., Choudhuri, A., Banerjee, S., Van Loon (Tom), A.J., Bose, P.K., 2014. Seismic and non-seismic soft-sediment deformation structures in the Proterozoic Bhander Limestone, central India. Geologos 20 (2), 89-103.
[312] Sarma, J.N., Basumallick, S., 1979. Glauconite in some Eocene carbonate rocks of Mikir hills, Assam. Indian Journal of Earth Sciences 6, 186-190.
[313] Sarmah, R.K., Borgohain, R., 2012. Lithostratigraphy of the Paleogene shelf sediments in Assam and Meghalaya d a review. Indian Streams Research Journal 12, 1-4.
[314] Schulz, H.D., Zabel, M., 2006. Marine Geochemistry. Springer, Berlin.
[315] Schweitzer, C.E., _Cosovi_c, V., Feldmann, R.M., 2005. Harpactocarcinus from the Eocene of Istria, Croatia, and the paleoecology of the Zanthopsidae (Crustacea: Decapoda: Brachyura). Journal of Paleontology 79 (4), 663-669.
[316] Seed, D.P., 1965. The formation of vermicular pellets in New Zealand glauconites. The American Mineralogist 50, 1097e1106.
[317] Selby, D., 2009. UePb zircon geochronology of the Aptian/Albian boundary implies that the GL-O international glauconite standard is anomalously young. Cretaceous Research 30, 1263-1267.
[318] Sepkoski, J.J., 2000. Crustacean biodiversity through the marine fossil record. Contributions to Zoology 69, 213-221.
[319] Sharafi, M., Mahboubi, A., Moussavi-Harami, R., Ashuri, M., Rahimi, B., 2013. Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Aitamir Formation (AlbianeCenomanian), Kopet-Dagh Basin, northeastern Iran. Journal of Asian Earth Sciences 67e68, 171-186.
[320] Singh, I.B., Kumar, S., 1978. On the stratigraphy and sedimentation of the Vindhyan sediments in the Chitrakut area, Banda District (U.P.)eSama District (M.P. Journal of Geology Society of India 19, 359-367.
[321] Skiba, M., Szeliga, K.M., Szyma_nski, W., B?achowski, A., 2014. Weathering of glauconite in soils of temperate climate as exemplified by a Luvisol profile from G_ora Pu?awska, Poland. Geoderma 235-236, 212-226.
[322] Sluijs, A., van Roij, L., Harrington, G.J., Schouten, S., Sessa, J.A., LeVay, L.J., Reichart, G.J., Slomp, C.P., 2014. Extreme warming, photic zone euxinia and sea level rise during the Paleocene/Eocene thermal maximum on the Gulf of Mexico Coastal Plain; connecting marginal marine biotic signals, nutrient cycling and ocean deoxygenation. Climate of the Past 10, 1421-1439.
[323] Smalley, P.C., Forsberg, A., Rundberg, Y., Raheim, A., 1986. RbeSr glauconite systematics during diagenesis and the dating of fluid movement. Terra Cognita 6, 207.
[324] Smith, E.H., Lu, W., Vengris, T., Binkiene, R., 1996. Sorption of heavy metals by Lithuanian glauconite. Water Research 30 (12), 2883-2892.
[325] Sorrentino, L., Stilwell, J., Mays, C., 2014. A model of tephra dispersal from an Early Palaeogene shallow submarine Surtseyan-style eruption(s), the Red Bluff Tuff Formation, ChathamIsland, New Zealand. Sedimentary Geology 300, 86-102.
[326] Sprong, J., Kouwenhoven, T.J., Bornemann, A., Dupuis, C., Speijer, R.P., Stassen, P., Steurbaut, E., 2013. In search of the Latest Danian Event in a paleobathymetric transect off Kasserine Island, north-central Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology 379-380, 1-16.
[327] Srasra, E., Trabelsi-Ayedi, M., 2000. Textural properties of acid activated glauconite. Applied Clay Science 17, 71-84.
[328] Stassen, P., Dupuis, C., Steurbaut, E., Yans, J., Speijer, R.P., 2012. Perturbation of a coastal Tethyan environment during the PaleoceneeEocene thermal maximum in Tunisia (Sidi Nasseur and Wadi Mezaz). Palaeogeography, Palaeoclimatology, Palaeoecology 317e318, 66-92.
[329] Stassen, P., Thomas, E., Speijer, R.P., 2015. PaleoceneeEocene thermal maximum environmental change in the New Jersey Coastal Plain: Benthic foraminiferal biotic events. Marine Micropaleontology 115, 1-23.
[330] Stille, P., Fischer, H., 1990. Secular variation in the isotopic composition of Nd in Tethys seawater. Geochimica et Cosmochimica Acta 54, 3139-3145.
[331] Strasser, A., Aurell, M., B_adenas, B., Mel_endez, G., Tom_as, S., 2005. From platform to basin to swell: orbital control on sedimentary sequences in the Oxfordian, Spain. Terra Nova 17 (5), 407e413.
[332] Strickler, M.E., Ferrell Jr., R.E., 1990. Fe substitution for Al in glauconites with increasing diagenesis in the first Wilcox sandstone (Lower Eocene), Livingstone Parish, Louisiana. Clays and Clay Minerals 38, 69-76.
[333] Tazaki, K., Fyfe, W.S., 1992. Microbial green marine clay from Izu- Bonin (west Pacific) deep-sea sediments. Chemical Geology 102, 105-118.
[334] Tewari, V.C., Lokho, K., Kumar, K., Siddaiah, N.S., 2010. Late CretaceousePaleogene basin architecture and evolution of the Shillong shelf sedimentation, Meghalaya, northeast India. Journal of Indian Geological Congress 2, 61-73.
[335] Thompson, G.R., Hower, J., 1975. The mineralogy of glauconite. Clays and Clay Minerals 23, 289-300.
[336] Tlig, S., Sahli, S., Er-Raioui, L., Alouani, R., Mzoughi, M., 2010. Depositional environment controls on petroleum potential of the Eocene in the North of Tunisia. Journal of Petroleum Science and Engineering 71, 91-105.
[337] T_oth, E., Weiszburg, T.G., Jeffries, T., Williams, C.T., Bartha, A., Bertalan, E., Cora, I., 2010. Submicroscopic accessory minerals overprinting clay mineral REE patterns (celadoniteeglauconite group examples). Chemical Geology 269, 312-328.
[339] Seismic stratigraphy and global changes of sea level. In: Payton, C.E. (Ed.), Seismic StratigraphyeApplications to Hydrocarbon Exploration, American Association of Petroleum Geologists Memoir, 26, pp. 49-212.
[340] Valanciene, V., Siauciunas, R., Valancius, Z., 2014. Evaluation of glauconite rock color stability during firing. Applied Clay Science 99, 110-118.
[341] Van Delft, F.C.M.J.M., Den Hartog, A.J., Ijdo, D.J.W., Ponec, V., Vurens, G.H., Van Der Kraan, A.M., 1990. Oxidation and dehydrogenation of alcohols by glauconite, a natural Fe(II)- and Fe(III)-containing sheet silicate, and Ferri-sepiolite, its molecular sieve analogue. Journal of Molecular Catalysis 60, 109-125.
[342] Van Houten, F.B., Purucker, M.E., 1984. Glauconitic peloids and chamositic ooidsefavorable factors, constraints, and problems. Earth-Science Reviews 20, 211-243.
[343] Vandenberghe, N., Burleigh, H.W., Wampler, J.M., Houthuys, R., Louwye, S., Adriaens, R., Vos, K., Lanckacker, T., Matthijs, J., Deckers, J., Verhaegen, J., Laga, P., Westerhoff, W., Munsterman, D., 2014. The implications of KeAr glauconite dating of the Diest formation on the paleogeography of the Upper Miocene in Belgium. Geologica Belgica 17, 161-174.
[344] Vander Lingeb, G.J., Smale, D., Lewis, D.W., 1978. Alteration of a pelagic chalk below a paleokarst surface, Oxford, South Island, New Zealand. Sedimentary Geology 21, 45-66.
[345] Varol, B., ?zgüner, A.M., Kos?un, E., _Imam_golu, S? ., Danis? , M., Karakullukc?u, T., 2000. Depositional environments and sequence stratigraphy of glauconites of western Black Sea region. Mineral Research and Exploration Bulletin 122, 1-21.
[346] Vaskovi_c, N., Jovi_c, V., Matovi_c, V., 2010. Early Cretaceous glauconite formation and Late Cretaceous magmatism and metallogeny of the East Serbian part of the CarpathoeBalkanides. Acta Mineralogica-Petrographica, Field Guide Series 25, 1-32.
[347] Vaz, G.G., 2000. Verdine and glaucony facies from continental margin off Chennai, Bay of Bengal. Journal of the Geological Society of India 55, 297e306.
[348] Vecsei, A., 1998. A sandy tidal coast in the uppermost Muschelkalk and the origin of the Muschelkalk/Keuper boundary in the southwestern Germanic basin. Geologische Rundschau 86, 835-851.
[349] Velde, B., 1985. Clay minerals: a physicochemical explanation of their occurrence. Developments in Sedimentology 40, 427.
[350] Velde, B., Medhioub, M., 1988. Approach to chemical equilibrium in diagenetic chlorites. Contributions to Mineralogy and Petrology 98, 122-127.
[351] Viira, V., Mens, K., Nemliher, J., 2006. Lower Ordovician Leetse Formation in the North Estonian Klint area. Proceedings of the Estonian Academy of Sciences, Geology 55 (2), 156-174.
[352] Vijan, A.R., Rathore, S.S., Vig, K.C., Bansal, M., Singh, M.P., Prabhu, B.N., 2000. KeAr and RbeSr ages of Cretaceous glauconites from Jaisalmer Basin, Rajasthan. Journal of the Geological Society of India 56, 15-25.
[353] Walker, R.G., Bergman, K.M., 1993. Shannon Sandstone in Wyoming: a shelf-ridge complex reinterpreted as lowstand shoreface deposits. Journal of Sedimentary Research 63, 839-851.
[354] Wang, J.T., Zhang, Y.S., Song, T.R., 2011. Characteristics and sedimentary environment of authigenic glauconite from limestone of the Amushan Formation in Xi Ujimqin Banner, Inner Mongolia. Acta Petrologica Et Mineralogica 2, 259-266 (in Chinese with English abstract).
[355] Wang, Q., Zhu, E.Q., Zhang, J.H., Feng, W.W., 1985. The assemblage of authigenic iron minerals in superficial sediments of the Sanya Bay, Hainan Island. Acta Geologica Sinica 59 (4), 293-303 (in Chinese with English abstract).
[356] Wang, Y.H., 1983. Discovery and primary study of glauconite in modern lacustrine sediments from Fuxian Lake. Chinese Science Bulletin 28, 1388-1392.
[357] Webb, A.W., Mcdougall, I., Cooper, J.A., 1963. Retention of radiogenic argon in glauconites from Proterozoic sediments, northern Territory Australia. Nature 199, 270-271.
[358] Wermunde, G., 1961. Glauconite in Early Tertiary sediments of Gulf Coastal Province. American Association of Petroleum Geologists Bulletin 45, 1667e1696.
[359] Whiteside, D.I., Robinson, D., 1983. A glauconitic clay-mineral from a speleological deposit of Late Triassic age. Palaeogeography, Palaeoclimatology, Palaeoecology 41, 81-85.
[360] Wigley, R., Compton, J.S., 2007. Oligocene to Holocene glauconiteephosphorite grains from the Head of the Cape Canyon on the western margin of South Africa. Deep-Sea Research II 54, 1375-1395.
[361] Wilmsen, M., Niebuhr, B., Hiss, M., 2005. The Cenomanian of northern Germany: facies analysis of a transgressive biosedimentary system. Facies 51, 242-263.
[362] Witts, J.D., Bowman, V.C., Wignall, P.B., Crame, J.A., Francis, J.E., Newton, R.J., 2015. Evolution and extinction of Maastrichtian (Late Cretaceous) cephalopods from the L_opez de Bertodano Formation, Seymour Island, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 418, 193-212.
[363] Wood, J.M., Hopkins, J.C., 1992. Traps associated with paleovalleys and interfluves in an unconformity bounded sequence: lower Cretaceous Glauconitic Member, Southern Alberta, Canada. Bulletin of American Association of Petroleum Geologists 76, 904-926.
[364] Wortmann, U.G., Herrle, J.O., Weissert, H., 2004. Altered carbon cycling and coupled changes in Early Cretaceous weathering patterns: evidence from integrated carbon isotope and sandstone records of the western Tethys. Earth and Planetary Science Letters 220, 69-82.
[365] Wu, F.D., Lu, Y.C., Chen, P., Zhou, P., 1997. The discovery and significance of glauconites in the Huagong Formation of the Oligocene, Xihu Depression, East China Sea. Acta Sedimentologica Sinica 15 (3), 158-161 (in Chinese with English abstract).
[366] Xie, G.C., 1991. A discovery and primary study of glauconite in the Upper Triassic Yanchang oil-bearing sandstone in northern Shaanxi. Chinese Journal of Geology 26, 129-136 (in Chinese with English abstract).
[367] Xu, Y.H., 2010. The discovery and geological significance of glauconites from the Palaeoproterozoic Xiong'er Group in the southern part of the North China Craton. Acta Sedimentologica Sinica 28 (4), 671-675 (in Chinese with English abstract).
[368] Yilmaz, I.O., Altiner, D., Tekin, U.K., Ocakoglu, F., 2012. The first record of the "mid-Barremian" Oceanic Anoxic Event and the late Hauterivian platform drowning of the Bilecik platform, Sakarya Zone, western Turkey. Cretaceous Research 38, 16-39.
[369] Zachos, J.C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S.J., Bralower, T.J., 2006. Extreme warming of mid-latitude coastal ocean during the PaleoceneeEocene thermal maximum: inferences from TEX86 and isotope data. Geology 34, 737e740.
[370] Zaitseva, T.S., Ivanovskaya, T.A., Gorokhov, I.M., Yakovleva, O.V., Ku-tyavin, E.P., Mel'nikov, N.N., Kuznetsov, A.B., 2000. The RbeSr age and NGR spectra of glauconites from the Upper Riphean UK Formation, Southern Urals. In: Isotope Dating of Geologic Processes: New Methods and Results. GEOS, Moscow, pp. 144-147 (in Russian).
[371] Zalat, A.A., Zaid, S.M., Gadallah, M.H., Abdel-Aziz, Z.A., 2012. Sandstones reservoir quality of the Matulla Formation, Gulf of Suez, Egypt. Australian Journal of Basic and Applied Sciences 6 (12), 511-529.
[372] Zhou, X.Q., Li, N., Liang, G.S., Li, L., Tang, D.J., Fu, X.M., 2009. Sedimentary significance of the autochthonous glauconite in stromatolitic limestones of the Mesoproterozoic Tieling Formation in Jixian, Tianjin, North China. Geological Bulletin of China 7, 985-990 (in Chinese with English abstract).