Abstract At present, there are no criteria to distinguish soft-sediment deformation structures (SSDS) formed by earthquakes from SSDS formed by the other 20 triggering mechanisms (see a companion paper in Vol. 5, No. 4 of this journal by Shanmugam, 2016). Even if one believes that earthquakes are the true triggering mechanism of SSDS in a given case, the story is still incomplete. This is because earthquakes (seismic shocks) are induced by a variety of causes: (1) global tectonics and associated faults (i.e., mid-ocean ridges, trenches, and transform faults); (2) meteorite-impact events; (3) volcanic eruptions; (4) post-glacial uplift; (5) tsunami impact; (6) cyclonic impact; (7) landslides (mass-transport deposits); (8) tidal activity; (9) sea-level rise, (10) erosion; and (11) fluid pumping. These different causes are important for developing SSDS. Breccias are an important group of SSDS. Although there are many types of breccias classified on the basis of their origin, five types are discussed here (fault, volcanic, meteorite impact, sedimentary-depositional, sedimentary-collapse). Although different breccia types may resemble each other, distinguishing one type (e.g., meteorite breccias) from the other types (e.g., fault, volcanic, and sedimentary breccias) has important implications. (1) Meteorite breccias are characterized by shock features (e.g., planar deformation features in mineral grains, planar fractures, high-pressure polymorphs, shock melts, etc.), whereas sedimentary-depositional breccias (e.g., debrites) do not. (2) Meteorite breccias imply a confined sediment distribution in the vicinity of craters, whereas sedimentary-depositional breccias imply an unconfined sediment distribution, variable sediment transport, and variable sediment provenance. (3) Meteorite, volcanic, and fault breccias are invariably subjected to diagenesis and hydrothermal mineralization with altered reservoir quality, whereas sedimentary-depositional breccias exhibit primary (unaltered) reservoir quality. And finally, (4) sedimentary-collapse breccias are associated with economic mineralization (e.g., uranium ore), whereas sedimentary-depositional breccias are associated with petroleum reservoirs. Based on this important group of SSDS with breccias, the current practice of interpreting all SSDS as “seismites” is inappropriate. Ending this practice is necessary for enhancing conceptual clarity and for advancing this research domain.
Corresponding Authors:
E-mail address:shanshanmugam@aol.com (G. Shanmugam).
Cite this article:
. The fallacy of interpreting SSDS with different types of breccias as seismites amid the multifarious origins of earthquakes: Implications[J]. Journal of Palaeogeography, 2017, 6(1): 12-44.
. The fallacy of interpreting SSDS with different types of breccias as seismites amid the multifarious origins of earthquakes: Implications[J]. Journal of Palaeogeography, 2017, 6(1): 12-44.
Agnon, A., Migowski, C., Marco, S., 2006. Intraclast breccias in laminated sequences reviewed: Recorders of paleo-earthquakes. In: Enzel, Y., Agnon, A., Stein, M., (Eds.), Frontiers in Dead Sea Paleoenvironmental Research. GSA Special Paper , 401, pp. 195-214.
Allen, J.R.L., 1984. Sedimentary Structures, their Character and Physical Basis. Elsevier, Amsterdam, I, p. 593 and II, pp. 343-663.
[4]
ASCE (American Society of Civil Engineers), 1907. The effects of the San Francisco Earthquake of April 18th, 1906, on engineering constructions: Reports of a general committee and of six special committees of the San Francisco Association of Members of the American Society of Civil Engineers. Transactions. Paper No. 1056.
[5]
Barruol, G., Cordier, E., Bascou, J., Fontaine, F.R., Legsy, B., Lescarmontier, L., 2013. Tide-induced microseismicity in the Mertz glacier grounding area, East Antarctica. Geophysical Research Letters , 40, 5412-5416.
[6]
Basilone, L., Lena, G., Gasparo-Morticelli, M., 2014. Synsedimentary-tectonic, soft-sediment deformation and volcanism in the rifted Tethyan margin from the Upper Triassic-Middle Jurassic deep-water carbonates in Central Sicily. Sedimentary Geology , 308, 63-79.
[7]
Beck, C., 2009. Lake sediments as Late Quaternary palaeo-seismic archives: Examples in north-western Alps and clues for earthquake-origin assessment of sedimentary disturbances. Earth-Science Reviews , 96, 327-344.
[8]
Becker, L., 2002. Repeated blows. Scientific American , 286, 76-83.
[9]
Bischoff, A., 2000. Mineralogical characterization of primitive, type-3 lithologies in Rumuruti chondrites. Meteoritics Planetary Science , 35, 699-706.
[10]
Bischoff, A., Scott, E.R.D., Metzler, K., Goodrich, C.A., 2006. Nature and origins of meteoritic breccias. In: Lauretta, D.S., McSweeen, Jr., H.Y., (Eds.), Meteorites and the Early Solar System II . University of Arizona Press, pp. 679-712.
[11]
Blount, D., Moore, C.H., 1969. Depositional and non-depositional carbonate breccias, Chiantla quadrangle, Guatemala. GSA Bulletin , 80, 429-442.
[12]
Boulton, G.S., Dobbie, K.E., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International , 86, 3-28.
Busby, C.J., Yip, G., Blikra, L., Renne, P., 2002. Coastal landsliding and catastrophic sedimentation triggered by Cretaceous-Tertiary bolide impact: A pacific margin example? Geology , 30, 687-690.
[16]
Caine, J.S., Evans, J.P., Forster, C.B., 1996. Fault zone architecture and permea bility structure. Geology , 24, 1025-1028.
[17]
Chenoweth, W.I., 1986. The Orphan lode mine, Grand Canyon, Arizona: A case study of a mineralized, collapse-breccia pipe. U.S. Geological Survey Open File Report , 86-510.
[18]
Claeys, P., Kiessling, W., Alvarez, W., 2002. Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. In: Koeberl, C., MacLeod, K.G., (Eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. GSA Special Paper , 356, pp. 55-68.
[19]
Collins, G.S., Melosh, H.J., Marcus, R.A., 2005. Earth impact effects program: A web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteoritics Planetary Science , 40, 817-840.
[20]
Collinson, J.D., 1994. Sedimentary deformational structures. In: Maltman, A., (Ed.), The Geological Deformation of Sediments . Chapman Hall, London, pp. 95-125.
[21]
Covey, C., Thompson, S.L., Weissman, P.R., MacCracken, M.C., 1994. Global climatic effects of atmospheric dust from an asteroid or comet impact on Earth. Global Planetary Change , 9, 263-273.
[22]
Dahlkamp, F.J., 1990. Uranium deposits in collapse breccia pipes in the Grand Canyon Region, Colorado Plateau, USA. Mitteilungen des Naturwissenschaftlichen Vereines für Steiermark , 120, 89-98.
[23]
Day, S., Maslin, M., 2005. Linking large impacts, gas hydrates, and carbon isotope excursions through widespread sediment liquefaction and continental slope failure: The example of the K-T boundary event. In: Kenkmann, T., Hrz, F., Deutsch, A., (Eds.), Large Meteorite Impacts III . GSA Special Paper , 384, pp. 239-258.
[24]
Dixon, E.E.L., 1921. The Geology of the South Wales Coalfield, Part XIII: The Country around Pembroke and Tenby. In: Memoir, Geological Survey of the United Kingdom . Her (His) Majesty's Stationery Office (H.M.S.O.).
[25]
Egholm, D.G., Clausen, O.R., Sandiford, M., Kristensen, M.B., Korstgrd, J.A., 2008. The mechanics of clay smearing along faults. Geology , 36, 787-790.
[26]
Engelder, J.T., 1974. Cataclasis and the generation of fault gouge. GSA Bulletin , 85, 1515-1522.
[27]
Finch, W.I., 1992. Descriptive model of solution-collapse breccia pipe uranium deposits. In: Bliss, J.D., (Ed.), Developments in mineral deposit modelling. U.S. Geological Survey Bulletin , 2004, pp. 33-35.
[28]
Fisher, R.V., 1960. A classification of volcanic breccias. GSA Bulletin , 71, 973-982.
Fisher, R.V., 1984. Pyroclastic rocks . Springer-Verlag, Berlin Heildelberg, p. 472.
[31]
Fjeldskaar, W., Lindholm, C., Dehls, J.F., Fjeldskaar, I., 2000. Postglacial uplift, neotectonics and seismicity in Fennoscandia. Quaternary Science Reviews , 19, 1413-1422.
[32]
Friedman, G.M., 1997. Dissolution-collapse breccias and paleokarst resulting from dissolution of evaporite rocks, especially sulfates. Carbonates and Evaporites , 12, 53-63.
[33]
Geist, E.L., 2005. Local Tsunami Hazards in the Pacific Northwest from Cascadia Subduction Zone Earthquakes. U.S. Geological Survey Professional Paper , 1661-B, 17.
[34]
Goslin, J., Lourenco, N., Dziak, R.P., Bohnenstiehl, D.R., Haxel, J., Luis, J., 2005. Long-term seismicity of the Reykjanes Ridge (North Atlantic) recorded by a regional hydrophone array. Geophysical Journal International , 162, 516-524.
[35]
Gradmann, S., Beaumont, C., Ings, S.J., 2012. Coupled fluid flow and sediment deformation in margin-scale salt-tectonic systems: 1. Development and application of simple, single-lithology models. Tectonics , 31, TC4010.
[36]
Grajales-Nishimura, J.M., Cedillo-Pardo, E., Rosales-Domínguez, C., Morán-Zenteno, D., Alvarez, W., Claeys, P., Ruíz-Morales, J., García-Hernández, J., Padilla-Avila, P., Sánchez-Ríos, A., 2000. Chicxulub impact: The origin of reservoir and seal facies in the southeastern Mexico oil fields. Geology , 28, 307-310.
[37]
Greb, S.F., Archer, A.W., 2007. Soft-sediment deformation produced by tides in a meizoseismic area, Turnagain Arm, Alaska. Geology , 35, 435-438.
[38]
Greene, M., Power, M., Youd, T.L., 1994. Earthquake Basics Brief No. 1. Earthquake Engineering Research Institute Publication, Oakland, California, p. 8.
[39]
Hancock, P.L., 1964. The relations between folds and late-formed joints in South Pembrokeshire. Geological Magazine , 101, 174-184.
[40]
Head, III, J.W., Wilson, L., 2003. Deep submarine pyroclastic eruptions: Theory and predicted landforms and deposits. Journal of Volcanology and Geothermal Research , 121, 155-193.
[41]
Helwig, J., 1970. Slump folds and early structures, northeastern Newfoundland Appalachians. Journal of Geology , 78, 172-187.
[42]
Holzer, T.L., Youd, T.L., 2007. Liquefaction, ground oscillation, and soil deformation at the Wildlife Array, California. Bulletin of the Seismological Society of America , 97, 961-976.
[43]
Isacks, B., Oliver, J., Sykes, L.R., 1968. Seismology and the new global tectonics. Journal of Geophysical Research-Atmospheres , 73, 5855-5899.
[44]
Jébrak, M., 1997. Hydrothermal breccias in vein-type ore deposits: A review of mechanisms, morphology and size distribution. Ore Geology Reviews , 12, 111-134.
[45]
Kearey, P., Klepeis, K.A., Vine, F.J., 2009. Global Tectonics , 3 rd Edition. Wiley-Blackwell, p. 496.
[46]
Kirkland, D.W., Anderson, R.Y., 1970. Microfolding in the Castile and Todilto Evaporites, Texas and New Mexico. GSA Bulletin , 81, 3259-3282.
[47]
Kleesment, A., Konsa, M., Puura, V., Karhu, J., Preeden, U., Kallaste, T., 2006. Impact-induced and diagenetic changes in minerals in the sandy ejecta of the Kärdla crater, NW Estonia. Proceedings of the Estonian Academy of Sciences. Geology , 55, 189-212.
[48]
Knipe, R.J., Jones, G., Fisher, Q.J., 1998. Faulting, fault sealing and fluid flow in hydrocarbon reservoirs: An introduction. In: Jones, G., Fisher, Q.J., Knipe, R.J., (Eds.), Faulting Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs . Geological Society of London, Special Publication, 147, pp. 7-21.
[49]
Lahr, J.C., Chouet, B.A., Stephens, C.D., Power, J.A., Page, R.A., 1994. Earthquake classification, location, and error analysis in a volcanic environment: Implications for the magmatic system of the 1989-1990 eruptions at Redoubt Volcano, Alaska. Journal of Volcanology and Geothermal Research , 62, 137-151.
[50]
Leach, D.L., Taylor, R.D., Fey, D.L., Diehl, S.F., Saltus, R.W., 2010. A deposit model for Mississippi Valley-Type lead-zinc ores. In: Chapter A-Mineral Deposit Models For Resource Assessment. USGS Scientific Investigations Report 2010-5070-A, p. 64.
[51]
Logan, W.E., 1863. Report on The Geology of Canada . John Lovell, Montreal, Canada, p. 464.
[52]
Loucks, R.G., 2001. Modern analogs for paleocave-sediment fills and their importance in identifying paleocave reservoirs. Transactions-Gulf Coast Association of Geological Societies , 46, 195-206.
[53]
Loucks, R.G., Mescher, P., 2001. Paleocave facies classification and associated pore types. In: American Association of Petroleum Geologists, Southwest Section, Annual Meeting, Dallas, Texas, March 11-13, CD-ROM, p. 18.
[54]
Lowman, P., Yates, J., Masuoka, P., Montgomery, B., O'Leary, J., Salisbury, D., 1999. A Digital Tectonic Activity Map of the Earth. J. Geosci. Ed. , 47, 428-437.
[55]
Maddock, R.H., 1983. Melt origin of fault-generated pseudotachylites demonstrated by textures. Geology , 11, 105-108.
[56]
Malone, S.J., 2015. Discovery of a probable meteorite impact site of Late Cambrian-Early Ordovician Age in the Permian Basin, Crockett County, Texas, and its implications for hydrocarbon exploration. Search and Discovery Article, No. 10719 (2015).
[57]
Malkawi, A.I.H., Alawneh, A.S., 2000. Paleoearthquake features as indicators of potential earthquake activities in the Karameh Dam Site. Natural Hazards , 22, 1-16.
[58]
Maltman, A., 1984. On the term soft-sediment deformation. Journal of Structural Geology , 6, 589-592.
[59]
Maltman, A., 1994. Introduction and overview. In: Maltman, A., (Ed.), The Geological Deformation of Sediments . Chapman Hall, London, pp. 1-35.
[60]
Marcus, R., Melosh, H.J., Collins, G., 2010. Earth Impact Effects Program . Imperial College, London, UK, and Purdue University.
[61]
McPherson, J.G., Shanmugam, G., Moiola, R.J., 1987. Fan-deltas and braid deltas: Varieties of coarse-grained deltas. GSA Bulletin , 99, 331-340.
Meng, X., Peng, Z., Yang, H., Allman, S., 2013. Hurricane Irene's Impacts on the Aftershock Sequence of the 2011 Mw5.8 Virginia Earthquake. American Geophysical Union, Fall Meeting 2013, Abstract, S51B-2369.
Minor, S.A., Hudson, M.R., 2006. Regional survey of structural properties and cementation patterns of fault zones in the northern part of the Albuquerque Basin, New Mexico: Implications for ground-water flow. U.S. Geological Survey Professional Paper , 1719, 32.
[66]
Moran, S.C., Malone, S.D., Qamar, A.I., Thelen, W., Wright, A.K., Caplan-Auerback, J., 2008. Seismicity associated with the renewed dome-building at Mount St. Helens, 2004-2008. In: Sherrod, D.R., Scott, W.E., Stauffer, P.H., (Eds.), A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 2004-2006 . U.S. Geological Survey Professional Paper, 1750.
[67]
NGDC/WDS (National Geophysical Data Center/World Data Service), 2016. Significant Earthquake Database. National Geophysical Data Center, NOAA. doi:10.7289/V5TD9V7K. Accessed July 27, 2016.
[68]
Norris, R.D., Firth, J.V., 2002. Mass wasting of Atlantic continental margins following the Chicxulub impact event. In: Koeberl, C., MacLeod, K.G., (Eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond . GSA Special Paper , 356, pp. 79-95.
[69]
Obermeier, S., Pond, E., Olson, S., Green, R., 2002. Paleoliquefaction studies in continental settings. GSA Special Paper , 359, 13-27.
[70]
Obermeier, S.F., Olson, S.M., Green, R.A., 2005. Field occurrences of liquefaction-induced features: A primer for engineering geologic analysis of paleoseismic shaking. Engineering Geology , 76, 209-234.
[71]
Osinski, G.R., Lee, P., Parnell, J., Spray, J.G., Baron, M., 2005. A case study of impact-induced hydrothermal activity: The Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics Planetary Science , 40, 1859-1877.
Parsons, T., Geist, E.L., Ryan, H.F., Lee, H.J., Haeussler, P.J., Lynett, P., Hart, P.E., Sliter, R., Roland, E., 2014. Source and progression of a submarine landslide and tsunami: The 1964 Great Alaska earthquake at Valdez. Journal of Geophysical Research Solid Earth , 119, doi:10.1002/2014JB011514.
[74]
Pinto, J.A., Warme, J.E., 2008. Alamo Event, Nevada: Crater stratigraphy and impact breccia realms. In: Evans, K.R., Horton, J.W., Jr., King, D.T., Jr., Morrow, J.R., (Eds.), The Sedimentary Record of Meteorite Impacts. GSA Special Paper , 437, pp. 99-137.
[75]
Reid, H.F., 1910. The Mechanics of the Earthquake, The California Earthquake of April 18, 1906, Report of the State Investigation Commission, Vol.2, Carnegie Institution of Washington, Washington, D.C. 1910.
[76]
Roman, D.C., Cashman, K.V., 2006. The origin of volcano-tectonic earthquake swarms. Geology , 34, 457-460.
[77]
Rowe, C.D., Melosh, B.L., Lamothe, K., Schnitzer, V., Bate, C., 2013. Earthquake Breccias (Invited). American Geophysical Union, Fall Meeting 2013, Abstract # T52A-01.
[78]
Ruff, L.J., 1996. Large earthquakes in subduction zones. In: Bebout, G.E., Scholl, D.W., Kirby, S.H., Platt, J.P., (Eds.), Subduction Top to Bottom . Geophysical Monograph Series, 1 st Edition, pp. 91-104.
[79]
Rundquist, D.V., Sobolev, P.O., 2002. Seismicity of mid-oceanic ridges and its geodynamic implications: A review. Earth-Science Reviews , 58, 143-161.
[80]
Sakaguchi, A., Kimura, G., Strasser, M., Screaton, E.J., Curewitz, D., Murayama, M., 2011. Episodic seafloor mud brecciation due to great subduction zone earthquakes. Geology , 39, 919-922.
[81]
Scholz, C.H., 1990. The Mechanics of Earthquakes and Faulting . Cambridge University Press, New York, p. 439.
[82]
Scholz, H., Frieling, D., Aehnelt, M., 2011. Synsedimentary deformational structures caused by tectonics and seismic events ? Examples from the Cambrian of Sweden, Permian and Cenozoic of Germany. In: Sharkov, E., (Ed.), New Frontiers in Tectonic Research ? General Problems, Sedimentary Basins and Island Arcs , Chapter 9, pp. 183-218.
[83]
Schulte, P., Alegret, L., Arenillas, I., Arz, J.A., Barton, P.J., Bown, P.R., Bralower, T.J., Christeson, G.L., Claeys, P., Cockell, C.S., Collins, G.S., Deutsch, A., Goldin, T.J., Goto, K., Grajales-Nishimura, J.M., Grieve, R.A.F., Gulick, S.P.S., Johnson, K.R., Kiessling, W., Koeberl, C., Kring, D.A., MacLeod, K.G., Matsui, T., Melosh, J., Montanari, A., Morgan, J.V., Neal, C.R., Nichols, D.J., Norris, R.D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Reimold, W.U., Robin, E., Salge, T., Speijer, R.P., Sweet, A.R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M.T., Willumsen, P.S., 2010. The chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science , 327, 1214-1218.
[84]
Seilacher, A., 1969. Fault-graded beds interpreted as seismites. Sedimentology , 13, 155-159.
[85]
Shanmugam, G., 1985. Types of porosity in sandstones and their significance in interpreting provenance. In: Zuffa, G.G., (Ed.), Provenance of Arenites . D. Reidel Publishing Company, Holland, pp. 115-137.
[86]
Shanmugam, G., 1988. Origin, recognition and importance of erosional unconformities in sedimentary basins. In: Kleinspehn, K.L., Paola, C., (Eds.), New Perspectives in Basin Analysis . Springer-Verlag, New York, pp. 83-108.
[87]
Shanmugam, G., 1990. Porosity prediction in sandstones using erosional unconformities. In: Meshri, I.D., Ortoleva, P.J., (Eds.), Prediction of reservoir quality through chemical modelling. AAPG Memoir , 49, pp. 1-23.
[88]
Shanmugam, G., 2006a. Deep-water processes and facies models: Implications for sandstone petroleum reservoirs. Handbook of petroleum exploration and production. Elsevier, Amsterdam, 5, p. 476.
[89]
Shanmugam, G., 2006b. The tsunamite problem. Journal of Sedimentary Research , 76, 718-730.
[90]
Shanmugam, G., 2008a. Deep-water bottom currents and their deposits. In: Rebesco, M., Camerlenghi, A., (Eds.), Developments in Sedimentology, Chapter 5, Contourites . Elsevier, Amsterdam, 60, pp. 59-81.
[91]
Shanmugam, G., 2008b. The constructive functions of tropical cyclones and tsunamis on deepwater sand deposition during sea level highstand: Implications for petroleum exploration. AAPG Bulletin , 92, 443-471.
[92]
Shanmugam, G., 2012a. New perspectives on deep-water sandstones: Origin, recognition, initiation, and reservoir quality. Handbook of petroleum exploration and production. Elsevier, Amsterdam, 9, p. 524.
Shanmugam, G., 2013a. Comment on “Internal waves, an underexplored source of turbulence events in the sedimentary record” by L. Pomar, M. Morsilli, P. Hallock, and B. Bádenas [Earth-Science Reviews, 111 (2012), 56-81]. Earth-Science Reviews , 116, 195-205.
[95]
Shanmugam, G., 2013b. Modern internal waves and internal tides along oceanic pycnoclines: Challenges and implications for ancient deep-marine baroclinic sands. AAPG Bulletin , 97, 767-811.
[96]
Shanmugam, G., 2015. The landslide problem. Journal of Palaeogeography , 4, 109-166.
[97]
Shanmugam, G., 2016. The seismite problem. Journal of Palaeogeography , 5, 318-362.
Shanmugam, G., Moiola, R.J., Sales, J.K., 1988. Duplex-like structures in submarine fan channels, Ouachita Mountains, Arkansas. Geology , 16, 229-232.
[100] Shanmugam, G., Shrivastava, S.K., Das, B., 2009. Sandy debrites and tidalites of Pliocene reservoir sands in upper-slope canyon environments, Offshore Krishna-Godavari Basin (India): Implications. Journal of Sedimentary Research , 79, 736-756.
[101] Shoemaker, E., 1983. Asteroid and comet bombardment of the Earth. Annual Review of Earth and Planetary Sciences , 11, 461-494.
[102] Sibson, R.H., 1977. Fault rocks and fault mechanisms. Journal of the Geological Society of London , 133, 191-213.
[103] Sibson, R.H., 1986. Brecciation processes in fault zones: Inferences from earthquake rupturing. Pure and Applied Geophysics , 124, 159-174.
[104] Simms, M.J., 2003. Uniquely extensive seismite from the latest Triassic of the United Kingdom: Evidence for bolide impact? Geology , 31, 557-560.
[105] Smit, J., Roep, Th.B., Alvarez, W., Montanari, A., Claeys, P., Grajales-Nishimura, J.M., Bermudez, J., 1996. Coarse-grained, clastic sandstone complex at the Cretaceous-Paleogene (K-Pg) boundary (formerly known as the K-T boundary) around the Gulf of Mexico: Deposition by tsunami waves induced by the Chicxulub impact? In: Ryder, G., Gartner, S., Fastovsky, D., (Eds.), The Cretaceous-Tertiary Event and Other Catastrophes in Earth History. GSA Special Paper , 307, pp. 151-182.
[106] Steer, P., Simoes, M., Cattin, R., Shyu, J.B.H., 2014. Erosion influences the seismicity of active thrust faults. Nature Communications , 5, 5564.
[107] Stoeffler, D., Artemieva, N.A., Ivanov, B.A., Hecht, L., Kenkemann, T., Schmitt, R.T., Tagle, R.A., Wittmann, A., 2004. Origin and emplacement of the impact formations at Chicxulub, Mexico, as revealed by the ICDP deep drilling at Yaxcopoil-1 and by numerical modeling. Meteoritics Planetary Sciences , 39, 1035-1067.
[108] Stover, C.W., Coffman, J.L., 1993. Seismicity of the United States, 1568-1989 (Revised). U.S. Geological Survey Professional Paper 1527, United States Government Printing Office, pp. 72, 101, 102.
[109] Stuart, C.J., 1979. Lithofacies and origin of the San Onofre Breccia, coastal southern California. In: Stuart, C.J., (Ed.), Miocene lithofacies and depositional environments, coastal southern California and northwestern Baja California: Pacific Section. Society of Economic Paleontologists and Mineralogists, pp. 25-42.
[110] Sweeting, M.M., 1978. The karst of Kweilin, Southern China. Geographical Journal , 144, 199-204.
[111] Tappin, D.R., Grilli, S.T., Harris, J.C., Geller, R.J., Masterlark, T., Kirby, J.T., Shi, F., Ma, G., Thingbaijam, K.K., Mai, P.M., 2014. Did a submarine landslide contribute to the 2011 Tohoku tsunami? Marine Geology , 357, 344-361.
[112] Tappin, D.R., Watts, P., McMurtry, G.M., Lafoy, Y., Matsumoto, T., 2001. The Sissano, Papua New Guinea tsunami of July 1998 ? Offshore evidence on the source mechanism. Marine Geology , 175, 1-23.
[113] Tessier, B., Terwindt, J.H.J., 1994. Un exemple de déformations synsédimentaires en milieu intertidal l’effet du mascaret. Paris, Académie des Sciences Comptes Rendus, 319, 217-223.
[114] Thomas, T.M., 1970. Field meeting of the South Wales group on the Stack Rocks to Bullslaughter Bay section of the South Pembrokeshire coast. Proceedings of the Geologists Association , 81, 241-248.
[115] Tilling, R.I., Topinka, L., Swanson, D.A., 1990. Eruptions of Mount St. Helens: Past, Present, and Future. U.S. Geological Survey Special Interest Publication. U.S. Geological Survey, Vancouver, WA, p. 56.
[116] Tryggvason, E., 1973. Seismicity, earthquake swarms, and plate boundaries in the Iceland region. Bulletin of the Seismological Society of America , 63, 1327-1348.
[118] Van Gosen, B.S., Wenrich, K.J., 1989. Ground magnetometer surveys over known and suspected breccia pipes on the Coconino Plateau, northwestern Arizona. U.S. Geological Survey Bulletin , 1683-C, 31.
[119] Velasco-Villareal, M., Urrutia-Fucugauchi, J., Rebolledo-Vieyra, M., Perez-Cruz, L., 2011. Paleomagnetism of impact breccias from the Chicxulub crater ? Implications for ejecta emplacement and hydrothermal processes. Physics of the Earth and Planetary Interiors , 186, 154-171.
[120] Venzke, E., Wunderman, R.W., McClelland, L., Simkin, T., Luhr, J.F., Siebert, L., Mayberry, G., Sennert, S., 2002. Global Volcanism, 1968 to the Present, Global Volcanism Program Digital Information Series, GVP-4 . Smithsonian Institution. Washington, D.C.,http://www.volcano.si.edu/reports/.
[121] Waite, G.P., Chouet, B.A., Dawson, P.B., 2008. Eruption dynamics at Mount St. Helens imaged from broadband seismic waveforms: Interaction of the shallow magmatic and hydrothermal systems. Journal of Geophysical Research-Atmospheres , 113(B2), B02305.
[122] Walsh, P., Battiau-Queney, Y., Howells, S., Ollier, C., Rowberry, M., 2008. The gash breccias of the Pembroke Peninsula, SW Wales. Geology Today , 24, 137-145.
[123] Warme, J.E., Morrow, J.R., 2009. Alamo Impact Breccia: Ring Realm Processes and Products. Adapted from an oral presentation at AAPG Annual Convention and Exhibition, Denver, Colorado, USA, June 7-10, 2009. Search and Discovery Article #40494 (2010).
[125] Wenrich, K.J., Titley, S.R., 2008. Uranium exploration for northern Arizona (USA) breccia pipes in the 21 st century and consideration of genetic models. In: Spencer, J.E., Titley, S.R., (Eds.), Ores and Orogenesis: Circum-Pacific Tectonics, Geologic Evolution, and Ore Deposits. Arizona Geological Society Digest , 22, pp. 295-309.
[127] Williams, P.F., 1978. Karst research in China. British Cave Research Association Transactions , 5, 29-46.
[128] Woodcock, N.H., Miller, A.V.M., Woodhouse, C.D., 2014. Chaotic breccia zones on the Pembroke Peninsula, south Wales: Evidence for collapse into voids along dilational faults. Journal of Structural Geology , 69, 91-107.
[129] Woodcock, N.H., Omma, J.E., Dickson, J.A.D., 2006. Chaotic breccia along the Dent Fault, NW England: Implosion or collapse of a fault void? Journal of the Geological Society London , 163, 431-446.
[130] Yao, Y., Wang, Q., Li, J., Shen, X., Kong, Y., 2013. Seismic hazard assessment of the Three Gorges Project. Geodesy and Geodynamics , 4, 53-60.
[131] Zhang, Y., Person, M., Rupp, J., Ellett, K., Celia, M.A., Gable, C.W., Bowen, B., Evans, J., Bandilla, K., Mozley, P., Dewers, T., Elliot, T., 2013. Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs. Groundwater , 51, 525-538.