Paleosols of the upper Paleozoic Sangre de Cristo Formation, north-central New Mexico: Record of early Permian palaeoclimate in tropical Pangaea
Lawrence H. Tannera, Spencer G. Lucasb
a Department of Biological Sciences, Le Moyne College, Syracuse, NY 13214, USA;
b New Mexico Museum of Natural History, 1801 Mountain Road N.W., Albuquerque, NM 87014, USA
The lower Permian (Wolfcampian) Sangre de Cristo Formation of northern New Mexico consists of silty mudstones and laterally discontinuous sandstones deposited on an aggrading alluvial plain. Locally, mudstones display a variety of pedogenic features. Common mudstone fabrics vary from platy to prismatic; some beds display prominent pedogenic slickensides. Drab-colored root traces are common throughout the section, as are calcareous nodules, which vary from small bodies with diffuse boundaries to vertically stacked, discrete, cm-scale nodules (rhizocretions), and less commonly form coalescing horizons. Vertisols occur only in the lower portion of the ca. 90-m measured section. Most of the mudstone beds contain calcretes that are immature (calcic Protosols to calcic Argillisols), but the lower to middle portion of the section also contains mature calcrete horizons (argillic Calcisols and Calcisols).
Intercalated micritic limestone beds with sharp contacts containing root traces, are of laterally variable thickness and grade to nodular calcretes. These are interpreted as floodplain pond carbonates that have undergone pedogenic alteration (palustrine limestones), indicating long periods of exposure under strongly seasonal climatic conditions. The isotopic composition of the pedogenic carbonate displays a substantial range of values, but most of the range of variation in isotopic composition is accounted for by isotopically heavier carbonate (both carbon and oxygen) precipitated in shallow ponds subject to intense pedogenic reworking (palustrine carbonate).
During the early Permian, northern New Mexico was situated in a near equatorial position (ca. 4° N). The overall character of the paleosols suggests a persistent warm, semi-humid, seasonal climate throughout most of the interval of deposition during the Wolfcampian, but with episodically increased aridity during formation of the more mature calcretes. No long-term trend of climate change is evident in the stratigraphic section examined for this study.
Corresponding Authors:* Corresponding author.Email address: TannerLH@Lemoyne.edu (L. H. Tanner).
Cite this article:
. Paleosols of the upper Paleozoic Sangre de Cristo Formation, north-central New Mexico: Record of early Permian palaeoclimate in tropical Pangaea[J]. Journal of Palaeogeography, 2017, 6(2): 144-161.
. Paleosols of the upper Paleozoic Sangre de Cristo Formation, north-central New Mexico: Record of early Permian palaeoclimate in tropical Pangaea[J]. Journal of Palaeogeography, 2017, 6(2): 144-161.
Allen, J.R.L., Wright, V.P., 1989. Paleosols in siliciclastic sequences. University of Reading (UK), Postgraduate Research Institute of Sedimentology Short Course Notes, no. 1, 97 pp.
[2]
Alonso-Zarza, A.M., 2003. Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth-Science Reviews , 60(3-4), 261-298.
[3]
Alonso-Zarza, A.M., Calvo, J.P., García del Cura, M.A., 1992. Palustrine sedimentation and associated features—grainification and pseudomicrokarst—in the Middle Miocene (intermediate unit) of the Madrid Basin, Spain. Sedimentary Geology , 76, 43-61.
[4]
Alonso-Zarza, A.M., Dorado-Valiño, M., Valdeolmillos-Rodríguez, A., Ruiz-Zapata, M.B., 2006. A recent analogue for palustrine carbonate environments: The Quaternary deposits of Las Tablas de Daimiel wetlands, Ciudad Real, Spain. In: Alonso-Zarza, A.M., Tanner, L.H. (Eds.), Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates . GSA Special Paper , 416, pp. 153-168.
[5]
Alonso-Zarza, A.M., Wright, V.P., 2010a. Palustrine carbonates. In: Alonso-Zarza, A.M., Tanner, L.H. (Eds.), Carbonates in Continental Environments: Processes, Facies and Applications. Developments in Sedimentology 61, Elsevier, Amsterdam, pp. 103-131.
[6]
Alonso-Zarza, A.M., Wright, V.P., 2010b. Calcretes. In: Alonso-Zarza, A.M., Tanner, L.H. (Eds.), Carbonates in Continental Environments: Processes, Facies and Applications. Developments in Sedimentology 61, Elsevier, Amsterdam, pp. 226-267.
[7]
Baltz, E.H., Myers, D.A., 1999. Stratigraphic Framework of Upper Paleozoic Rocks, Southeastern Sangre de Cristo Mountains, New Mexico: With a Section on Speculations and Implications for Regional Interpretation of Ancestral Rocky Mountains Paleotectonics . New Mexico Bureau of Mines and Mineral Resources, Memoir , 48, 269 pp., 5 plates.
[8]
Berman, D.S., 1993. Lower Permian vertebrate localities of New Mexico and their assemblages. New Mexico Museum of Natural History and Science Bulletin , 2, 11-21.
[9]
Berman, D.S., Henrici, A.C., Lucas, S.G., 2013. Ophiacodon (Synapsida, Ophiacodontidae) from the Lower Permian Sangre de Cristo Formation of New Mexico. New Mexico Museum of Natural History and Science Bulletin , 60, 36-41.
[10]
Birkeland, P.W., 1999. Soils and Geomorphology, 3 rd edition. Oxford University Press, New York, 536 pp.
[11]
Bustillo, M.A., 2010. Silicification of continental carbonates. In: Alonso-Zarza, A.M., Tanner, L.H. (Eds.), Carbonates in Continental Environments: Processes, Facies and Applications . Developments in Sedimentology 62, Elsevier, Amsterdam, pp. 153-179.
[12]
Cecil, C.B., 2013. An overview and interpretation of autocyclic and allocyclic processes and the accumulation of strata during the Pennsylvanian-Permian transition in the central Appalachian Basin, USA. International Journal of Coal Geology , 119, 21-31.
[13]
DiMichele, W.A., Tabor, N.J., Chaney, D.S., Nelson, W.J., 2006. From wetlands to wet spots: Environmental tracking and the fate of Carboniferous elements in Early Permian tropical floras. In: Greb, S.F., DiMichele, W.A. (Eds.), Wetlands through Time . GSA Special Paper , 399, pp. 223-248.
[14]
Dinterman, P.A., Mack, G.H., Leeder, M., Perez-Arlucea, M., 2000. Palaeoclimatic control on Early Permian fluvial to eolian transition in New Mexico. GSA Abstracts with Program , 32(7), 254.
[15]
Esteban, M., Klappa, C.F., 1983. Subaerial exposure environments. In: Scholle, P.A., Bebout, D.G., Moore, C.H. (Eds.), Carbonate Depositional Environments . America Society of Petroleum Geologists Memoir, 33, pp. 1-54.
[16]
Freytet, P., Verrecchia, E.P., 2002. Lacustrine and palustrine carbonate petrography: An overview. Journal of Paleolimnology , 27(2), 221-237.
[17]
Gile, L.H., Peterson, F.F., Grossman, R.B., 1966. Morphological and genetic sequences of carbonate accumulation in desert soils. Soil Science , 101(5), 347-360.
[18]
Giles, J.M., Soreghan, M.J., Benison, K.C., Soreghan, G.S., Hasiotis, S.T., 2013. Lakes, loess, and paleosols in the Permian Wellington Formation of Oklahoma, U.S.A.: Implications for paleoclimate and paleogeography of the Midcontinent. Journal of Sedimentary Research , 83(10), 825-846.
[19]
Hunt, A.P., Lucas, S.G., Huber, P., 1990. Early Permian footprint fauna from the Sangre de Cristo Formation of northeastern New Mexico. New Mexico Geological Society Guidebook , 41, 291-303.
[20]
Isbell, J.L., Miller, M.F., Wolfe, K.I., Lenaker, P.A., 2003. Timing of Late Paleozoic glaciation in Gondwana: Was glaciation responsible for the development of northern hemisphere cyclothems? In: Chan, M.A., Archer, A.W. (Eds.), Extreme Depositional Environments: Mega End Members in Geologic Time . GSA Special Paper , 370, pp. 5-24.
[21]
Johnson, R.B., 1969. Geologic map of the Villanueva quadrangle, San Miguel County, New Mexico. U.S. Geological Survey, Geologic Quadrangle Map GQ-869, scale 1:62,500.
[22]
Kessler, J.L.P., Soreghan, G.S., Wacker, H.J., 2001. Equatorial aridity in western Pangea: Lower Permian loessite and dolomitic paleosols in northeastern New Mexico, U.S.A. Journal of Sedimentary Research , 71(5), 817-832.
[23]
Krainer, K., Lucas, S.G., 1995. The limestone facies of the Abo-Hueco transitional zone in the Robledo Mountains, southern New Mexico. New Mexico Museum of Natural History and Science Bulletin , 6(1), 33-38.
[24]
Krainer, K., Lucas, S.G., Kues, B.S., 2004. Tectonically induced clastic-carbonate depositional sequences of the Pennsylvanian-Permian transition in the Rowe-Mora basin, northern New Mexico. New Mexico Geological Society 55 th Annual Fall Field Conference Guidebook , 55, 314-325.
[25]
Kraus, M.J., 1999. Paleosols in clastic sedimentary rocks: Their geologic applications. Earth-Science Reviews , 47(1-2), 41-70.
[26]
Kraus, M.J., Hasiotis, S.T., 2006. Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: Examples from Paleogene paleosols, Bighorn Basin, Wyoming, U.S.A. Journal of Sedimentary Research , 76(4), 633-646.
[27]
Kutzbach, J.E., Gallimore, R.G., 1989. Pangaean climates: Megamonsoons of the megacontinent. Journal of Geophysical Research , 94(D3), 3341-3357.
[28]
Kutzbach, J.E., Ziegler, A.M., 1994. Simulation of Late Permian climate and biomes with an atmosphere-ocean model: Comparisons and observations. In: Allen, J.R.L., Hoskins, B.J., Sellwood, B.W., Spicer, R.A., Valdes, P.J. (Eds.), Palaeoclimates and Their Modelling: With Special Reference to the Mesozoic Era . Chapman and Hall, London, pp. 119-132.
[29]
Langston, W., Jr., 1953. Permian amphibians from New Mexico. University of California, Publications in Geological Science , 29, 349-416.
[30]
Lucas, S.G., 2005. Permian tetrapod faunachrons. New Mexico Museum of Natural History and Science Bulletin , 30, 197-201.
[31]
Lucas, S.G., 2006. Global Permian tetrapod biostratigraphy and biochronology. In: Lucas, S.G., Cassinis, G., Schneider, J.W. (Eds.), Non-marine Permian Biostratigraphy and Biochronology . Geological Society, London, Special Publication , 265, pp. 65-93.
[32]
Lucas, S.G., Harris, S.K., Spielmann, J.A. Berman, D.S, Henrici, A.C., Krainer, K., Rinehart, L.F., DiMichele, W.A., Chaney, D.S., Kerp, H., 2012. Lithostratigraphy, paleontology, biostratigraphy, and age of the Upper Paleozoic Abo Formation near Jemez Springs, northern New Mexico, USA. Annals of the Carnegie Museum , 80, 323-350.
[33]
Lucas, S.G., Heckert, A.B., Estep, J.W., Hunt, A.P., Anderson, O.J., 1998. Stratigraphy, paleontology and depositional environments of the Lower Permian Robledo Mountains Formation of the Hueco Group, Robledo Mountains, New Mexico. New Mexico Museum of Natural History and Science Bulletin , 12, 29-41.
[34]
Lucas, S.G., Krainer, K., Chaney, D.S., DiMichele, W.A., Voigt, S., Berman, D.S., Henrici, A.C., 2013b. The Lower Permian Abo Formation in central New Mexico. New Mexico Museum of Natural History and Science Bulletin , 59, 161-179.
[35]
Lucas, S.G., Krainer, K., Colpitts, R.M., Jr., 2005. Abo-Yeso (Lower Permian) stratigraphy in central New Mexico. New Mexico Museum of Natural History and Science Bulletin , 31, 101-117.
[36]
Lucas, S.G., Krainer, K., Dimichele, W.A., Voigt, S., Berman, D.S., Henrici, A.C., Tanner, L.H., Chaney, D.S., Elrick, S.D., Nelson, W.J., Rinehart, L.F., 2015. Lithostratigraphy, biostratigraphy and sedimentology of the Upper Paleozoic Sangre de Cristo Formation, southwestern San Miguel County, New Mexico. In: Lindline, J., Petronis, M., Zebrowski, J. (Eds.), Geology of the Las Vegas Area . New Mexico Geological Society 66 th Annual Fall Field Conference Guidebook , 66, pp. 211-228.
[37]
Lucas, S.G., Krainer, K., Voigt, S., 2013a. The Lower Permian Yeso Group in central New Mexico. New Mexico Museum of Natural History and Science Bulletin , 59, 181-199.
[38]
Lucas, S.G., Rowland, J.M., Kues, B.S., Estep, J.W., Wilde, G.L., 1999. Uppermost Pennsylvanian and Permian stratigraphy and biostratigraphy at Placitas, New Mexico. New Mexico Geological Society, 50 th Field Conference Guidebook , 281-292.
[39]
Lucas, S.G., Schneider, J.W., Spielmann, J.A., 2010. Carboniferous-Permian transition in Cañon del Cobre, northern New Mexico: An overview. New Mexico Museum of Natural History and Science Bulletin , 49, 1-5.
[40]
Machette, M.N., 1985. Calcic soils of the southwestern United States. In: Weide, D.L. (Ed.), Soils and Quaternary Geology of the Southwest United States . GSA Special Paper , 203, pp. 1-21.
[41]
Mack, G.H., 2003. Lower Permian terrestrial palaeoclimatic indicators in New Mexico and their comparison to paleoclimate models. New Mexico Geological Society Guidebook , 54, 231-234.
Mack, G.H., Leeder, M., Perez-Arlucea, M., Bailey, B.D.J., 2003. Early Permian silt-bed fluvial sedimentation in the Orogrande Basin of the Ancestral Rocky Mountains, New Mexico, USA. Sedimentary Geology , 160, 159-178.
[44]
Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D., Fielding, C.R., Isbell, J.L., 2007. CO 2 -forced climate and vegetation instability during Late Paleozoic deglaciation. Science , 315(5808), 87-91.
[45]
Mountney, N.P., 2006. Periodic accumulation and destruction of aeolian erg sequences in the Permian Cedar Mesa Sandstone, White Canyon, southern Utah, USA. Sedimentology , 53(4), 789-823.
[46]
Parrish, J.T., 1993. Climate of the supercontinent Pangea. The Journal of Geology , 101(2), 215-253.
[47]
Platt, N.H., 1989. Lacustrine carbonates and pedogenesis: Sedimentology and origin of palustrine deposits from the Early Cretaceous Rupelo Formation, W Cameros Basin, N Spain. Sedimentology , 36(4), 665-684.
[48]
Platt, N.H., 1992. Fresh-water carbonates from the lower Freshwater Molasse (Oligocene, western Switzerland): Sedimentology and stable isotopes. Sedimentary Geology , 78, 81-99.
[49]
Platt, N.H., Wright, V.P., 1991. Lacustrine carbonates: Facies models, facies distributions and hydrocarbon aspects. In: Anadón, P., Cabrera, L., Kelts, K. (Eds.), Lacustrine Facies Analysis . International Association of Sedimentologists Special Publication , 13, pp. 57-74.
[50]
Platt, N.H., Wright, V.P., 1992. Palustrine carbonates and the Florida Everglades: Towards an exposure index for the fresh-water environment? Journal of Sedimentary Petrology , 62(6), 1058-1071.
[51]
Plaziat, J.C., Freytet, P., 1978. Le pseudo-microkarst pédologique: un aspect particulier des paléo-pédogenèses développées sur les dépôts calcaires lacustres dans le tertiaire du Languedoc. Comptes Rendues Academie Science Paris , 286, 1661-1664.
[52]
Read, C.B., Wilpolt, R.H., Andrews, D.A., et al ., 1944. Geologic map and stratigraphic sections of Permian and Pennsylvanian rocks of parts of San Miguel, Santa Fe, Sandoval, Bernalillo, Torrance, and Valencia Counties, north central New Mexico. U.S. Geological Survey, Oil and Gas Investigations, Preliminary Map 21.
[53]
Retallack, G.J., 2001. Soils of the Past , 2 nd edition. Blackwell, Malden, MA, 404 pp.
[54]
Retallack, G.J., 2005. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology , 33, 333-336.
[55]
Rinehart, L.F., Lucas, S.G., Tanner, L.H., Nelson, W.J., Elrick, S.D., Chaney, D.S., DiMichele, W.A., 2015. Plant architecture and spatial structure of an Early Permian woodland buried by flood waters, Sangre de Cristo Formation, New Mexico. Palaeogeography, Palaeoecology, Palaeoclimatology , 424, 91-110.
[56]
Royer, D.L., 1999. Depth to pedogenic carbonate horizon as a paleoprecipitation indicator? Geology , 27, 1123-1126.
[57]
Sanz, M.E., Alonso-Zarza, A.M., Calvo, J.P., 1995. Carbonate pond deposits related to semi-arid alluvial systems: Examples from the Tertiary Madrid Basin, Spain. Sedimentology , 42, 437-452.
[58]
Schaetzl, R.J., Thompson, M.L., 2015. Soils: Genesis and Geomorphology , 2 nd edition. Cambridge University Press, New York, 777 pp.
[59]
Soegaard, K., Caldwell, K.R., 1990. Depositional history and tectonic significance of alluvial sedimentation in the Permo-Pennsylvanian Sangre de Cristo Formation, Taos trough, New Mexico. New Mexico Geological Society Guidebook , 41, 277-289.
[60]
Soreghan, G., Elmore, R., Lewchuck, M., 2002. Sedimentologic-magnetic record of western Pangean climate in Upper Paleozoic loessite (lower Cutler beds, Utah). GSA Bulletin , 114, 1019-1035.
[61]
Tabor, N.J., Montañez, I.P., 2002. Shifts in Late Paleozoic atmospheric circulation over western equatorial Pangea: Insights from pedogenic mineral δ 18 O compositions. Geology , 30(12), 1127-1130.
[62]
Tabor, N.J., Montañez, I.P., 2004. Permo-Pennsylvanian alluvial paleosols (north-central Texas): High-resolution proxy records of the evolution of early Pangean paleoclimate. Sedimentology , 51, 851-884.
[63]
Tabor, N.J., Montañez, I.P., Scotese, C.R., Poulsen, C.J., Mack, G.H., 2008. Paleosol archives of environmental and climatic history in paleotropical western Pangea during the latest Pennsylvanian through Early Permian. GSA Special Paper , 441, 291-303.
[64]
Talbot, M.R., 1990. A review of the paleohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology , 80, 261-279.
[65]
Talbot, M.R., Holm, K., Williams, M.A.J., 1994. Sedimentation in low-gradient desert margin systems: A comparison of the Late Triassic of northwest Somerset (England) and the Late Quaternary of east-central Australia. In: Rosen, M.R. (Ed.), Paleoclimate and Basin Evolution of Playa Systems . GSA Special Paper , 289, pp. 97-117.
[66]
Talbot, M.R., Kelts, K., 1990. Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic rich lacustrine sediments. In: Katz, B.J. (Ed.), Lacustrine Exploration: Case Studies and Modern Analogues . AAPG Memoir , 50, pp. 99-112.
[67]
Tanner, L.H., 2000. Palustrine/lacustrine and alluvial facies of the Norian Owl Rock Formation (Chinle Group), Four Corners region, southwestern USA: Implications for Late Triassic paleoclimate. Journal of Sedimentary Research , 70(5), 1280-1289.
[68]
Tanner, L.H., 2010. Terrestrial carbonates as indicators of palaeoclimate. In: Alonso-Zarza, A.M., Tanner, L.H. (Eds.), Carbonates in Continental Settings: Geochemistry, Diagenesis and Applications . Elsevier, Developments in Sedimentology 62, pp. 179-214.
[69]
Vaughn, P.P., 1964. Evidence of aestivating lungfish from the Sangre de Cristo Formation, Lower Permian of northern New Mexico. Los Angeles County Museum Contributions to Science , 80, 1-8.
[70]
Zaleha, M.J., 1997. Siwalik paleosols (Miocene, northern Pakistan): Genesis and controls on their formation. Journal of Sedimentary Research , 67(5), 821-839.
[71]
Zhu, L., Tabor, N.J., 2014. Lower Permian paleosol morphologies and paleoatmospheric pCO2 estimates from north-central Texas, USA. GSA Abstracts with Program , 46(6), 131.