Sedimentary and environmental history of the Late Permian Bonikowo Reef (Zechstein Limestone, Wuchiapingian), western Poland
Pawe? Raczy��ski a, Tadeusz Marek Perytb, *, Wac?aw Strobelc
a Institute of Geological Sciences, University of Wrocaw, Pl. Maksa Borna 9, Wrocaw 50-205, Poland;
b Polish Geological Institute—National Research Institute, Rakowiecka 4, Warszawa 00-975, Poland;
c Institute of Agrophysics, Polish Academy of Sciences, Do?wiadczalna 4, Lublin 20-290, Poland
The Bonikowo Reef occurs in the central part of the Zechstein Limestone Basin in western Poland and was growing on the topmost edges of tilted blocks and/or on the top of uplifted horsts of the Brandenburg-Wolsztyn-Pogorzela High. Its size is ca. 1.6 km2. The Bonikowo Reef shows the thickest reef section (90.5 m) recorded in the High. The Zechstein Limestone unit is represented mostly by limestones, often thoroughly recrystallized, although the macrotextures and biota of the boundstone are identi?able in most cases. The drillcore section is a mixture of boundstones (microbial and bryozoan), wackestones, packstones and grainstones, which often co-occur. The d13C and d18O values for both calcite (avg. 3.8 ± 0.8‰ and -3.4 ± 1.7‰, respectively) and dolomite (avg. 3.5 ± 0.7‰ and -5.2 ± 1.3‰, respectively) are transitional between the values previously reported for condensed sequences of the basinal facies and larger reef complexes. The biofacies of the Bonikowo Reef are very similar to those recognized in other reefs of the Brandenburg-Wolsztyn-Pogorzela High, which owe their origin to the destruction of bryozoan boundstones. The biota composition is typical and characteristic of other Zechstein Limestone reefs. However, the Bonikowo Reef demonstrates the importance of microbialites, laminar and nodose encrustations, in the growth and cohesion of the Zechstein Limestone reefs. Such encrustations abound within the Zechstein Limestone although, in many cases, the real nature of the encrustations is dif?cult to ascertain. These laminated encrustations show great similarity to Archaeolithoporella that is one of the most important Permian reef-building organisms. The encrustations considered to represent Archaeolithoporella were also previously recorded in the Zechstein Limestone of western Poland and in its stratigraphic equivalent, the Middle Magnesian Limestone of Northeast England. The lower part of the sequence shows great biofacies variability that re?ects common environmental changes. The major part of the section is represented by slope deposits
Paweł,Raczyń,ski et al. Sedimentary and environmental history of the Late Permian Bonikowo Reef (Zechstein Limestone, Wuchiapingian), western Poland[J]. Journal of Palaeogeography, 2017, 6(3): 183-205.
Paweł,Raczyń,ski et al. Sedimentary and environmental history of the Late Permian Bonikowo Reef (Zechstein Limestone, Wuchiapingian), western Poland[J]. Journal of Palaeogeography, 2017, 6(3): 183-205.
14 MMazumder, R., Rodríguez-López, J.P., Arima, M., Van Loon, A.J., 2009. Palaeoproterozoic seismites (fine-grained facies of the Chaibasa Fm., India) and their soft-sediment deformation structures. In: Reddy, S., Mazumder, R., Evans, D., Collins, A. (Eds.), Palaeoproterozoic Supercontinents and Global Evolution . Geological Society, London, Special Publication, 323, pp. 301-318.
20 FFlügel, E., di Stefano, P., Senowbari-Daryan, B., 1991. Microfacies and depositional structure of allochthonous carbonate base-of-slope deposits: The Late Permian Pietra di Salomone megablock, Sosio Valley (Western Sicily). Facies , 25, 36-48.
15 MMazumder, R., Van Loon, A.J., Arima, M., 2006. Soft-sediment deformation structures in the Earth’s oldest seismites. Sedimentary Geology , 186, 19-26.
16 MMiddleton, G.V., 1993. Sediment deposition from turbidity currents. Annual Review of Earth and Planetary Sciences , 21, 89-114.
21 FFlügel, E., Kochansky-Devide, V., Ramovš, A., 1984a. A Middle Permian calcisponge/algal/cement reef: Straźa near Bled, Slovenia. Facies , 10, 179-256.
22 FFlügel, E., Flügel-Kahler, E., Martin, J.M., Martin-Algarra, A., 1984b. Middle Triassic reefs from southern Spain. Facies , 11, 173-218.
1 ChChen, L., Lu, Y.C., Wang, Z.F., Sun, Z.P., 2011. Structure of carbonate platform margin and characteristics of reef and their controlling factors in western deep-water region of South China Sea. Petroleum Geology and Experiment , 33(6), 607-612 (in Chinese with English abstract).
23 FFriedman, I., O’Neil, J.R., 1977. Compilation of stable isotope fractionation factors of geochemical interest. U.S. Geological Survey Professional Paper , 440, KK1-KK12.
24 FFüchtbauer, H., 1980. Composition and diagenesis of a stromatolitic bryozoan bioherm in the Zechstein 1 (northwestern Germany). Contributions to Sedimentology , 9, 233-251.
25 GGeinitz, H.B., 1861. Dyas oder die Zechsteinformation und das Rotliegende . 342 p., Leipzig (Wilhelm Engelmann).
2 DoDong, D.D., Wu, S.G., Zhang, G.C., Yuan, S.Q., 2008. Rifting process and formation mechanisms of syn-rift stage prolongation in the deepwater basin, northern South China Sea. Chinese Science Bulletin , 53(23), 3715-3725.
17 MMiddleton, G.V., Hampton, M.A., 1973. Sediment gravity flows, mechanics of flow and deposition. In: Middleton, G.V., Bouma, A.H. (Eds.), Turbidites and Deep-water Sedimentation . Pacific Section SEPM (Los Angeles, CA), 38 pp.
27 HHollingworth, N., Pettigrew, T., 1988. Zechstein Reef Fossils and their Palaeoecology . Palaeontological Association. University Printing House, Oxford, 75 pp.
3 FeFeng, Y.W., 2012. Research on sedimentary facies and geologic interpretation of moundy reflectors of Meishan Formation in deepwater area of Qiongdongnan Basin (Master Dissertation). Department of Geology, Northwest University, Master Thesis (in Chinese with English abstract).
28 HHollingworth, N.T.J., Tucker, M E., 1987. The Upper Permian (Zechstein) Tunstall Reef of North East England: Palaeoecology and early diagenesis. Lecture Notes in Earth Sciences , 10, 23-50.
29 HHryniv, S., Peryt, T.M., 2010. Strontium distribution and celestite occurrence in Zechstein (Upper Permian) anhydrites of West Poland. Chemie der Erde , 70, 137-147.
30 HHudson, J.D., 1977. Stable isotopes and limestone lithification. Journal of the Geological Society of London , 133, 637-660.
19 MMontenat, C., Barrier, P., Ott d'Estevou, P., Hibsch, C., 2007. Seismites: An attempt at critical analysis and classification. Sedimentary Geology , 196, 5-30.
20 MMoretti, M., Van Loon, A.J., 2014. Restrictions to the application of ‘diagnostic’ criteria for recognizing ancient seismites. Journal of Palaeogeography , 3, 162-173.
21 PPostma, G., 1986. Classification of sediment gravity-flow deposits based on flow conditions during sedimentation. Geology , 14, 291-294.
31 JJasionowski, M., Peryt, T.M., Durakiewicz, T., 2014. Polyphase dolomitisation of the Wuchiapingian Zechstein Limestone (Ca1) isolated reefs (Wolsztyn Palaeo-Ridge, Fore-Sudetic Monocline, SW Poland). Geological Quarterly , 58, 493-510.
22 SSeed, H.B., Lee, K.L., 1966. Liquefaction of saturated sands during cyclic loading. Journal of Soil Mechanics and Foundation Engineering , 92, 105-134.
23 SShanmugam, G., 2006. The tsunamite problem. Journal of Sedimentary Research , 76, 718-730.
24 SShanmugam, G., 2015. The landslide problem. Journal of Palaeogeography , 4(2), 109-166.
25 SShanmugam, G., 2016a. The seismite problem. Journal of Palaeogeography , 5(4), 318-362.
4 FeFeng, Y.W., Qu, H.J., Zhang, G.C., Pu, R.H., 2016. The seismic facies analyzing of deep water area of Miocene Meishan Formation in Qiongdongnan Basin, northern South China Sea. Journal of Mineralogy and Petrology , 36(1), 82-95 (in Chinese with English abstract).
32 KKendall, A.C., Iannace, A., 2001. 'Sediment'-cement relationships in a Pleistocene speleothem from Italy: a possible analogue for 'replacement' cements and Archaeolithoporella in ancient reefs. Sedimentology , 48, 681-698.
5 GoGong, Z.S., 2009. Reef: An important exploration realm in the deepwater areas, the northern South China Sea. China Offshore Oil and Gas , 21(5), 289-295 (in Chinese with English abstract).
26 SShanmugam, G., 2016b. The contourite problem. In: Mazumder, R. (Ed.), Sediment Provenance . Elsevier, Amsterdam, pp. 183-254.
27 SShanmugam, G., 2017. The response of stromatolites to seismic shocks: Tomboliths from the Palaeoproterozoic Chaibasa Formation, E India: Discussion. Journal of Palaeogeography , 6(3), 224-234.
28 SSims, J.D., 1973. Earthquake-induced structures in sediments of Van Norman Lake, San Fernando, California. Science , 182(4108), 161-163.
29 SSims, J.D., 1975. Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics , 29, 141-152.
34 KKerkmann, K., 1969. Riffe und Algenbänke im Zechstein von Thüringen. Freiberger Forschungshefte , C252, 85 p.
35 KKiersnowski, H., Peryt, T.M., Buniak, A., Mikołajewski, Z., 2010. From the intra-desert ridges to the marine carbonate island chain: middle to late Permian (Upper Rotliegend-Lower Zechstein) of the Wolsztyn-Pogorzela high, west Poland. Geological Journal , 44, 319-335.
6 GoGorter, J.D., Rexilius, J.P., Powell, S.L., Bayford, S.W., 2002. Late Early to Mid Miocene patch reefs, Ashmore Platform, Timor Sea — Evidence from 2D and 3D seismic surveys and petroleum exploration wells. Proceedings of the Sedimentary Basins of Western Australia , 16(3), 355-376.
36 KKirkland, B.L., Dickson, J.A.D., Wood, R.A., Land, L.S., 1998, Microbialite and microstratigraphy: The origin of encrustation in the middle and upper Capitan Formation, Guadalupe Mountains, Texas and New Mexico, U.S.A. Journal of Sedimentary Research , 68, 956-969.
37 KKorn, H., 1930. Die cryptostomen Bryozoen des deutschen Perms. Leopoldina , 6, 341-375.
7 HeHe, Y.L., Xie, X.N., Lu, Y.C., Li, X.S., Xu, W., Zou, Z.C., 2012. Origin of high-amplitude reflections in Meishan Formation of the southern Qiongdongnan Basin and its significance in hydrocarbon exploration. Acta Petrolei Sinica , 33(4), 617-624 (in Chinese with English abstract).
38 KKotarba, M.J., Peryt, T.M., Kosakowski, P., Więcław, D., 2006. Organic geochemistry, depositional history and hydrocarbon generation modelling of the Upper Permian Kupferschiefer and Zechstein Limestone strata in south-west Poland. Marine and Petroleum Geology , 23, 371-386.
30 SStanley, D.J., Palmer, H.D., Dill, R.F., 1978. Coarse sediment transport by mass flow and turbidity current processes and downslope transformations in Annot Sandstone canyon-fan valley systems. In: Stanley, D.J., Kelling, G. (Eds.), Sedimentation in Submarine Canyons, Fans, and Trenches . Hutchinson and Ross, Inc., Stroudsburg, PA, pp. 85-115.
31 VVan Loon, A.J., 2009. Soft-sediment deformation structures in siliciclastic sediments: An overview. Geologos , 15(1), 3-55.
32 VVan Loon, A.J., Mazumder, R., 2013. First find of biogenic activity in the Palaeoproterozoic of the Singhbhum craton (E. India). Geologos , 19(3), 185-192.
33 VVan Loon, A.J., Mazumder, R., De, S., 2016. The response of stromatolites to seismic shocks: Tomboliths from the Palaeoproterozoic Chaibasa Formation, E India. Journal of Palaeogeography , 5(4), 381-390.
34 WWalton, E.K., 1967. The sequence of internal structures in turbidites. Scottish Journal of Geology , 3(2), 306-317.
35 YYoud, T.L., 1992. Liquefaction, ground failure, and consequent damage during the 22 April 1991 Costa Rica Earthquake. In: Proceedings of the NSF/UCR U.S.-Costa Rica Workshop on the Costa Rica Earthquakes of 1990-1991: Effects on Soils and Structures . Earthquake Engineering Research Institute, Oakland, CA.
8 HuHu, B., Wang, L.S., Yan, W.B., Liu, S.W., Cai, D.S., Zhang, G.C., Zhong, K., Pei, J.X., Sun, B., 2013. The tectonic evolution of the Qiongdongnan Basin in the northern margin of the South China Sea. Journal of Asian Earth Sciences , 77, 163-182.
39 KKozur, H.W., Aydin, M., Demir, O., Yakar, H., Göncüoglu, M.C., Kuru, F., 2000. New stratigraphic and palaeogeographic results from the Palaeozoic and Early Mesozoic of the Middle Pontides (Northern Turkey) in the Azdavay, Devrekani, Küre and Inebolu Areas: Implications for the Carboniferous - Early Cretaceous geodynamic evolution and some related remarks to the Karakaya oceanic rift basin. Geologica Croatica , 53 (2), 209-268.
40 LLisitsyn, V.P., Ernst, A., 2004. A revision of the Paleozoic bryozoan genera Thamniscus and Synocladia. Paleontological Journal , 38, 285-293.
41 LLiu, L., Wu, Y.S., Jiang, H.X., Liu, H., 2016. Growth characteristics and sedimentary mode of Permian reefs, Lengwu, Tonglu, Zhejiang Province, southern China. Journal of Palaeogeography , 5(4), 409-422.
42 MMägdefrau, K., 1933. Zur Entstehung der mitteldeutschen Zechsteinriffe. Centralblatt für Mineralogie, Geologie und Paläontologie, Abt. B , 621-624.
43 MMazzullo, S.J., 1980. Calcite pseudospar replacive of marine acicular aragonite, and implications for aragonite cement diagenesis. Journal of Sedimentary Petrology, 50, 409-422.
44 MMazzullo, S.J., Cys, J.M., 1977. Submarine cements in Permian boundstones and reef associated rocks, Guadalupe Mountains, west Texas and south-eastern New Mexico. SEPM Permian Basin Section Publication, 77-16, 151-200.
9 KeKenyon, N.H., Akhmetzhanov, A.M., Wheeler, A.J., van Weering, T.C.E., de Haas, H., Ivanov, M.K., 2003. Giant carbonate mud mounds in the southern Rockall Trough. Marine Geology , 195, 5-30.
45 MMazzullo, S.J., Cys, J.M., 1983. Unusual algal-crystalline carbonate coated grains from the Capitan Reef (Permian, Guadalupian), New Mexico, USA. In: Coated Grains (ed. T. Peryt): 599-608, Springer, Berlin.
46 NNakazawa, T. Igawa, T., Ueno, K. Fujikawa, M., 2015. Middle Permian sponge-microencruster reefal facies in the mid-Panthalassan Akiyoshi atoll carbonates: observations on a limestone slab. Facies , 61: 15. doi:10.1007/s10347-015-0443-7
10 LLi, J.B., Ding, W.W., Wu, Z.Y., Zhang, J., Dong, C.Z., 2012. The propagation of seafloor spreading in the southwestern subbasin, South China Sea. Chinese Science Bulletin , 57(24), 3182-3191.
47 PPaul, J., 1980. Upper Permian algal stromatolitic reefs, Harz Mountains (F. R. Germany). Contributions to Sedimentology , 9, 253-268.
48 PPaul, J., 1995. Stromatolite reefs of the upper Permian Zechstein basin (Central Europe). Facies , 32, 28-31.
11 LLi, L., Lei, X.H., Zhang, X., Sha, Z.B., 2013. Gas hydrate and associated free gas in the Dongsha area of northern South China Sea. Marine and Petroleum Geology , 39(1), 92-101.
49 PPaul, J., 2010. Zechstein reefs in Germany. In: J.C. Doornenbal and A.G. Stevenson (eds), Petroleum Geological Atlas of the Southern Permian Basin Area . EAGE Publications b.v.: Houten; 142-144.
50 PPaul, J., Huckriede, H., 2004. Riffe, Gips und Erze: Zechstein zwischen Saalfeld und Neustadt/Orla. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften , 35, 75-91.
51 PPeryt, D., Peryt, T.M., Raczyński, P., Chłódek, K., 2012. Foraminiferal colonization related to the Zechstein (Lopingian) transgression in the western part of the Wolsztyn Palaeo-Ridge area, Western Poland. Geological Quarterly , 56, 529-546.
12 MMa, Y.B., Wu, S.G., Xu, J.L., Lv, F.L., Fu, Y.H., Yuan, S.Q., 2009. Distribution and model of reef and carbonate platforms in the south deepwater sag of Qiongdongnan Basin. Natural Gas Geoscience , 20(1), 119-124 (in Chinese with English abstract).
52 PPeryt, D., Peryt, T.M., Hałas, S., Raczyński, P., 2016. Microfacies, foraminifers and carbon and oxygen isotopes in a basinal section of the Zechstein Limestone (Wuchiapingian): Bonikowo 2 borehole, western Poland. Geological Quarterly , 60, 827-839.
53 PPeryt, T.M., 1978. Sedimentology and paleoecology of the Zechstein Limestone (Upper Permian) in the Fore-Sudetic area (western Poland). Sedimentary Geology , 20, 217-243.
54 PPeryt, T.M., 1981. Stromatolites in the Zechstein Limestone of the Fore-Sudetic Monocline (Western Poland) (in Polish with English summary). Kwartalnik Geologiczny , 25, 609-628.
55 PPeryt, T.M., 1984. Sedimentation and early diagenesis of the Zechstein Limestone in Western Poland (in Polish with English summary). Prace Instytutu Geologicznego , 109, 1-80.
56 PPeryt, T.M., 1986. Zechstein Stromaria (= Archaeolithoporella )-cement reefs in Thuringia. Neues Jahrbuch für Geologie und Paläontologie Monatshefte , H. 5, 307-316.
13 MMa, Y.B., Wu, S.G., Lv, F.L., Dong, D.D., Sun, Q.L., Lu, Y.T., Gu, M.F., 2011. Seismic characteristics and development of the Xisha carbonate platforms, northern margin of the South China Sea. Journal of Asian Earth Sciences , 40(3), 770-783.
57 PPeryt, T.M., Geluk, M.C., Mathiesen, A., Paul, J., Smith, K., 2010. Zechstein. In: Petroleum Geological Atlas of the Southern Permian Basin Area (eds. J.C. Doornenbal and A.G. Stevenson): 123-147. EAGE Publications b.v., Houten.
58 PPeryt, T.M., Hałas, S., Peryt, D., 2015. Carbon and oxygen isotopic composition and foraminifera of condensed basal Zechstein (Upper Permian) strata in western Poland: environmental and stratigraphic implications. Geological Journal , 50, 446-464.
14 MMagoon, L.B., Dow, W.G., 1994. The petroleum system. In: Magoon, L.B., Dow, W.G. (Eds.), The Petroleum System: From Source to Trap . AAPG Memoir , 60, pp. 3-24.
59 PPeryt, T.M., Peryt, D., 2012. Geochemical and foraminiferal records of environmental changes during the Zechstein Limestone (Lopingian) deposition in Northern Poland. Geological Quarterly , 56, 187-198.
15 NNakano, C., Pinto, A.C., Marcusso, J., Minami, K., 2009. Pre-salt Santos Basin extended well test and production pilot in the Tupi area — The Planning Phase. Journal of Petroleum Technology , 62(2), 66-68.
60 PPeryt, T.M., Raczyński, P., Peryt, D., Chłódek, K., 2012. Upper Permian reef complex in the basinal facies of the Zechstein Limestone (Ca1), western Poland. Geological Journal , 46, 537-552.
16 PPu, R.H., Zhu, L., Zhong, H.L., 2009. 3-D seismic identification and characterization of ancient channel morphology. Journal of Earth Science , 20(5), 858-867.
17 PPu, R.H., Dang, X.H., Xu, J., Guo, Q., Yi, H.J., 2011. Permian division and correlation and distribution of volcanic rocks of Tarim Basin. Acta Petrologica Sinica , 27(1), 166-180 (in Chinese with English abstract).
61 PPeryt, T.M., Raczyński, P., Peryt, D., Chłódek, K., Mikołajewski, Z., 2016. Sedimentary history and biota of the Zechstein Limestone (Permian, Wuchiapingian) Jabłonna Reef in Western Poland. Annales Societatis Geologorum Poloniae , 86, 379-413.
18 PPu, R.H., Zhang, Y.L., Luo, J.L., 2012. Seismic reflection, distribution, and potential trap of Permian volcanic rocks in the Tahe field. Journal of Earth Science , 23(4), 421-430.
19 RReston, T.J., Pennell, J., Stubenrauch, A., Walker, I., Perez-Gussinye, M., 2001. Detachment faulting, mantle serpentinization, and serpentinite-mud volcanism beneath the Porcupine Basin, southwest of Ireland. Geology , 29(7), 587-590.
20 RRosleff-Soerensen, B., Reuning, L., Back, S., Kukla, P., 2012. Seismic geomorphology and growth architecture of a Miocene barrier reef, Browse Basin, NW-Australia. Marine and Petroleum Geology , 29(1), 233-254.
21 SSaner, S., Al-Hinai, K., Perincek, D., 2005. Surface expressions of the Ghawar structure, Saudi Arabia. Marine and Petroleum Geology , 22(5), 657-670.
22 SSattler, U., Zampetti, V., Schlager, W., Immenhauser, A., 2004. Late leaching under deep burial conditions: A case study from the Miocene Zhujiang carbonate reservoir, South China Sea. Marine and Petroleum Geology , 21(8), 977-992.
23 TTaylor, B., Hayes, D.E., 1983. Origin and history of the South China Sea basin. In: Hayes, D.E. (Ed.), The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2 . AGU Geophysical Monograph Series , vol. 27, pp. 23-56.
24 WWang, D.W., Wu, S.G., Qin, Z.L., Spence, G., Lü, F.L., 2013. Seismic characteristics of the Huaguang mass transport deposits in the Qiongdongnan Basin, South China Sea: Implications for regional tectonic activity. Marine Geology , 346, 165-182.
62 PPharaoh, T.C., Dusar, M., Geluk, M.C., Kockel, F., Krawczyk, C.M., Krzywiec, P., Scheck-Wenderoth, M., Thybo, H., Vejbak, O.V., Van Wees, J.D., 2010. Tectonic evolution. In: Petroleum Geological Atlas of the Southern Permian Basin Area (eds. J.C. Doornenbal and A.G. Stevenson): 25-57. EAGE Publications b.v., Houten.
63 PPisera, A., Zawidzka, K., 1981. Archaeolithoporella from the Upper Permian reef limestones of the Northern Caucasus. Bulletin de l'Academie Polonaise des Sciences, Série des Sciences de la Terre , 29, 233-238.
64 RRaczyński, P., Peryt, T.M., Peryt, D., 2016. Sedimentary history of two Zechstein Limestone carbonate buildups (Elżbieciny and Racot) in western Poland: the reefs that were. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften , 167, 191-210.
65 SSano, H., Horibo, K., Kumamoto, Y., 1990. Tubiphytes-Archaeolithoporella-Girvanella reefal facies in Permian buildup, Mino terrane, central Japan. Sedimentary Geology , 68, 293-306.
66 SSchaffhauser, M., Krainer, K., Sanders, D., 2015. Early Permian carbonate shelf margin deposits: the type section of the Trogkofel Formation (Artinskian/Kungurian), Carnic Alps, Austria/Italy. Austrian Journal of Earth Sciences , 108/2, 277-301.
67 SSchmidt, W., 1977. Inorganic and organic growth and subsequent diagenesis in the Permian Capitan Reef Complex, Guadalupe Mountains, Texas, New Mexico. SEPM Permian Basin Section Publication , 77-16 (1), 93-132.
68 SScotese, C.R., 2002. Atlas of Earth History . PALEOMAP Project, Arlington, Texas.
69 SSenowbari-Daryan, B. Rashidi, K., Hamedani, A., 2005. Sponge assemblage from the Permian reefal limestones of Kuh-e Bagh-e Vang, Shotori Mountains (eastern Iran). Geologica Carpathica , 56, 381-406.
70 SShen, J.W., Xu, H.L., 2005. Microbial carbonates as contributors to Upper Permian (Guadalupian-Lopingian) biostromes and reefs in carbonate platform setting, Ziyun County, south China. Palaeogeography, Palaeoclimatology, Palaeoecology , 218, 217-238.
71 SSmith, D.B., 1980. The evolution of the English Zechstein basin. Contributions to Sedimentology , 9, 7-34.
72 SSmith, D.B., 1981. The Magnesian Limestone (Upper Permian) reef complex of northeastern England. SEPM Special Publication , 30, 161-186.
73 SSmith, D.B., 1994. Geology of the country around Sunderland . Memoir of the British Geological Survey, sheet 21 (England and Wales), London.
74 SSremac, J., Jurkovsek, B., Aljinovic, D., Kolar-Jurkovsek, T., 2016. Equatorial Palaeotethys as the last sanctuary for late Permian metazoan reef-builders: New evidence from the Bellerophon Formation of Slovenia. Palaeogeography, Palaeoclimatology, Palaeoecology , 454, 91-100.
75 SSylwestrzak, J., 2000. Zróżnicowanie raf mszywiołowych Ca1 w świetle wyników badań petrograficznych i izotopowych (streszczenie posteru) (in Polish). Przegląd Geologiczny , 48, 465.
76 SSylwestrzak, J., 2001. Badania petrologiczne rafy wapienia cechsztyńskiego w rejonie Bonikowa (in Polish). National Geological Archive, No. Inv. 685/2002, PIG-PIB, Warszawa.
77 TTosti, F., Mastandrea, A., Guido, A., Demasi, F., Russo, F., Riding, R., 2014. Biogeochemical and redox record of mid-late Triassic reef evolution in the Italian Dolomites. Palaeogeography, Palaeoclimatology, Palaeoecology , 399, 52-66.
78 VVasconcelos, C., McKenzie, J.A., Warthmann, R., Bernasconi, S.M., 2005. Calibration of the δ 18 O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology , 33, 317-320.
79 VVennin, E., 2007. Coelobiontic communities in neptunian fissures of synsedimentary tectonic origin in Permian reef, southern Urals, Russia. Geological Society Special Publications , 275, 211-227.
80 VVennin, E., Vachard, D., Proust, J.-N., 1997. Taphonomie et synécologie du "Genre" Tubiphytes dans les bio-constructions de Tratau et de Nizhni-Irginsk (Permien inférieur de l’Oural, Russie). Geobios , 30, 635-649.
81 WWagner, R., Peryt, T.M., 1997. Possibility of sequence stratigraphic subdivision of the Zechstein in the Polish Basin. Geological Quarterly , 41, 457-474.
82 WWahlman, G.P., Orchard, D.M., Buijs, G.J., 2013. Calcisponge-microbialite reef facies, middle Permian (lower Guadalupian), northwest shelf margin of Permian Basin, New Mexico. American Association of Petroleum Geologists Bulletin , 97, 1895 - 1919.
83 WWalker, K.R., Ferrigno, K.F., 1973. Major Middle Ordovician reef tract in East Tennessee. American Journal of Science , 273-A, 294-325.
84 WWalther, J., 1885. Die gesteinsbildenden Kalkalgen des Golfs von Neapel und die Entstehung structurloser Kalke. Zeitschrift der deutschen geologischen Gesellschaft , 37, 229-357.
85 WWang, S., Fan, J., Rigby, J.K., 1994a. The Permian Reefs in Ziyun County, Southern Guizhou, China. Brigham Young University Geology Studies , 40, 155-183.
86 WWang, S., Fan, J., Rigby, J.K., 1994b. Archaeolithoporella and Tubiphytes : Affinities and paleoecology in Permian reefs of South China. Science in China. Series B, Chemistry, Life Sciences & Earth Sciences , 37 (6), 723-743.
87 WWeidlich, O., Flügel, H.W., 1995. Upper Permian (Murghabian) rugose corals from Oman (Ba'id area, Saih Hatat): Community structure and contributions to reefbuilding processes. Facies , 33, 229-264.
88 WWu, Y.S., 1991. Organisms and communities of Permian reef of Xiangbo, China . International Acad Publ., Beijing, 1-192.
89 ZZiemianin, K., 2012. Correlations of petrophysical parameters with facies analysis of cores from the Bonikowo-1 , Bonikowo-2 and Kokorzyn-2 wells (in Polish). Nafta-Gaz , 68, 153-164 (in Polish).