Abstract The production, transportation, deposition, and dissolution of carbonate profoundly form part of the global carbon cycle and affect the amount and distribution of dissolved inorganic carbon (DIC) and alkalinity (ALK), which drive atmospheric CO2 changes during glacial/ interglacial cycles. These processes may provide significant clues for better understanding of the mechanisms that control the global climate system. In this study, we calculate and analyze the foraminiferal dissolution index (FDX) and the fragmentation ratios of planktonic foraminifera for the 60�C25 ka B.P. time-span, based on samples from Core 17924 and ODP Site 1144 in the northeastern South China Sea (SCS), so as to reconstruct the deep-water carbonate dissolution during Marine Isotope Stage 3 (MIS 3). Our analysis shows that the dissolution of carbonate increases gradually in Core 17924, whereas it remains stable at ODP Site 1144. This difference is caused by the deep-sea carbonate ion concentration ([CO32-]) that affected the dissolution in Core 17924 where the depth of 3440 m is below the saturation horizon. However, the depth of ODP Site 1144 is 2037 m, which is above the lysocline where the water is always saturated with calcium carbonate; the dissolution is therefore less dependent of chemical changes of the seawater. The combined effect of the productivity and the deep-water chemical evolution may decrease deep-water [CO32-] and accelerate carbonate dissolution. The fall of the sea-level increased the input of DIC and ALK to the deep ocean and deepened the carbonate saturation depth, which caused an increase of the deep-water [CO32-]. The elevated [CO32-] partially neutralized the reduced [CO32-] contributed by remineralization of organic matter and slowdown of thermohaline. These consequently are the fundamental reasons for the difference in dissolution rate between these two sites.
Na Wang,Bao-Qi Huang*,He Li. Deep-water carbonate dissolution in the northern South China Sea during Marine Isotope Stage 3[J]. , 2016, 5(1): 100-107.
Na Wang,Bao-Qi Huang*,He Li. Deep-water carbonate dissolution in the northern South China Sea during Marine Isotope Stage 3[J]. Journal of Palaeogeography, 2016, 5(1): 100-107.
Adkins, J.F., McIntyre, K., Schrag, D.P., 2002. The salinity, temperature, and d18O of the glacial deep ocean. Science 298 (5599), 1769-1773.
[2]
Anderson, R.F., Fleisher, M.Q., Lao, Y., Winckler, G., 2008. Modern CaCO3 preservation in equatorial Pacific sediments in the context of late-Pleistocene glacial cycles. Marine Chemistry 111 (1-2), 30-46.
[3]
Bassinot, F.C., Beaufort, L., Vincent, E., Labeyrie, L.D., Rostek, F., Mu�� ller, P.J., Quidelleur, X., Lancelot, Y., 1994. Coarse fraction fluctuations in pelagic carbonate sediments from the tropical Indian Ocean: a 1500-kyr record of carbonate dissolution. Paleoceanography 9 (4), 579-600.
[4]
Berger, W.H., 1975. Deep-sea carbonates: dissolution profiles from foraminiferal preservation. Cushman Foundation for Foraminiferal Research Special Publication 13, 82-86.
[5]
Berger, W.H., 1982. Increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis. Naturwissenschaften 69 (2), 87e88.
[6]
Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., Bonani, G., 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365 (6442), 143-147.
[7]
Bu�� hring, C., Sarnthein, M., Erlenkeuser, H., 2004. Toward a highresolution stable isotope stratigraphy of the last 1.1 m.y.: site 1144, South China Sea. In: Proceedings of the Ocean Drilling Program, Scientific Results, p. 184 (Chapter 2),http://www-odp.tamu.edu/publications/184_SR/205/205.htm.
[8]
Burke, A., Robinson, L.F., 2012. The Southern Ocean's role in carbon exchange during the Last Deglaciation. Science 335 (6068), 557e561.
[9]
Chen, M.S., Huang, B.Q., Niu, Y.C., Du, J.H., 2011. Paleoceangraphic variations of the northern South China Sea from site 17924 during Marine Isotope Stage 3. Quaternary Sciences 31 (2), 299-306 (in Chinese with English abstract).
[10]
Chen, X.L., Zhao, Q.H., Jian, Z.M., 2002. Carbonate content changes since the Miocene and paleoenvironmental implications, ODP site 1148, northern South China Sea. Marine Geology and Quaternary Geology 22 (2), 69-74 (in Chinese with English abstract).
[11]
Cutler, K.B., Edwards, R.L., Taylor, F.W., Cheng, H., Adkins, J., Gallup, C.D., Cutler, P.M., Burr, G.S., Bloom, A.L., 2003. Rapid sea-level fall and deep-ocean temperature change since the last interglacial period. Earth and Planetary Science Letters 206 (3-4), 253-271.
[12]
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbj?ornsdottir, A.E., Jouzel, J., Bond, G., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364 (6434), 218-220.
[13]
Ding, X., Hao, Y.C., Wan, X.Q., Fang, N.Q., 2001. Carbonate dissolution cycles during Late Quaternary in the Bay of Bengal. Acta Sedimentologica Sinica 19 (2), 192-198 (in Chinese with English abstract).
Distribution and ecology of planktonic foraminifera from the seas around the Indonesian Archipelago. Marine Micropaleontology 58 (2), 114-134.
[16]
Fairbanks, R.G., Sverdlove, M., Free, R., Wiebe, P.H., B_e, A.W.H., 1982. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature 298 (5877), 841-844.
[17]
Farrell, J.W., Prell, W.L., 1989. Climatic change and CaCO3 preservation: an 800,000 year bathymetric reconstruction from the central equatorial Pacific Ocean. Paleoceanography 4 (4), 447e466.
[18]
Feely, R.A., Sabine, C.L., Lee, K., Berelson, W., Kleypas, J., Fabry, V.J., Millero, F.J., 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305 (5682), 362-366.
[19]
Franois, R., Altabet, M.A., Yu, E.F., Sigman, D.M., Bacon, M.P., Frank, M., Bohrmann, G., Bareille, G., Labeyrie, L.D., 1997. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389 (6654), 929-935.
[20]
Ganopolski, A., Rahmstorf, S., 2001. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409 (6817), 153-158.
[21]
Hain, M.P., Sigman, D.M., Haug, G.H., 2014. The biological pump in the past. In: Elderfield, H., Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, second ed. Elsevier, Amsterdam, pp. 485-517.
[22]
Hemleben, C., Spindler, M., Anderson, O.R., 1989. Modern Planktonic Foraminifera. Springer-Verlag, New York.
[23]
Huang, B.Q., Jian, Z.M., 1999. Late Quaternary coastal upwelling and variations of the East Asian summer monsoon off the Vietnam Coast. Quaternary Sciences (6), 518-525 (in Chinese with English abstract).
[24]
Huang, B.Q., Jian, Z.M., Lin, H.L., 2000. Late Quaternary changes of paleoproductivity in the northeastern South China Sea. Marine Geology and Quaternary Geology 20 (2), 65-68 (in Chinese with English abstract).
[25]
Huang, B.Q., Yang, W.Y., 2006. Variations of upper water structure in MIS 3 from the northern South China Sea. Quaternary Sciences 26 (3), 436-441 (in Chinese with English abstract).
[26]
Indermu�� hle, A., Monnin, E., Stauffer, B., Stocker, T.F., Wahlen, M., 2000. Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica. Geophysical Research Letters 27 (5), 735-738.
[27]
Jansen, H., Zeebe, R.E., Wolf-Gladrow, D.A., 2002. Modeling the dissolution of settling CaCO3 in the ocean. Global Biogeochemical Cycles 16 (2), 11-1-11-16.
[28]
Jian, Z.M., Wang, L.J., Kienast, M., Sarnthein, M., Kuhnt, W., Lin, H.L., Wang, P.X., 1999. Benthic foraminiferal paleoceanography of the South China Sea over the last 40,000 years. Marine Geology 156 (1-4), 159-186.
[29]
Jin, H.Y., Jian, Z.M., Liu, D.S., 2003. Late Quaternary variations of planktonic foraminiferal assemblage and paleo-temperature of Ontong-Java plateau, West Pacific. Marine Geology and Quaternary Geology 23 (4), 65-71 (in Chinese with English abstract).
[30]
Le, J.N., Shackleton, N.J., 1992. Carbonate dissolution fluctuations in the western equatorial Pacific during the Late Quaternary. Paleoceanography 7 (1), 21-42.
[31]
Li, B.H., Jian, Z.M., 2001. Evolution of planktonic foraminifera and thermocline in the southern South China Sea since 12 Ma (ODP-184, Site 1143). Science in China (Series D: Earth Sciences) 31 (10), 840-845.
Carbonate dissolution and deep-water paleoceanography of the South China Sea since the Middle Pleistocene. Chinese Science Bulletin 46 (22), 1908-1911.
[34]
Libes, S., 2009. Introduction to Marine Biogeochemistry, second ed. Elsevier, Amsterdam.
[35]
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 20 (1), PA1003.
[36]
Lv, J.Z., 2004. Late Quaternary Multi-species Isotope Stratigraphy and Paleoceanography in the Northern South China Sea (Master thesis). National Taiwan Ocean University.
Naidu, P.D., Malmgren, B.A., 1995. Monsoon upwelling effects on test size of some planktonic foraminiferal species from the Oman Margin, Arabian Sea. Paleoceanography 10 (1), 117e122.
[39]
Opdyke, B.N., Walker, J.C.G., 1992. Return of the coral reef hypothesis: basin to shelf partitioning of CaCO3 and its effect on atmospheric CO2. Geology 20 (8), 733-736.
[40]
Rahmstorf, S., 2002. Ocean circulation and climate during the past 120,000 years. Nature 419 (6903), 207e214.
[41]
Regenberg, M., Regenberg, A., Garbe-Sch?onberg, D., Lea, D.W., 2014. Global dissolution effects on planktonic foraminiferal Mg/Ca ratios controlled by the calcite-saturation state of bottom waters. Paleoceanography 29 (3), 127e142.
[42]
Ridgwell, A.J., Kennedy, M.J., Caldeira, K., 2003. Carbonate deposition, climate stability, and Neoproterozoic ice ages. Science 302 (5646), 859-862.
[43]
Rutberg, R.L., Hemming, S.R., Goldstein, S.L., 2000. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios. Nature 405 (6789), 935-938.
[44]
Sarnthein, M., Schneider, B., Grootes, P.M., 2013. Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean. Climate of the Past Discussions 9 (6), 2595-2614.
[45]
Stephens, B.B., Keeling, R.F., 2000. The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature 404 (6774), 171-174.
[46]
Voelker, A.H.L., 2002. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quaternary Science Reviews 21 (10), 1185-1212.
[47]
Wang, P.X., 1998. Glacial carbonate cycles in western Pacific marginal seas. Marine Geology and Quaternary Geology 18 (1), 1-11 (in Chinese with English abstract).
[48]
Wang, P.X., Li, Q.Y., 2009. The South China Sea: Paleoceanography and Sedimentology. Springer (Online).
[49]
Wang, P.X., Min, Q.B., Bian, Y.H., Feng, W.K., 1986. Planktonic foraminifera in the continental slope of the northern South China Sea during the last 130,000 years and their paleooceanographic implications. Acta Geological Sinica 60 (3), 215-225 (in Chinese with English abstract).
[50]
Wang, P.X., Wang, L.J., Bian, Y.H., Jian, Z.M., 1995. Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles. Marine Geology 127 (1-4), 145-165.
[51]
Wang, P.X., Prell, W.L., Blum, P., et al., 2000. Shipboard Scientific Party. Site 1144. In: Proceedings of the Ocean Drilling Program, Initial Reports, 184: College Station, TX (Ocean Drilling Program), pp. 1-97.
[52]
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.C., Dorale, J.A., 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294 (5550), 2345-2348.
[53]
Watson, A.J., Bakker, D.C., Ridgwell, A.J., Boyd, P.W., Law, C.S., 2000. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407 (6805), 730-733.
[54]
Yang, W.Y., Huang, B.Q., Xiao, J., Zhou, L.P., 2008. Environmental changes of surface sea recorded in planktonic foraminifera during MIS 3 in the western South China Sea. Quaternary Sciences 28 (3), 437e446 (in Chinese with English abstract).
An evaluation of benthic foraminiferal B/Ca and d11B for deep ocean carbonate ion and pH reconstructions. Earth and Planetary Science Letters 293 (1-2), 114-120.
[58]
Yu, J.M., Anderson, R.F., Rohling, E.J., 2014. Deep ocean carbonate chemistry and glacial-interglacial atmospheric CO2 changes. Oceanography 27 (1), 16-25.
[59]
Zhao, Q.Y., 1989. Geochemistry of Ocean. Geological Publishing House, Beijing (in Chinese).
[60]
Zheng, H.B., Yang, W.G., He, J., Mei, X., Chen, G.C., Xie, X., Huang, E.Q., Su, X., Qiao, P.J., 2008. Marine Isotope Stage 3 (MIS 3) of South China Sea. Quaternary Sciences 28 (1), 68-78 (in Chinese with English abstract).
[61]
Zheng, L.F., Chen, R.H., 1982. Planktonic foraminifera and carbonate dissolution in deep sea. Offshore Oil 5, 41-49 (in Chinese).