Sedimentary facies analysis of a high-frequency, small-scale, peritidal carbonate sequence in the Lower Jurassic of the Tripolis carbonate unit (central western Crete, Greece): Long-lasting emergence and fossil laminar dolocretes horizons
Fotini A. Pomoni*, Vassilis Karakitsios
Section of Historical Geology and Paleontology, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, 15784, Athens, Greece
The study examines a Lower Jurassic (late Liassic) cyclic lagoonal–peritidal stratigraphic unit outcropping in central western Crete (Tripolis unit), which corresponds to the eastern (internal) part of the mainland Gavrovo-Tripolis platform, the most signi?cant external platform of the Hellenides. The studied Tripolis carbonate sequence consists of meter-scale, shallowing-upward successions of restricted innercarbonate platform facies, including cyclically repeated subtidal, intertidal and supratidal facies, that are separated by erosion surfaces (elementary cycles). Each cycle starts with relatively open-marine facies, which are overlain by shallower, more restricted facies (tidal ?at progradation). The lithofacies association includes dolomitic intraclastic–peloidal–bioclastic wackestones–packstones/?oatstones and grainstones/rudstones dominated by a restricted shallow-marine fauna (bivalves, gastropods, ostracods and seldom benthic foraminifers), representing a shallow subtidal to intertidal, moderately high-energy environment within an innerplatform setting (peritidal environment to restricted lagoon). This lithofacies association has been intermittently subaerially exposed and has undergone diagenetic processes in an inter- or supratidal environment, exhibiting features of vadose diagenesis and pedogenesis due to long-lasting exposure along certain horizons. The peritidal facies are capped by dolocretes controlled by root-activities (laminar dolocretes, peloidal–pisoid dolocretes and massive dolocretes), marking the end of each depositional cycle, and, thus, distinguishing the successive episodes of a prolonged subaerial exposure period and birth of paleosol horizons. Dolocretes consist a diagenetic facies, characterized by several vadose and pedogenic fabrics, including fenestral cavities with geopetal structures, “?ower spar” to blocky sparry cement in primary pores, micritic coatings, crudely pelleted walls, alveolar-septal texture, in?lls of rootlet moulds, inter-granular micritic bridges, meniscus cement, sinuous desiccation cracks, circum-granular cracking and in-situ brecciation. The stratigraphic distribution of the cyclothems, suggests relative sea-level control on the peritidal cyclicity controlled by uniform tectonic subsidence and eustasy (allocyclic processes), in an innerramp-to-shelf carbonate setting with tidal ?at and restricted lagoon depositional environment. However, a combination of allocyclic with autocyclic processes controlling accommodation space and sediment accumulation, should be also taken in consideration. The studied high-frequency cycles are interpreted to have been formed during the falling stage and correspond to lowstand systems tract (LST) sediments, which consists part of a regressive peak of the Lower/Middle Jurassic Transgressive–Regressive Facies Low Frequency Cycle (2nd order). Due to the absence of massive evaporites, dolomitization has been attributed to re?ux of slightly increased-salinity marine ?uids (i.e. penesaline), that are driven into the underlying lagoonal–peritidal carbonate sediments during periods of long term sea-level fall in a marginal marine setting.
. Sedimentary facies analysis of a high-frequency, small-scale, peritidal carbonate sequence in the Lower Jurassic of the Tripolis carbonate unit (central western Crete, Greece): Long-lasting emergence and fossil laminar dolocretes horizons[J]. Journal of Palaeogeography, 2016, 5(3): 241-257.
. Sedimentary facies analysis of a high-frequency, small-scale, peritidal carbonate sequence in the Lower Jurassic of the Tripolis carbonate unit (central western Crete, Greece): Long-lasting emergence and fossil laminar dolocretes horizons[J]. Journal of Palaeogeography, 2016, 5(3): 241-257.
Abdelhady, A.A., Fürsich, F.T., 2015. Sequence architecture of a Jurassic ramp succession from Gebel Maghara (North Sinai, Egypt): implications for eustacy. Journal of Palaeogeography, 4(3), 305-330.
[2]
Alonso-Zarza, A.M., 1999. Initial stages of laminar calcrete formation by roots: examples from the Neogene of central Spain. Sedimentary Geology, 126, 177-191.
[3]
Alonso-Zarza, A.M., 2003. Palaeoenvironmental signi?cance of palustrine carbonates and calcretes in the geological record. Earth-Science Reviews, 60, 261-298.
[4]
Azerêdo, A.C., Wright, V.P., Ramalho, M.M., 2002. The middle-late Jurassic forced regression and disconformity in central Portugal: eustatic, tectonic and climatic effects on a carbonate ramp system. Sedimentology, 49, 1339-1370.
[5]
Azerêdo, A.C., Wright, V.P., Mendonça-Filho, J., Cabral, M.C., Duarte, L.V., 2015. Deciphering the history of hydrologic and climatic changes on carbonate lowstand surfaces: calcrete and organic-matter/evaporite facies association on a palimpsest middle Jurassic landscape from Portugal. Sedimentary Geology, 323, 66-91.
[6]
Bernoulli, D., Wagner, W., 1971. Subaerial diagenesis and fossil caliche deposits in the Calcare Massiccio formation (lower Jurassic, Central Apennines, Italy). Neues Jahrbuch fur Geologie und Paläontologie Abh, 138(2), 135-149.
[7]
Bonneau, M., Fleury, J.J., 1971. Précisions sur la série d'Ethia (Crète, Grèce): existence d'un Premier Flysch mésocrétacé. Comptes Rendus de l'Académie des Sciences Paris, 272, 1840-1842.
[8]
Bonneau, M., Karakitsios, V., 1979. Les niveaux inférieurs (Trias supérieur) de la nappe de Tripolitza en Crète moyenne (Grèce) et leurs relations avec la nappe de phyllades. Problèmes stratigraphiques, tectoniques et de métamorphisme, 28, 15-18.
[9]
Bosellini, A., Hardie, A.L., 1985. Facies e ciclidella Dolomia Principale delle Alpi Venete. Memorie della Società Geologica Italiana, 30, 245-266.
[10]
Bosence, D.W.J., Wood, J.L., Rose, E.P.F., Qing, H., 2000. Low- and high-frequency sea-level changes control peritidal carbonate cycles, facies and dolomitization in the Rock of Gibraltar (Early Jurassic, Iberian Peninsula). Journal of the Geological Society, London, 157, 61-74.
[11]
Bosence, D.W.J., Prokter, E., Aurell, M., Kahla, A.B., Boudaghjer-Fadel, M., Casaglia, F., Cirilli, S., Mehdie, M., Nieto, L., Rey, J., Scherreiks, R., Soussi, M., Waltham, D., 2009. A dominant tectonic signal in high-frequency, peritidal carbonate cycles? A regional analysis of Liassic platforms from western Tethys. Journal of Sedimentary Research, 79(6), 389-415.
[12]
Brandano, M., Corda, L., Tomasseti, L., Testa, D., 2015. On the peritidal cycles and their diagenetic evolution in the lower Jurassic carbonates of the Calcare Massiccio formation (Central Apennines). Geologica Carpathica, 66(5), 393-407.
[13]
Brandt, K., 1986. Glacioeustatic cycles in the early Jurassic? Neues Jahrbuch fur Geologie und Paläontologie Mhft, 6, 257-274.
[14]
Braithwaite, C.J.R., 1983. Calcrete and other soils in Quaternary limestones: structures, processes and applications. Journal of the Geological Society, London 351-363.
[15]
Castellarin, A., Sartori, R., 1973. Desiccation shrinkage and leaching Vugs in the Calcari Grigi infraliassic tidal ?at (S. Massenza and Loppio, Trento, Italy). Eclogae Geologicae Helvetiae, 66/2, 339-343.
[16]
Crevello, P.D., 1991. High-frequency carbonate cycles and stacking patterns: interplay of orbital forcing and subsidence on lower Jurassic rift platforms, High Atlas, Morocco. In: Franseen, E.K., Watney, W.L., Kendall, C.G.St.C., Ross, W. (Eds.), Sedimentary Modeling: Computer Simulations and Methods for Improved Parameter De?nition. Kansas Geological Survey Bulletin, vol. 233, pp. 207-230.
[17]
De Graciansky, P.-C., Jacquin, T., Hesselbo, S.P., 1988. The Ligurian cycle: an overview of Lower Jurassic 2nd-order transgressive/regressive facies cycles in Western Europe. In: Graciansky, de P.-C., Hardenbol, J., Jacquin, T., Vail, P.R. (Eds.), Mesozoic and Cenozoic Sequence Stratigraphy of European Basins, SEPM Special Publication, vol. 60, pp. 467-479.
[18]
Dickson, J.A.D., 1966. Carbonate identi?cation and genesis as revealed by staining. Journal of Sedimentary Petrology, 36, 491-595.
[19]
Dunham, R.J., 1962. Classi?cation of carbonate rocks according to depositional texture. In: Ham, W.E. (Ed.), Classi?cation of Carbonate Rocks. AAPG Memoir, vol. 1, pp. 108-121.
[20]
Elrick, m., 1995. Cyclostratigraphy of middle Devonian carbonates of the eastern Great basin. Journal of Sedimentary Research, B65, 61-79.
[21]
Feng, Z.Z., Bao, Z.D., Li, S.W., 1997. Lithofacies Palaeogeography of Early and Middle Triassic of South China. Petroleum Industry Press, Beijing, pp. 1-222, photoplates 1-26, colour maps 1-4 (in Chinese with English preface, contents and abstracts).
[22]
Fischer, A.G., 1964. The Lofer cyclothems of the Alpine Triassic. Kansas Geological Survey Bulletin, 169, 107-149.
[23]
Fischer, A.G., D'Argenio, B., Silva, I.P., Weissert, H., Ferreri, V., 2004. Cyclostratigraphic approach to Earth's history: an introduction. In: D'Argenio, B., Fischer, A.G., Silva, I.P., Weissert, H., Ferreri, V. (Eds.), Cyclostratigraphy Approaches and Case Histories, SEPM Special Publications, vol. 81, pp. 5-16.
[24]
Fleury, J.J., 1980. Les zones de Gavrovo-Tripolitza et du Pinde-Olonos (Grèce continentale et Péloponnèse du Nord): evolution d'une plate-forme et d'un bassin dans leur cadre alpin. Société Géologique du Nord, 4(Part I & Part II), 651 pp.
[25]
Given, R.K., Wilkinson, B.H., 1987. Dolomite abundance and stratigraphic age: Constraints on rates and mechanisms of Phanerozoic dolostone formation. Journal of Sedimentary Petrology, 57, 1066-1078.
[26]
Goldhammer, R.K., Elmore, 1984. Paleosols capping regressive carbonate cycles in the Pennsylvanian Black Prince limestone, Arizona. Journal of Sedimentary Petrology, 54, 1124-1137.
[27]
Goldhammer, R.K., Dunn, P.A., Hardie, L.A., 1987. High-frequency, glacioeustatic, sea-level oscillations with Milankovitch characteristics recorded in the Middle Triassic platform carbon.
[28]
Gómez-Gras, D., Alonso-Zarza, A., 2003. Reworked calcretes: their signi?cance in the reconstruction of alluvial sequences (Permian and Triassic, Minorca, Balearic Islands, Spain). Sedimentary Geology, 158, 299-319.
[29]
Grotzinger, J.P., 1986. Cyclicity and palaeoenvironmental dynamics Rocknest platform, northwest Canada. Geological Society of America Bulletin, 97, 1208-1231.
[30]
Hallam, A., 2001. A review of the broad pattern of Jurassic sea-level changes and their possible causes in the light of current knowledge. Palaeogeography, Palaeoclimatology, Palaeoecology, 167, 23-37.
[31]
Haq, B.U., Hardenbol, J., Vail, P.R., 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level changes, sea-level changes, an integrated approach. In: SEPM Special Publications, vol. 42, pp. 71-108.
[32]
Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, Th., de Graciansky, P.C., Vail, P.R., 1998. Mesozoic and Cenozoic sequence chronostratigraphy framework of European basins, Jurassic chronostratigraphy. In: De Graciansky, P.C., Hardenbol, J., Jacquin, Th., Vail, P. (Eds.), Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Special Publications, vol. 60, pp. 3-13.
[33]
Jacquin, T., De Graciansky, P.C., 1998a. Major transgressive/ regressive cycles: the stratigraphic signature of European basin development. In: De Graciansky, P.C., Hardenbol, J., Jacquin, Th., Vail, P. (Eds.), Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Special Publications, vol. 60, pp. 15-30.
[34]
Jacquin, T., De Graciansky, P.C., 1998b. Transgressive-regressive (second order) facies cycles: the effects of tectonoeustacy. In: De Graciansky, P.C., Hardenbol, J., Jacquin, Th, Vail, P. (Eds.), Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. SEPM Special Publications, vol. 60, pp. 445-466.
[35]
James, N.P., 1972. Holocene and Pleistocene calcareous crust (caliche): criteria for subaerial exposure. Journal of Sedimentary Petrology, 42, 817-836.
[36]
James, N.P., 1984. Shallowing upwards sequences in carbonates. In: Walker, R.C. (Ed.), Facies Models. Geoscience Canada, Reprint Series, second ed., pp. 213-228.
[37]
Karakitsios, V., 1986. Les relations lithostratigraphiques, métamorphiques et structurales entre les phyllades et la série carbonaté de Tripolitza (Crète moyenne-occidentale, Grèce). Bulletin of the Geological Society of Greece, 18, 31-58.
[38]
Karakitsios, V., 1992. Ouverture et inversion tectonique du bassin ionien (Epire, Grèce). Annales Geologiques Pays Helleniques, 35, 185-318.
[39]
Karakitsios, V., 1995. The In?uence of Structure and Halokinesis on Organic Matter Preservation and Thrust System Evolution in Ionian Basin, NW Greece. AAPG Bulletin, 79(7), 960-980.
[40]
Karakitsios, V., 2013. Western Greece and ionian sea petroleum systems. AAPG Bulletin, 97(9), 1567-1595.
[41]
Karakitsios, V., Chatzicharalampous, E., 2013. Biostratigraphy and sedimentology of the ionian zone Ammonitico Rosso in the Mavron Oros area (NW Epirus, Greece) e paleogeographic implications. Geological Society of Greece, 47(1), 136-145.
[42]
Karakitsios, V., Kafousia, N., Tsikos, H., 2010. A review of oceanic anoxic events as recorded in the Mesozoic sedimentary record of mainland Greece. Hellenic Journal of Geosciences, 45, 123-132.
[43]
Karakitsios, V., Rigakis, N., 2007. Evolution and petroleum potential of Western Greece. Journal of Petroleum Geology, 30(3), 197-218.
[44]
Kornicker, L.S., 1958. Bahamian limestone crusts. Gulf Coast Association of Geological Societies Transactions, VIII, 167-170.
[45]
Lehrmann, D.J., Yang, W., Wei, J.Y., Yu, Y.Y., Xiao, J.F., 2001. Lower Triassic peritidal cyclic limestone: an example of anachronistic carbonate facies from the great bank of Guizhou, Nanpanjiang basin, Guizhou Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 173(3-4), 103-123.
[46]
Martin-Chivelet, J., Gimenez, R., 1992. Paleosols in microtidal carbonate sequences. Sierra de Utiel Formation, Upper Cretaceous, SE Spain. Sedimentary Geology, 81, 125-145.
[47]
Morard, A., Guex, J., Bartolini, A., Morettini, E., De Wever, P., 2003. The new scenario for Domerian-Toarcian transition. Bulletin de la Societe Geologique de France, 174(4), 351-356.
[48]
Mouterde, R., Tintant, H., Gabilly, J., Hanzo, M., Lefavrais, A., Rioult, M., 1980. Lias. In: Megnien, C. (Ed.), Synthe'se ge'ologique du bassin de Paris. Me'm. BRGM, vol. 101, pp. 75-123.
[49]
McKenzie, J.A., Hsü, K.J., Schneider, J.F., 1980. Movement of subsurface waters under the sabkha, Abu Dhabi, UAE, and its relation to evaporative dolomite genesis. In: SEPM Special Publications, vol. 28, pp. 11-30.
[50]
Merino-Tomé, O., Della Porta, G., Kenter, J.A.M., Verwer, K., Harris, P.(M.), Adams, E.W., Playton, T., Corrochano, D., 2012. Sequence development in an isolated carbonate platform (Lower Jurassic, Djebel Bou Dahar, High Atlas, Morocco): in?uence of tectonics, eustacy and carbonate production. Sedimentology, 59, 118-155.
[51]
Nash, D.J., Smith, R.G., 2003. Properties and development of channel calcretes in a mountain catchment. Tabernas Basin, Southeast Spain. Geomorphology, 50, 227-250.
[52]
Narkiewicz, M., Retallack, G.J., 2014. Dolomitic paleosols in the lagoonal tetrapod track-bearing succession of the Holy Cross mountains (middle Devonian, Poland). Sedimentary Geology, 299, 74-87.
[53]
Photiades, A., Pomoni-Papaioannou, F., Kostopoulou, V., 2010. Corellation of late Triassic and early Jurassic Lofer-type carbonates from the Peloponnesus peninsula, Greece. Bulletin of the Geological Society of Greece, XLIII(2), 726-736.
[54]
Pimentel, N.L., Wright, V.P., Azevedo, T.M., 1996. Distinguishing early groundwater alteration effects from pedogenesis in ancient alluvial basins: examples from the Paleogene of southern Portugal. Sedimentary Geology, 105, 1-10.
[55]
Pomoni-Papaioannou, F., Carotsieris, Z., 1993. Dolomitization patterns in JurassicCretaceous solution-collapse Breccias of Mainalon Mt. (Tripolis unit, Central Peloponnesus-Greece). Carbonates & Evaporites, 8(1), 9-22.
[56]
Pomoni-Papaioannou, F., 2008. Facies analysis of Lofer cycles (upper Triassic), in the Argolis peninsula (Greece). Sedimentary Geology, 208, 79-87.
Pomoni-Papaioannou, F., 2009. Prolonged phases of emersion of the passive Pelagonian margin (Argolis peninsula, late Triassic) and the Gavrovo-Tripolitza carbonate platform (eastern Peloponnesus, early Jurassic): palaeokarsts and paleosols in loferitic formations (Hellenides). In: International Symposium “Mineralogy and Geodiversity”, Romanian Journal of Mineralogy, vol. 84, pp. 59-62.
[59]
Pomoni-Papaioannou, F., Kostopoulou, V., 2010. Subaerial exposure-related discontinuities in shallow-water platform carbonate successions (Late Triassic-Pelagonian & Early Jurassic-Gavrovo Tripolitza, Greece). Hellenic Journal of Geosciences, 45, 227-238.
[60]
Qing, H., Bosence, D.W.J., Rose, E.P.F., 2001. Dolomitization by penesaline seawater in Early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean. Sedimentology, 48(1).
[61]
Retallack, G.J., 2015. Late Ordovician Glaciation initiated by early land plant evolution and punctuated by greenhouse mass extinctions. The Journal of Geology, 123(6), 509-538. The University of Chicago.
[62]
Rey, J., 1997. A Liassic isolated platform controlled by tectonics: South Iberia margin, southeast Spain. Geological Magazine, 132, 235-247.
[63]
Robbin, D.M., Stipp, J.J., 1979. Depositional rate of laminated soilstone crusts, Florida Keys. Journal of Sedimentary Petrology, 49, 175-180.
[64]
Romano, R., Masetti, D., Carras, N., Barattolo, F., Roghi, G., 2008. The Triassic-Jurassic boundary in a peritidal carbonate platform of the Pelagonian domain: the mount Messapion section (Chalkida, Greece). Rivista Italiana di Paleontologia e Stratigra?a, 114(3), 431-452.
[65]
Rott, C., Qing, H., 2013. Early dolomitization and recrystallization in swallow marine carbonates, Mississippian, Alida beds, Williston Basin (Canada): evidence from petrography and isotope geochemistry. Journal of Sedimentary Research, 83(41), 928-941.
[66]
Scherreiks, R., 2000. Platform margin and oceanic sedimentation in a divergent and convergent plate setting (Jurassic, Pelagonian Zone, NE-Evvoia, Greece). International Journal of Earth Sciences, 89, 90-107.
[67]
Scherreiks, R., Bosence, D., BouDagher-Fadel, M., Melendez, G., Baumgartner, P.O., 2010. Evolution of the Pelagonian carbonate platform complex and the adjacent oceanic realm in response to plate tectonic forcing (late Triassic and Jurassic), Evvoia, Greece. International Journal of Earth Sciences, 99, 1317-1334.
[68]
Soussi, M., M'Rabet, A., 1994. Burial dolomitization of organic-rich and organic-poor carbonates, Jurassic of Central Tunisia. In: Purser, B., Tucker, M., Zenger, D. (Eds.), Dolomites: a Volume in Honour of Dolomieu, SEPM Special Publications, vol. 21, pp. 429-445.
[69]
Strasser, A., 1988. Shallowing-upward sequences in Purbeckian peritidal carbonates (lowermost Cretaceous, Swiss and French Jura mountains). Sedimentology, 35, 369-383.
[70]
Strasser, A., 1991. Lagoonal-peritidal sequences in carbonate environments: autocyclic and allocyclic processes. In: Einsele, G., Ricken, W., Seilacher, A. (Eds.), Cycles and Events in Stratigraphy. Springer-Verlag, pp. 709-721.
[71]
Strasser, A., Arnaud, H., Baudin, F., Rohl, U., 1995. Small-scale shallow-water carbonate sequences of resolution Guyot (Sites 866, 867, and 868). In: Winterer, E.L., Sager, W.W., Firth, J.V., Sinton, J.M. (Eds.), Proceedings of the Ocean Drilling Program. Scienti?c Results, vol. 143, pp. 119-131.
[72]
Strasser, A., Hillgärtner, H., 1998. High-frequency sea-level ?uctuations recorded on a shallow carbonate platform (Berriasian and lower Valanginian of mount Salève, French Jura). Eclogae Geologicae Helvetiae, 91, 375-390.
[73]
Strasser, A., Hillgärtner, H., Hug, W., Pittet, B., 2000. Third-order depositional sequences re?ecting Milankovitch cyclicity. Terra Nova, 12, 303-311.
[74]
Strasser, A., Védrine, S., Stienne, N., 2012. Rate and synchronicity of environmental changes on a shallow carbonate platform (Late Oxfordian, Swiss Jura Mountains). Sedimentology, 59, 185-211.
[75]
Strasser, A., Pittet, B., Hug, W., 2015. Palaeogeography of a shallow carbonate platform: the case of the middle to late Oxfordian in the Swiss Jura Mountains. Journal of Palaeogeography, 4(3), 251-268.
[76]
Sun, S.Q., 1994. A reappraisal of dolomite abundance and occurrence in the Phanerozoic. Journal of Sedimentary Research, 64, 396-604.
[77]
Tandon, S.K., Narayan, D., 2006. Calcrete conglomerate, case-hardened conglomerate and cornstone e a comparative account of pedogenic and non-pedogenic carbonates from the continental Siwalik Group, Punjab, India. Sedimentology, 28(3),353-367.
[78]
Verrecchia, E.P., Freytet, P., Verrecchia, K.E., Dumont, J.L., 1996. Spherulites in calcrete laminar crusts: biogenic CaCO3 precipitation as a major contributor to crust formation. Journal of Sedimentary Research, A65, 690-700.
[79]
Waite, R., Marty, D., Strasser, A., Wetzel, A., 2013. The lost paleosols: masked evidence for emergence and soil formation on the Kimmeridgian Jura platform (NW Switzerland). Palaeogeography, Palaeoclimatology, Palaeoecology, 376, 73-90.
[80]
Wignall, P.B., Maynard, J.R., 1993. The sequence stratigraphy of transgressive black shales. In: Katz, B., Pratt, L.M. (Eds.), Source rocks in a sequence stratigraphic frame work AAPG Studies in Geology, vol. 37, pp. 35-47.
[81]
Wright, V.P., Platt, N.H., Wimbleton, W.A., 1988. Biogenic laminar calcretes: evidence of calci?ed root-mat horizons in paleosols. Sedimentology, 35, 603-620.
[82]
Wright, V.P., Tucker, M.E., 1991a. Calcretes: an introduction.
[83]
In: Wright, V.P., Tucker, M.E. (Eds.), Calcretes, International Association of Sedimentologists Series, 2, pp. 1-22. Wright, V.P., 1994. Paleosols in shallow marine carbonate sequences. Earth-Science Reviews, 35, 367-395.
[84]
Wright, V.P., Platt, N.H., Marriot, S.B., Beck, V.H., 1995. A classi?cation of rhizogenic (root-formed) calcretes, with examples from the Upper Jurassice Lower Carboniferous of Spain and Upper Cretaceous of southern France. Sedimentary Geology, 100, 143-158.
[85]
Wright, V.P., Beck, V.H., Sanz-Montero, M.E., 1996. Spherulites in calcrete laminar crusts: biogenic CaCO3 precipitation as a major contributor to crust formation. Discussion. Journal of Sedimentary Research, 66, 1040-1041.
[86]
Wright, V.P., 2007. Calcrete. In: Nash, D.J., McLaren, S.J. (Eds.), Geochemical Sediments and Landscapes. Blackwell, Malden, Massachusetts, pp. 10-45.
Yang, W., Lehrmann, D.J., 2003. Milankovitch climatic signals in lower Triassic (Olenekian) peritidal carbonate successions, Nanpanjiang basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 201(3-4), 283-306.
[89]
Yang, W., Lehrmann, D.J., 2014. Peritidal carbonate cycles induced by carbonate productivity variations: a conceptual model for an isolated Early Triassic greenhouse platform in South China. Journal of Palaeogeography, 3(2), 115-126.
[90]
Zambetakis-Lekkas, A., Pomoni-Papaioannou, F., Alexopoulos, A., 1996. Biostratigraphy and sedimentology of Liassic carbonate sediments of Tripolitza platform in central Crete. Revue de Paleobiologie, 15(2), 393-399.