Soft-sediment deformation structures (SSDS) have been the focus of attention for over 150 years. Existing unconstrained definitions allow one to classify a wide range of features under the umbrella phrase “SSDS”. As a consequence, a plethora of at least 120 different types of SSDS (e.g., convolute bedding, slump folds, load casts, dish-and-pillar structures, pockmarks, raindrop imprints, explosive sand?gravel craters, clastic injections, crushed and deformed stromatolites, etc.) have been recognized in strata ranging in age from Paleoproterozoic to the present time. Two factors that control the origin of SSDS are prelithification deformation and liquidization. A sedimentological compendium of 140 case studies of SSDS worldwide, which include 30 case studies of scientific drilling at sea (DSDP/ODP/IODP), published during a period between 1863 and 2017, has yielded at least 31 different origins. Earthquakes have remained the single most dominant cause of SSDS because of the prevailing “seismite” mindset. Selected advances on SSDS research are: (1) An experimental study that revealed a quantitative similarity between raindrop-impact cratering and asteroid-impact cratering; (2) IODP Expedition 308 in the Gulf of Mexico that documented extensive lateral extent (>12 km) of mass-transport deposits (MTD) with SSDS that are unrelated to earthquakes; (3) Contributions on documentation of pockmarks, on recognition of new structures, and on large-scale sediment deformation on Mars.
Problems that hinder our understanding of SSDS still remain. They are: (1) Vague definitions of the phrase “soft-sediment deformation”; (2) Complex factors that govern the origin of SSDS; (3) Omission of vital empirical data in documenting vertical changes in facies using measured sedimentological logs; (4) Difficulties in distinguishing depositional processes from tectonic events; (5) A model-driven interpretation of SSDS (i.e., earthquake being the singular cause); (6) Routine application of the genetic term “seismites” to the “SSDS”, thus undermining the basic tenet of process sedimentology (i.e., separation of interpretation from observation); (7) The absence of objective criteria to differentiate 21 triggering mechanisms of liquefaction and related SSDS; (8) Application of the process concept “high-density turbidity currents”, a process that has never been documented in modern oceans; (9) Application of the process concept “sediment creep” with a velocity connotation that cannot be inferred from the ancient record; (10) Classification of pockmarks, which are hollow spaces (i.e., without sediments) as SSDS, with their problematic origins by fluid expulsion, sediment degassing, fish activity, etc.; (11) Application of the Earth's climate-change model; and most importantly, (12) An arbitrary distinction between depositional process and sediment deformation. Despite a profusion of literature on SSDS, our understanding of their origin remains muddled. A solution to the chronic SSDS problem is to utilize the robust core dataset from scientific drilling at sea (DSDP/ODP/IODP) with a constrained definition of SSDS.
G. Shanmugam. Global case studies of soft-sediment deformation structures (SSDS): Definitions, classifications, advances, origins, and problems[J]. Journal of Palaeogeography, 2017, 6(4): 251-320.
G. Shanmugam. Global case studies of soft-sediment deformation structures (SSDS): Definitions, classifications, advances, origins, and problems[J]. Journal of Palaeogeography, 2017, 6(4): 251-320.
.ábalos, B., Elorza, J., 2011. Latest Cretaceous cone-in-cone structures and soft-sediment deformation (Basque-Cantabrian Basin, north Spain): A record of deep-marine paleoseismicity? GSA Bulletin, 123, 427-438.
[89]
Festa, A., Dilek, Y., Gawlick, H.J., Missoni, S., 2014. Mass-transport deposits, olistostromes and soft-sediment deformation in modern and ancient continental margins, and associated natural hazards. Marine Geology, 356, 128.
[2]
.Ackermann, R.V., Schlische, R.W., Olsen, P.E., 1995. Synsedimentary collapse of portions of the lower Blomidon Formation (Late Triassic), Fundy rift basin, Nova Scotia. Canadian Journal of Earth Sciences, 32, 1965-1976.
[90]
Fichman, M., 2013. Raindrop Imprints and Their Use in the Retrodeformation of Carboniferous Trace Fossils. M.S. Thesis, University of Connecticut Graduate School, Storrs, p. 89.
[91]
Fichman, M.E., Crespi, J.M., Getty, P.R., Bush, A.M., 2015. Retrodeformation of Carboniferous trace fossils from the Narragansett Basin, United States, using raindrop imprints and bedding-cleavage intersection lineation as strain markers. Palaios, 30, 574-588.
[3]
.Agnon, A., Migowski, C., Marco, S., 2006. Intraclast breccias in laminated sequences reviewed: Recorders of paleoearthquakes. In: Enzel, Y., Agnon, A., Stein, M. (Eds.), Frontiers in Dead Sea Paleoenvironmental Research. GSA Special Paper, 401, pp. 195-214.
[92]
Fjeldskaar, W., Lindholm, C., Dehls, J.F., Fjeldskaar, I., 2000. Postglacial uplift, neotectonics and seismicity in Fennoscandia. Quaternary Science Reviews, 19, 1413-1422.
[82]
Expedition 356 Scientists, 2017. Site U1464. In: Gallagher, S.J., Fulthorpe, C.S., Bogus, K., and the Expedition 356 Scientists, (Eds.), Proceedings of the Integrated Ocean Drilling Program, Volume 356. Texas A&M University, College Station, Texas. doi:10.14379/iodp.proc.356.109.2017.
[83]
Eyles, N., Clark, B.M., 1985. Gravity-induced soft-sediment deformation in glaciomarine sequences of the Upper Proterozoic Port Aiskaig Formation, Scotland. Sedimentology, 32, 789-814.
[4]
.Alfaro, P., Delgado, J., Estévez, A., Molina, J.M., Moretti, M., Soria, J.M., 2002. Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain). International Journal of Earth Sciences (Geologische Rundschau), 91, 505-513.
[5]
.Alfaro, P., Moretti, M., Owen, G., 2016. The environmental significance of soft-sediment deformation. Sedimentary Geology, 344, iii-iv.
[6]
.Alfaro, P., Moretti, M., Sofia, J.M., 1997. Soft-sediment deformation structures induced by earthquakes (seismites) in Pliocene lacustrine deposits (Guadix-Baza Basin, Central Betic Cordillera). Eclogae Geologicae Helvetiae, 90, 531-540.
[7]
.Allen, J.R.L., 1977. The possible mechanics of convolute lamination in graded sand beds. Journal of the Geological Society, London, 134, 19-31.
[93]
Fodor, R.V., Thiede, J., 1977. Volcanic breccia from DSDP Site 357: Implications for the composition and origin of the Rio Grande Rise. In: Supko, P.R., Perch-Nielsen, K., et al., (Eds.), Initial Reports of the Deep Sea Drilling Project, 39. United States Government Printing Office, Washington, pp. 537-543.
[94]
Ford, C., Bryant, G., Nick, K.E., 2016. Architectural evidence of dune collapse in the Navajo Sandstone, Zion National Park, Utah. Sedimentary Geology, 344, 222-236.
[95]
Fortuin, A.R., Dabrio, C.J., 2008. Evidence for Late Messinian seismites, Nijar Basin, south-east Spain. Sedimentology, 55, 1595-1622.
[96]
Fossen, H., 2010. Deformation bands formed during soft-sediment deformation: Observations from SE Utah. Marine and Petroleum Geology, 27, 215-222.
[8]
.Allen, J.R.L., 1984. Sedimentary Structures: Their Character and Physical Basis. Unabridged one-volume edition. Developments in Sedimentology 30. Elsevier, Amsterdam, Volume I, pp. 1-593 and Volume II, pp. 1-663.
[97]
Frey, S.E., Gingras, M.K., Dashtgard, S.E., 2009. Experimental studies of gas-escape and water-escape structures: Mechanisms and morphologies. Journal of Sedimentary Research, 79, 808-816.
[84]
Ezquerro, L., Moretti, M., Liesa, C.L., Luzón, A., Pueyo, E.L., Simón, J.L., 2016. Controls on space-time distribution of soft-sediment deformation structures: Applying palaeomagnetic dating to approach the apparent recurrence period of paleoseisms at the Concud Fault (eastern Spain). Sedimentary Geology, 344, 91-111.
[98]
Friedman, G.M., 1997. Dissolution-collapse breccias and paleokarst resulting from dissolution of evaporite rocks, especially sulfates. Carbonates and Evaporites, 12, 53-63.
[85]
Feng, Z.Z., 2017a. A successful symposium of “Multi-origin of soft-sediment deformation structures and seismites”. Journal of Palaeogeography, 6 (1), 1-6.
[86]
Feng, Z.Z., 2017b. Preface of the Chinese version of the seismite problem. Journal of Palaeogeography, 6 (1), 7-11.
[87]
Feng, Z.Z., 2017c. A brief review on 7 papers from the special issue of “The environmental significance of soft-sediment deformation” of the Sedimentary Geology 344 (2016). Journal of Palaeogeography, 6 (4), 243-250.
[9]
.Almagor, G., Wiseman, G., 1982. Submarine slumping and mass movements on the slope of Israel. In: Saxov, S., Nieuwenhuis, J.K., (Eds.), Marine Slides and Other Mass Movements. Plenum Press, New York and London, pp. 95-128.
[88]
Feng, Z.Z., Bao, Z.D., Zheng, X.J., Wang, Y., 2016. Researches of soft-sediment deformation structures and seismites in China? A brief review. Journal of Palaeogeography, 5 (4), 311-317.
[10]
Alsop, G.I., Marco, S., Weinberger, R., Levi, T., 2016. Sedimentary and structural controls on seismogenic slumping within Mass Transport Deposits from the Dead Sea Basin. Sedimentary Geology, 344, 71-90.
[11]
Alves, T.M., 2015. Submarine slide blocks and associated soft-sediment deformation in deep-water basins: A review. Marine and Petroleum Geology, 67, 262-285.
[12]
Anketell, J.M., Cegla, J., Dzulynski, S., 1970. On the deformational structures in systems with reversed density gradients. Annales Societatis Geologorum Poloniae, 40, 3-30.
[13]
Arzaghi, S., Khosrow-Tehrani, K., Afghah, M., 2012. Sedimentology and petrography of Paleocene-Eocene evaporites: The Sachun Formation, Zagros Basin, Iran. Carbonates and Evaporites, 27, 43-53.
[89]
Festa, A., Dilek, Y., Gawlick, H.J., Missoni, S., 2014. Mass-transport deposits, olistostromes and soft-sediment deformation in modern and ancient continental margins, and associated natural hazards. Marine Geology, 356, 128.
[14]
Bachmann, G.H., Aref, M.A.M., 2005. A seismite in Triassic gypsum deposits (Grabfeld Formation, Ladinian), southwestern Germany. Sedimentary Geology, 180, 75-89.
[90]
Fichman, M., 2013. Raindrop Imprints and Their Use in the Retrodeformation of Carboniferous Trace Fossils. M.S. Thesis, University of Connecticut Graduate School, Storrs, p. 89.
[15]
Barruol, G., Cordier, E., Bascou, J., Fontaine, F.R., Legrésy, B., Lescarmontier, L., 2013. Tide-induced microseismicity in the Mertz glacier grounding area, East Antarctica. Geophysical Research Letters, 40, 5412-5416.
[91]
Fichman, M.E., Crespi, J.M., Getty, P.R., Bush, A.M., 2015. Retrodeformation of Carboniferous trace fossils from the Narragansett Basin, United States, using raindrop imprints and bedding-cleavage intersection lineation as strain markers. Palaios, 30, 574-588.
[16]
Basilone, L., Lena, G., Gasparo-Morticelli, M., 2014. Synsedimentary-tectonic, soft-sediment deformation and volcanism in the rifted Tethyan margin from the Upper Triassic-Middle Jurassic deep-water carbonates in Central Sicily. Sedimentary Geology, 308, 63-79.
[92]
Fjeldskaar, W., Lindholm, C., Dehls, J.F., Fjeldskaar, I., 2000. Postglacial uplift, neotectonics and seismicity in Fennoscandia. Quaternary Science Reviews, 19, 1413-1422.
[17]
Basilone, L., Sulli, A., Gasparo Morticelli, M., 2016. The relationships between soft sediment deformation structures and synsedimentary extensional tectonics in Upper Triassic deep-water carbonate succession (Southern Tethyan rifted continental margin, Central Sicily). Sedimentary Geology, 344, 310-322.
[18]
Bates, R.L., Jackson, J.A., 1980. Glossary of Geology, Second Edition. American Geological Institute, Falls Church, Virginia, USA, pp. 146-566.
[19]
Beck, C., 2009. Lake sediments as Late Quaternary palaeoseismic archives: Examples in north-western Alps and clues for earthquake-origin assessment of sedimentary disturbances. Earth-Science Reviews, 96, 327-344.
[20]
Berra, F., Felletti, F., 2011. Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): Stratigraphic significance. Sedimentary Geology, 235, 249-263.
[21]
Bhakuni, S.S., Luirei, K., Devi, M., 2012. Soft-sediment deformation structures (seismites) in Middle Siwalik sediments of Arunachal Pradesh, NE Himalaya. Himalayan Geology, 33, 139-145.
[22]
Bhattacharya, H.R., Bandyopadhyay, S., 1998. Seismites in a Proterozoic tidal succession, Singhbhum, Bihar, India. Sedimentary Geology, 119, 239-252.
[23]
Boggs Jr., S., 2001. Principles of Sedimentology and Stratigraphy, Third Edition. Prentice Hall, New Jersey, p. 726.
[24]
Boulton, G.S., Dobbie, K.E., Zatsepin, S., 2001. Sediment deformation beneath glaciers and its coupling to the subglacial hydraulic system. Quaternary International, 86, 3-28.
[25]
Bouma, A.H., 1962. Sedimentology of Some Flysch Deposits, Agraphic Approach to Facies Interpretation. Elsevier, Amsterdam, p. 168.
Brandes, C., Winsemann, J., 2013. Soft-sediment deformation structures in Late Pleistocene alluvial-aeolian sediments caused by GIA induced seismicity along the Osning Thrust (northern Germany). EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-2844.
[93]
Fodor, R.V., Thiede, J., 1977. Volcanic breccia from DSDP Site 357: Implications for the composition and origin of the Rio Grande Rise. In: Supko, P.R., Perch-Nielsen, K., et al., (Eds.), Initial Reports of the Deep Sea Drilling Project, 39. United States Government Printing Office, Washington, pp. 537-543.
[94]
Ford, C., Bryant, G., Nick, K.E., 2016. Architectural evidence of dune collapse in the Navajo Sandstone, Zion National Park, Utah. Sedimentary Geology, 344, 222-236.
[95]
Fortuin, A.R., Dabrio, C.J., 2008. Evidence for Late Messinian seismites, Nijar Basin, south-east Spain. Sedimentology, 55, 1595-1622.
[96]
Fossen, H., 2010. Deformation bands formed during soft-sediment deformation: Observations from SE Utah. Marine and Petroleum Geology, 27, 215-222.
[99]
Garrison, R.E., Schreiber, B.C., Bernoulli, D., Fabricius, F.H., Kidd, R.B., Melieres, F., Worstell, P.J., 1978. Sedimentary petrology and structures of Messinian evaporitic sediments in the Mediterranean Sea. In: Initial Reports of the Deep Sea Drilling Project, Leg 42. United States Government Printing Office, Washington, pp. 571-611, doi:10.2973/dsdp.proc.42-1.123.1978.
[100]. Gavrilov, Y.O., 2017. Reflection of seismic paleoevents in Mesozoic-Cenozoic terrigenous sequences of the Northern Caucasus. Lithology and Mineral Resources, 52, 1-19.
[101]. Gelfenbaum, G., Jaffe, B., 2003. Erosion and sedimentation from the 17 July, 1998 Papua New Guinea Tsunami. Pure and Applied Geophysics, 160, 1969-1999.
[97]
Frey, S.E., Gingras, M.K., Dashtgard, S.E., 2009. Experimental studies of gas-escape and water-escape structures: Mechanisms and morphologies. Journal of Sedimentary Research, 79, 808-816.
[98]
Friedman, G.M., 1997. Dissolution-collapse breccias and paleokarst resulting from dissolution of evaporite rocks, especially sulfates. Carbonates and Evaporites, 12, 53-63.
[28]
Brodzikowski, K., Haluszczak, A., 1987. Flame structures and associated deformations in Quaternary glaciolacustrine and glaciodeltaic deposits: examples from Central Poland. In: Jones, M.E., Preston, R.M.F., (Eds.), Deformation of Sediments and Sedimentary Rocks. Geological Society London, Special Publications, 29, 279-286.
[29]
Brodzikowski, K., Van Loon, A.J., 1980. Sedimentary deformations in Saalian glaciolimnic deposits near Wlostow (Zary area, western Poland). Geologie en Mijnbouw, 59, 251-272.
Bryant, G., Cushman, R., Nick, K., Miall, A., 2016. Paleohydrologic controls on soft sediment deformation in the Navajo Sandstone. Sedimentary Geology, 344, 205-221.
[32]
Buckland, W., 1842. On recent and fossil semi-circular cavities caused by air-bubbles on the surface of soft clay, and resembling impressions of rain-drops. Report of the British Association for the Advancement of Science, Transactions of the Sections, 1842, 57-58.
[102]. Gindre-Chanu, L., Warren, J.K., Puigdefabregas, C., ISharp, I.R., Peacock, D.C.P., Swart, R., Poulsen, R., Ferreira, H., Henrique, L., 2014. Diagenetic evolution of Aptian evaporites in the Namibe Basin (south-west Angola). Sedimentology, 62, 204-233.
[33]
Butler, G.P., 1969. Modern evaporite deposition and geochemistry of coexisting brines, the sabkha, Trucial Coast, Arabian Gulf. Journal of Sedimentary Petrology, 39, 70-89.
[34]
Callot, P., Odonne, F., Sempere, T., 2008. Liquification and soft-sediment deformation in a limestone megabreccia: The Ayabacas giant collapse, Cretaceous, southern Peru. Sedimentary Geology, 212, 49-69.
[35]
Calvo, J.P., Rodríguez-Pascua, M., Martin-Velazquez, S., Jimenez, S., De Vicente, G., 1998. Microdeformation of lacustrine laminite sequences from Late Miocene formations of SE Spain: An interpretation of loop bedding. Sedimentology, 45, 279-292.
[36]
Carson, B., Berglund, P.L., 1986. Sediment deformation and dewatering under horizontal compression: Experimental results. In: Moore, J.C., (Ed.), Structural Fabrics in Deep Sea Drilling Project Cores From Forearcs. GSA Memoir, 166, 135-150.
[37]
Carter, R.M., Lindqvist, J.K., 1975. Sealers Bay submarine fan complex, Oligocene, southern New Zealand. Sedimentology, 22, 465-483.
[38]
Chan, M.A., Okubo, C.H., Bruhn, R.L., 2014. Eolian Soft-Sediment Deformation Records on Earth and Mars. American Geophysical Union, Fall Meeting 2014, Abstract #EP43B-3565.
[39]
Chen, J., Lee, H.S., 2013. Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits (Shandong Province, China): Differential liquefaction and fluidization triggered by storm-wave loading. Sedimentary Geology, 288, 81-94.
[99]
Garrison, R.E., Schreiber, B.C., Bernoulli, D., Fabricius, F.H., Kidd, R.B., Melieres, F., Worstell, P.J., 1978. Sedimentary petrology and structures of Messinian evaporitic sediments in the Mediterranean Sea. In: Initial Reports of the Deep Sea Drilling Project, Leg 42. United States Government Printing Office, Washington, pp. 571-611, doi:10.2973/dsdp.proc.42-1.123.1978.
[100]. Gavrilov, Y.O., 2017. Reflection of seismic paleoevents in Mesozoic-Cenozoic terrigenous sequences of the Northern Caucasus. Lithology and Mineral Resources, 52, 1-19.
[101]. Gelfenbaum, G., Jaffe, B., 2003. Erosion and sedimentation from the 17 July, 1998 Papua New Guinea Tsunami. Pure and Applied Geophysics, 160, 1969-1999.
[40]
Chen, J.T., Han, Z.Z., Zhang, X.L., Fan, A.P., Yang, R.C., 2010. Early diagenetic deformation structures of the Furongian ribbon rocks in Shandong Province of China — A new perspective of the genesis of limestone conglomerates. Science China, Earth Science, 53, 241-252.
[41]
Chiarella, D., Moretti, M., Longhitano, S.G., Muto, F., 2016. Deformed cross-stratified deposits in the Early Pleistocene tidally-dominated Catanzaro strait-fill succession, Calabrian Arc (Southern Italy): Triggering mechanisms and environmental significance. Sedimentary Geology, 344, 277-289.
[42]
Claeys, P., Kiessling, W., Alvarez, W., 2002. Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. In: Koeberl, C., MacLeod, K.G., (Eds.), Catastrophic Events and Mass Extinctions: Impacts and Beyond. GSA Special Papers, 356, pp. 55-68.
[43]
Clark, G.R., 1979. Raindrop impressions as low-velocity impact structures. GSA Abstracts with Programs, 11, 402.
[44]
Cloud, P.E., Jr., 1960. Gas as a sedimentary and diagenetic agent. American Journal of Science, 258-A, 35-45.
[102]. Gindre-Chanu, L., Warren, J.K., Puigdefabregas, C., ISharp, I.R., Peacock, D.C.P., Swart, R., Poulsen, R., Ferreira, H., Henrique, L., 2014. Diagenetic evolution of Aptian evaporites in the Namibe Basin (south-west Angola). Sedimentology, 62, 204-233.
[45]
Coleman, J.M., 1976. Deltas: Processes of Deposition and Models for Exploration. Cont. Educ. Publ., Champaign, Illinois, USA, p. 102.
[46]
Collins, G.S., Melosh, H.J., Marcus, R.A., 2005. Earth impact effects program: A web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteoritics & Planetary Science, 40, 817-840.
[47]
Collinson, J.D., 1994. Sedimentary deformational structures. In: Maltman, A., (Ed.), The Geological Deformation of Sediments. Chapman & Hall, London, pp. 95-125.
[48]
Conti, S., Fontana, D., 2011. Possible relationships between seep carbonates and gas hydrates in the Miocene of the Northern Apennines. Journal of Geological Research, 2011, Article ID 920727, 1-9.http://dx.doi.org/10.1155/2011/920727.
[49]
Cowan, D.S., von Huene, R., Aubouin, J., 1982. Origin of ‘vein structure’ in slope sediments on the inner slope of the Middle America Trench off Guatemala. Initial Report of DSDP, Washington Government Printing Office, pp. 645-650. doi:10.2973/dsdp.proc.67.
[50]
Cunningham, J., 1839. An account of the impressions and casts of drops of rain, discovered in the quarries at Storeton Hill, Cheshire. Geological Society of London, Proceedings, 3, 99-100.
[51]
Damuth, J.E., Embley, R.W., 1981. Mass-transport processes on Amazon Cone: Western Equatorial Atlantic. AAPG Bulletin, 65, 629-643.
[52]
Dana, J.D., 1849. Geology, United States exploring expedition during the years 1838, 1839, 1840, 1841, 1842, under the command of Charles Wilkes, U.S.N., Volume 10. Philadelphia, p. 756.
[53]
Darwin, Ch., 1851. Geological observations on coral reefs, volcanic islands and on South America, Part III. Smith, Elder and Co., London.
[54]
Dasgupta, P., 1998. Recumbent flame structures in the Lower Gondwana rocks of the Jharia Basin, India — A plausible origin. Sedimentary Geology, 119, 253-261.
[104]. Glennie, K., Evamy, F.D., 1968. Dikaka: Plants and plant-root structures associated with aeolian sand. Palaeogeography, Palaeoclimatology, Palaeoecology, 4, 77-87.
[105]. Gradmann, S., Beaumont, C., Ings, S.J., 2012. Coupled fluid flow and sediment deformation in margin-scale salt-tectonic systems: 1. Development and application of simple, single-lithology models. Tectonics, 31, C4010.
[106]. Graff-Petersen, P., 1967. Intraformational deformations and pore-water hydrodynamics. Proceedings of the 7th International Sedimentological Congress, Reading, Berks, England. Abstract.
[107]. Greb, S.F., Archer, A.W., 2007. Soft-sediment deformation produced by tides in a meizoseismic area, Turnagain Arm, Alaska. Geology, 35, 435-438.
[55]
de Groot, M.B., Bolton, M.D., Foray, P., Meijers, P., Palmer, A.C., Sandven, R., Sawicki, A., Teh, T.C., 2006. Physics of liquefaction phenomena around marine structures. Journal of Waterway Port Coastal and Ocean Engineering, 132 (4), 227-243.
[56]
Desor, E., 1850. On fossil rain drops. Edinburgh New Philosophical Journal, 49, 246-248.
[108]. Greb, S.F., Ettensohn, F.R., Obermeier, S.F., 2002. Developing a classification scheme for seismites. In: GSA North-central & Southeastern Section Annual Meeting Abstracts with Programs, Session No. 42.
[109]. Greene, M., Power, M., Youd, T.L., 1994. Earthquake Basics Brief No. 1: Liquefaction: What it is and what to do about it. Earthquake Engineering Research Institute (EERI) Publication. Oakland, California, p. 8.
Gregory, M.R., 1969. Sedimentary features and penecontemporaneous slumping in the Waitemata Group, Whangaparaoa Peninsula, North Auckland, New Zealand. New Zealand Journal of Geology and Geophysics, 12, 248-282, doi: 10.1080/00288306.1969.10420236.
[57]
Dmitrieva, E., Jackson, C., Huuse, M., As, L., 2008. Distribution and large-scale soft-sediment deformation of deep-water depositional systems: A 3D seismic case study from the Paleocene of the North Sea basin. In: Subsurface sediment remobilization and fluid flow in sedimentary basins. 21-22 October 2008, The Geological Society, Burlington House, Piccadilly, London. Conference Abstract Volume, p. 23.
[58]
Douillet, G.A., Taisne, B., Müller, S.K., Kueppers, U., Dingwell, D.B., 2015. Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: Triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves. Solid Earth, 6, 553-572.
[59]
Du, Y.S., 2011. Discussion about studies of earthquake event deposit in China. Journal of Palaeogeography (Chinese Edition), 13, 581-590 (in Chinese with English abstract).
[60]
Du, Y.S., Han, X., 2000. Seismo-deposition and seismites. Advance in Earth Sciences, 15, 389-394 (in Chinese with English abstract).
[61]
Du, Y.S., Yu, W.C., 2017. Earthquake-caused and non-earthquake-caused soft-sediment deformations. Journal of Palaeogeorapghy (Chinese Edition), 19, 65-72 (in Chinese with English abstract).
[62]
Duranti, D., Hurst, A., 2004. Fluidization and injection in the deep-water sandstones of the Eocene Alba Formation (UK North Sea). Sedimentology, 51, 503-529.
[63]
Duranti, D., Hurst, A., Bell, C., Groves, S., Hanson, R., 2002. Injected and remobilized Eocene sandstones from the Alba Field, UKCS: Core and wireline log characteristics. Petroleum Geoscience, 8, 99-107.
Dzulynski, S., Ksiazkiewicz, M., Kuenen, Ph. H., 1959. Turbidites in flysch of the Polish Carpathian Mountains. GSA Bulletin, 70, 1089-1118.
[66]
Dzulynski, S., Walton, E.K., 1965. Sedimentary features of flysch and greywackes. Elsevier, Amsterdam, p. 274.
[67]
El Taki, H., Pratt, B.R., 2012. Syndepositional tectonic activity in an epicontinental basin revealed by deformation of subaqueous carbonate laminites and evaporites: Seismites in Red River strata (Upper Ordovician) of southern Saskatchewan, Canada. Bulletin of Canadian Petroleum Geology, 60, 37-58.
[68]
Embley, R.W., 1980. The role of mass transport in the distribution and character of deep-ocean sediments with special reference to the North Atlantic. Marine Geology, 38, 23-50.
[69]
Emery, K.O., 1945. Entrainment of air in beach sand. Journal of Sedimentary Petrology, 15, 39-49.
[70]
Enzel, Y., Kadan, G., EyaL, Y., 2000. Holocene earthquakes inferred from a fan-delta sequence in the Dead Sea Graben. Quaternary Research, 53, 34-48.
Ettensohn, F.R., Rast, N., Brett, C.E., 2002. Ancient Seismites. GSA Special Paper, 359, 177-190.
[104]. Glennie, K., Evamy, F.D., 1968. Dikaka: Plants and plant-root structures associated with aeolian sand. Palaeogeography, Palaeoclimatology, Palaeoecology, 4, 77-87.
[105]. Gradmann, S., Beaumont, C., Ings, S.J., 2012. Coupled fluid flow and sediment deformation in margin-scale salt-tectonic systems: 1. Development and application of simple, single-lithology models. Tectonics, 31, C4010.
[72]
Ettensohn, F.R., Zhang, C., Gao, L., Lierman, R.T., 2011. Soft-sediment deformation in epicontinental carbonates as evidence of paleoseismicity with evidence for a possible new seismogenic indicator: Accordion folds. Sedimentary Geology, 235, 222-233.
[106]. Graff-Petersen, P., 1967. Intraformational deformations and pore-water hydrodynamics. Proceedings of the 7th International Sedimentological Congress, Reading, Berks, England. Abstract.
[107]. Greb, S.F., Archer, A.W., 2007. Soft-sediment deformation produced by tides in a meizoseismic area, Turnagain Arm, Alaska. Geology, 35, 435-438.
[108]. Greb, S.F., Ettensohn, F.R., Obermeier, S.F., 2002. Developing a classification scheme for seismites. In: GSA North-central & Southeastern Section Annual Meeting Abstracts with Programs, Session No. 42.
[109]. Greene, M., Power, M., Youd, T.L., 1994. Earthquake Basics Brief No. 1: Liquefaction: What it is and what to do about it. Earthquake Engineering Research Institute (EERI) Publication. Oakland, California, p. 8.
Gregory, M.R., 1969. Sedimentary features and penecontemporaneous slumping in the Waitemata Group, Whangaparaoa Peninsula, North Auckland, New Zealand. New Zealand Journal of Geology and Geophysics, 12, 248-282, doi: 10.1080/00288306.1969.10420236.
[73]
Expedition 308 Scientists, 2006. Site U1322. In: Flemings, P.B., Behrmann, J.H., John, C.M., and the Expedition 308 Scientists, (Eds.), Proceedings of the Integrated Ocean Drilling Program, Volume 308. Texas A&M University, College Station, Texas. doi:10.2204/iodp.proc.308.106.2006.
[74]
Expedition 323 Scientists, 2011. Site U1345. In: Takahashi, K., Ravelo, A.C., Alvarez Zarikian, C.A., and the Expedition 323 Scientists, (Eds.), Proceedings of the Integrated Ocean Drilling Program, Volume 323. Integrated Ocean Drilling Program Management International, Inc., Tokyo, pp. 1-79, doi:10.2204/iodp.proc.323.109.2011.
[75]
Expedition 333 Scientists, 2011. Integrated Ocean Drilling Program Expedition 333 Preliminary Report NanTroSEIZE Stage 2: Subduction inputs 2 and heat flow. Texas A&M University, College Station, Texas. doi:10.2204/iodp.pr.333.2011.
[76]
Expedition 333 Scientists, 2012a. Site C0012. In: Henry, P., Kanamatsu, T., Moe, K., and the Expedition 333 Scientists, (Eds.), Proceedings of the Integrated Ocean Drilling Program, Volume 333. Texas A&M University, College Station, Texas. doi:10.2204/iodp.proc.333.105.2012.
[77]
Expedition 333 Scientists, 2012b. Site C0018. In: Henry, P., Kanamatsu, T., Moe, K., and the Expedition 333 Scientists, (Eds.), Proceedings of the Integrated Ocean Drilling Program, Volume 333. Texas A&M University, College Station, Texas. doi:10.2204/iodp.proc.333.103.2012.
[78]
Expedition 344 Scientists, 2013. Mid-slope Site U1380. In: Harris, R.N., Sakaguchi, A., Petronotis, K., and the Expedition 344 Scientists, (Eds.), Proceedings of the Integrated Ocean Drilling Program, Volume 344. Texas A&M University, College Station, Texas. doi:10.2204/iodp.proc.344.106.2013.
[79]
Expedition 349 Scientists, 2015a. Site U1431. In: Li, C.-F., Lin, J., Kulhanek, D.K., and the Expedition 349 Scientists, (Eds.), Proceedings of the Integrated Ocean Drilling Program, Volume 349. Texas A&M University, College Station, Texas. doi:10.14379/iodp.proc.349.103.2015.
[80]
Expedition 349 Scientists, 2015b. Site U1434. In: Li, C.-F., Lin, J., Kulhanek, D.K., and the Expedition 349 Scientists, (Eds.), Proceedings of the Integrated Ocean Drilling Program, Volume 349. Texas A&M University, College Station, Texas. doi:10.14379/iodp.proc.349.106.2015.
[81]
Expedition 351 Scientists, 2015. Site U1438. In: Arculus, R.J., Ishizuka, O., Bogus, K., and the Expedition 351 Scientists, (Eds.), Proceedings of the Integrated Ocean Drilling Program, Volume 351. Texas A&M University, College Station, Texas. doi:10.14379/iodp.proc.351.103.2015.
[111]. Grotzinger, J.P., Arvidson, R.E., Bell, J.F., Calvin, W., Clark, B.C., Fike, D.A., Golombek, M., Greeley, R., Haldemann, A., Herkenhoff, K.E., Jolliff, B.L., Knoll, A.H., Malin, M., McLennan, S.M., Parker, T., Soderblom, L., Sohl-Dickstein, J.L., Squyres, S.W., Tosca, N.J., Watters, W.A., 2005. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 11-72.
[82]
Expedition 356 Scientists, 2017. Site U1464. In: Gallagher, S.J., Fulthorpe, C.S., Bogus, K., and the Expedition 356 Scientists, (Eds.), Proceedings of the Integrated Ocean Drilling Program, Volume 356. Texas A&M University, College Station, Texas. doi:10.14379/iodp.proc.356.109.2017.
[83]
Eyles, N., Clark, B.M., 1985. Gravity-induced soft-sediment deformation in glaciomarine sequences of the Upper Proterozoic Port Aiskaig Formation, Scotland. Sedimentology, 32, 789-814.
[112]. Grotzinger, J.P., Milliken, R.E., 2012. The sedimentary rock record of Mars: Distribution, origins, and global stratigraphy. In: Grotzinger, J.P., Milliken, R.E., (Eds.), Sedimentology of Mars. SEPM Special Publication, 102, pp. 1-48.
[113]. Gruszka, B., Fard, A.M., van Loon, A.J., 2016. A fluctuating ice front over an esker near Ryssj-n (S Sweden) as a cause of a giant load cast. Sedimentary Geology, 344, 47-56.
[114]. Hampton, M.A., 1972. The role of subaqueous debris flows in generating turbidity currents. Journal of Sedimentary Petrology, 42, 775-793.
[115]. Han, H., Wang, Y., Li, X.S., Yu, J.X., Feng, J.C., Zhang, Y., 2016. Experimental study on sediment deformation during methane hydrate decomposition in sandy and silty clay sediments with a novel experimental apparatus. Fuel, 15, 446-453.
[84]
Ezquerro, L., Moretti, M., Liesa, C.L., Luzón, A., Pueyo, E.L., Simón, J.L., 2016. Controls on space-time distribution of soft-sediment deformation structures: Applying palaeomagnetic dating to approach the apparent recurrence period of paleoseisms at the Concud Fault (eastern Spain). Sedimentary Geology, 344, 91-111.
[85]
Feng, Z.Z., 2017a. A successful symposium of “Multi-origin of soft-sediment deformation structures and seismites”. Journal of Palaeogeography, 6 (1), 1-6.
[116]. Hansen, M.J., 1984. Strategies for classification of landslides. In: Brunsden, D., Prior, D.B., (Eds.), Slope Instability. John Wiley & Sons Ltd, Chichester, pp. 1-25.
[86]
Feng, Z.Z., 2017b. Preface of the Chinese version of the seismite problem. Journal of Palaeogeography, 6 (1), 7-11.
[87]
Feng, Z.Z., 2017c. A brief review on 7 papers from the special issue of “The environmental significance of soft-sediment deformation” of the Sedimentary Geology 344 (2016). Journal of Palaeogeography, 6 (4), 243-250.
[117]. Hardie, L.A., Lowenstein, T.K., 2004. Did the Mediterranean Sea dry out during the Miocene? A reassessment of the evaporite evidence from DSDP Legs 13 and 42A Cores. Journal of Sedimentary Research, 74, 453-461.
[118]. He, B.Z., Qiao, X.F., 2015. Advances and overview of the study on paleo-earthquake events: A review of seismites. Acta Geologica Sinica (English Edition), 89, 1702-1746.
[88]
Feng, Z.Z., Bao, Z.D., Zheng, X.J., Wang, Y., 2016. Researches of soft-sediment deformation structures and seismites in China? A brief review. Journal of Palaeogeography, 5 (4), 311-317.
[89]
Festa, A., Dilek, Y., Gawlick, H.J., Missoni, S., 2014. Mass-transport deposits, olistostromes and soft-sediment deformation in modern and ancient continental margins, and associated natural hazards. Marine Geology, 356, 128.
[90]
Fichman, M., 2013. Raindrop Imprints and Their Use in the Retrodeformation of Carboniferous Trace Fossils. M.S. Thesis, University of Connecticut Graduate School, Storrs, p. 89.
[91]
Fichman, M.E., Crespi, J.M., Getty, P.R., Bush, A.M., 2015. Retrodeformation of Carboniferous trace fossils from the Narragansett Basin, United States, using raindrop imprints and bedding-cleavage intersection lineation as strain markers. Palaios, 30, 574-588.
[92]
Fjeldskaar, W., Lindholm, C., Dehls, J.F., Fjeldskaar, I., 2000. Postglacial uplift, neotectonics and seismicity in Fennoscandia. Quaternary Science Reviews, 19, 1413-1422.
[111]. Grotzinger, J.P., Arvidson, R.E., Bell, J.F., Calvin, W., Clark, B.C., Fike, D.A., Golombek, M., Greeley, R., Haldemann, A., Herkenhoff, K.E., Jolliff, B.L., Knoll, A.H., Malin, M., McLennan, S.M., Parker, T., Soderblom, L., Sohl-Dickstein, J.L., Squyres, S.W., Tosca, N.J., Watters, W.A., 2005. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 11-72.
[112]. Grotzinger, J.P., Milliken, R.E., 2012. The sedimentary rock record of Mars: Distribution, origins, and global stratigraphy. In: Grotzinger, J.P., Milliken, R.E., (Eds.), Sedimentology of Mars. SEPM Special Publication, 102, pp. 1-48.
[93]
Fodor, R.V., Thiede, J., 1977. Volcanic breccia from DSDP Site 357: Implications for the composition and origin of the Rio Grande Rise. In: Supko, P.R., Perch-Nielsen, K., et al., (Eds.), Initial Reports of the Deep Sea Drilling Project, 39. United States Government Printing Office, Washington, pp. 537-543.
[113]. Gruszka, B., Fard, A.M., van Loon, A.J., 2016. A fluctuating ice front over an esker near Ryssj-n (S Sweden) as a cause of a giant load cast. Sedimentary Geology, 344, 47-56.
[114]. Hampton, M.A., 1972. The role of subaqueous debris flows in generating turbidity currents. Journal of Sedimentary Petrology, 42, 775-793.
[94]
Ford, C., Bryant, G., Nick, K.E., 2016. Architectural evidence of dune collapse in the Navajo Sandstone, Zion National Park, Utah. Sedimentary Geology, 344, 222-236.
[95]
Fortuin, A.R., Dabrio, C.J., 2008. Evidence for Late Messinian seismites, Nijar Basin, south-east Spain. Sedimentology, 55, 1595-1622.
[96]
Fossen, H., 2010. Deformation bands formed during soft-sediment deformation: Observations from SE Utah. Marine and Petroleum Geology, 27, 215-222.
[97]
Frey, S.E., Gingras, M.K., Dashtgard, S.E., 2009. Experimental studies of gas-escape and water-escape structures: Mechanisms and morphologies. Journal of Sedimentary Research, 79, 808-816.
[98]
Friedman, G.M., 1997. Dissolution-collapse breccias and paleokarst resulting from dissolution of evaporite rocks, especially sulfates. Carbonates and Evaporites, 12, 53-63.
[115]. Han, H., Wang, Y., Li, X.S., Yu, J.X., Feng, J.C., Zhang, Y., 2016. Experimental study on sediment deformation during methane hydrate decomposition in sandy and silty clay sediments with a novel experimental apparatus. Fuel, 15, 446-453.
[116]. Hansen, M.J., 1984. Strategies for classification of landslides. In: Brunsden, D., Prior, D.B., (Eds.), Slope Instability. John Wiley & Sons Ltd, Chichester, pp. 1-25.
[117]. Hardie, L.A., Lowenstein, T.K., 2004. Did the Mediterranean Sea dry out during the Miocene? A reassessment of the evaporite evidence from DSDP Legs 13 and 42A Cores. Journal of Sedimentary Research, 74, 453-461.
[118]. He, B.Z., Qiao, X.F., 2015. Advances and overview of the study on paleo-earthquake events: A review of seismites. Acta Geologica Sinica (English Edition), 89, 1702-1746.
[119]. Heezen, B.C., Fischer, A.G., Boyce, R.E., Bukry, D., Douglas, R.G., Garrison, R.E., Kling, S.A., Krasheninnikov, V., Lisitzin, A.P., Pimm, A.C., 1971. Site 44, Leg VI, Deep Sea Drilling Project. In: Fischer, A.G., (Ed.), Initial Reports of the Deep Sea Drilling Project, Volume 6. United States Government Printing Office, Washington, pp. 17-39.
[120]. Helwig, J., 1970. Slump folds and early structures, northeastern Newfoundland Appalachians. Journal of Geology, 78, 172-187.
[121]. Hempton, M.R., Dewey, J.F., 1983. Earthquake-induced deformational structures in young lacustrine sediments East-Anatolian Fault, south-east Turkey. Tectonophysics, 98, T7-T14.
[99]
Garrison, R.E., Schreiber, B.C., Bernoulli, D., Fabricius, F.H., Kidd, R.B., Melieres, F., Worstell, P.J., 1978. Sedimentary petrology and structures of Messinian evaporitic sediments in the Mediterranean Sea. In: Initial Reports of the Deep Sea Drilling Project, Leg 42. United States Government Printing Office, Washington, pp. 571-611, doi:10.2973/dsdp.proc.42-1.123.1978.
[100]. Gavrilov, Y.O., 2017. Reflection of seismic paleoevents in Mesozoic-Cenozoic terrigenous sequences of the Northern Caucasus. Lithology and Mineral Resources, 52, 1-19.
[101]. Gelfenbaum, G., Jaffe, B., 2003. Erosion and sedimentation from the 17 July, 1998 Papua New Guinea Tsunami. Pure and Applied Geophysics, 160, 1969-1999.
[122]. Hibsch, C., Alvarado, A., Yepes, H., Perez, V.H., 1997. Holocene liquefaction and soft-sediment deformation in Quito (Ecuador): A paleoseismic history recorded in lacustrine sediments. Journal of Geodynamics, 24, 259-280.
[123]. Hilbert-Wolf, H.L., Roberts, E.M., Simpson, E.L., 2016. New sedimentary structures in seismites from SW Tanzania: Evaluating gas- vs. water-escape mechanisms of soft deformation. Sedimentary Geology, 344, 253-262.
[124]. Holsapple, K.A., 1993. The scaling of impact processes in planetary sciences. Annual Reviews of Earth and Planetary Sciences, 21, 333-373.
[125]. Holzer, T.L., Youd, T.L., 2007. Liquefaction, ground oscillation, and soil deformation at the Wildlife Array, California. GSA Bulletin, 97, 961-976.
Horowitz, D., 1982. Geometry and origin of large scale deformation structures in some ancient wind blown sand deposits. Sedimentology, 29, 155-180, doi:10.1111/j.1365-3091.1982.tb01717.x.
[127]. Hovland, M., Judd, A.G., 1988. Seabed pockmarks and seepages. Graham and Trotman, London, p. 293.
[102]. Gindre-Chanu, L., Warren, J.K., Puigdefabregas, C., ISharp, I.R., Peacock, D.C.P., Swart, R., Poulsen, R., Ferreira, H., Henrique, L., 2014. Diagenetic evolution of Aptian evaporites in the Namibe Basin (south-west Angola). Sedimentology, 62, 204-233.
[128]. Hovland, M., Svensen, H., Forsberg, C.F., Johansen, H., Fichler, C., Foss, J.H., Jonsson, R., Ruesltten, H., 2005. Complex pockmarks with carbonate-ridges off mid-Norway: Products of sediment degassing. Marine Geology, 218, 191-206.
[119]. Heezen, B.C., Fischer, A.G., Boyce, R.E., Bukry, D., Douglas, R.G., Garrison, R.E., Kling, S.A., Krasheninnikov, V., Lisitzin, A.P., Pimm, A.C., 1971. Site 44, Leg VI, Deep Sea Drilling Project. In: Fischer, A.G., (Ed.), Initial Reports of the Deep Sea Drilling Project, Volume 6. United States Government Printing Office, Washington, pp. 17-39.
[120]. Helwig, J., 1970. Slump folds and early structures, northeastern Newfoundland Appalachians. Journal of Geology, 78, 172-187.
[121]. Hempton, M.R., Dewey, J.F., 1983. Earthquake-induced deformational structures in young lacustrine sediments East-Anatolian Fault, south-east Turkey. Tectonophysics, 98, T7-T14.
[122]. Hibsch, C., Alvarado, A., Yepes, H., Perez, V.H., 1997. Holocene liquefaction and soft-sediment deformation in Quito (Ecuador): A paleoseismic history recorded in lacustrine sediments. Journal of Geodynamics, 24, 259-280.
Hsü, K.J., Cita, M.B., Ryan, W.B.F., 1973. The origin of the Mediterranean evaporite. In: Ryan, W.B., Hsü, K.J., (Eds.), Initial Reports of the Deep Sea Drilling Project, Vol. 13, Part 2. United States Government Printing Office, Washington, pp. 1203-1231, doi:10.2973/dsdp.proc.13.143.1973.
[123]. Hilbert-Wolf, H.L., Roberts, E.M., Simpson, E.L., 2016. New sedimentary structures in seismites from SW Tanzania: Evaluating gas- vs. water-escape mechanisms of soft deformation. Sedimentary Geology, 344, 253-262.
[124]. Holsapple, K.A., 1993. The scaling of impact processes in planetary sciences. Annual Reviews of Earth and Planetary Sciences, 21, 333-373.
[125]. Holzer, T.L., Youd, T.L., 2007. Liquefaction, ground oscillation, and soil deformation at the Wildlife Array, California. GSA Bulletin, 97, 961-976.
Horowitz, D., 1982. Geometry and origin of large scale deformation structures in some ancient wind blown sand deposits. Sedimentology, 29, 155-180, doi:10.1111/j.1365-3091.1982.tb01717.x.
[127]. Hovland, M., Judd, A.G., 1988. Seabed pockmarks and seepages. Graham and Trotman, London, p. 293.
[130]. Hubert-Ferrari, A., El-Ouahabi, M., Garcia Moreno, D., Avsar, U., Altonok, S., Fagel, N., aatay, N., 2017. Earthquake imprints on a lacustrine deltaic system: Example of the Kürk Delta along the East Anatolian Fault (Turkey). Geophysical Research Abstracts, 19, EGU2017-5581.
[131]. Hurst, A., Cartwright, J., 2007. Sand injectites: Implications for hydrocarbon exploration. AAPG Memoir, 87, 288.
[132]. Hurst, A., Scott, A., Vigorito, M., 2011. Physical characteristics of sand injectites. Earth-Science Reviews, 106, 215-246.
[133]. Hussain, M., Warren, J.K., 1989. Nodular and enterolithic gypsum: The "Sabkha-Tization" of Salt Flat playa, west Texas. Sedimentary Geology, 63, 13-24.
[128]. Hovland, M., Svensen, H., Forsberg, C.F., Johansen, H., Fichler, C., Foss, J.H., Jonsson, R., Ruesltten, H., 2005. Complex pockmarks with carbonate-ridges off mid-Norway: Products of sediment degassing. Marine Geology, 218, 191-206.
[104]. Glennie, K., Evamy, F.D., 1968. Dikaka: Plants and plant-root structures associated with aeolian sand. Palaeogeography, Palaeoclimatology, Palaeoecology, 4, 77-87.
[105]. Gradmann, S., Beaumont, C., Ings, S.J., 2012. Coupled fluid flow and sediment deformation in margin-scale salt-tectonic systems: 1. Development and application of simple, single-lithology models. Tectonics, 31, C4010.
[106]. Graff-Petersen, P., 1967. Intraformational deformations and pore-water hydrodynamics. Proceedings of the 7th International Sedimentological Congress, Reading, Berks, England. Abstract.
[107]. Greb, S.F., Archer, A.W., 2007. Soft-sediment deformation produced by tides in a meizoseismic area, Turnagain Arm, Alaska. Geology, 35, 435-438.
[108]. Greb, S.F., Ettensohn, F.R., Obermeier, S.F., 2002. Developing a classification scheme for seismites. In: GSA North-central & Southeastern Section Annual Meeting Abstracts with Programs, Session No. 42.
Hsü, K.J., Cita, M.B., Ryan, W.B.F., 1973. The origin of the Mediterranean evaporite. In: Ryan, W.B., Hsü, K.J., (Eds.), Initial Reports of the Deep Sea Drilling Project, Vol. 13, Part 2. United States Government Printing Office, Washington, pp. 1203-1231, doi:10.2973/dsdp.proc.13.143.1973.
[109]. Greene, M., Power, M., Youd, T.L., 1994. Earthquake Basics Brief No. 1: Liquefaction: What it is and what to do about it. Earthquake Engineering Research Institute (EERI) Publication. Oakland, California, p. 8.
Gregory, M.R., 1969. Sedimentary features and penecontemporaneous slumping in the Waitemata Group, Whangaparaoa Peninsula, North Auckland, New Zealand. New Zealand Journal of Geology and Geophysics, 12, 248-282, doi: 10.1080/00288306.1969.10420236.
[130]. Hubert-Ferrari, A., El-Ouahabi, M., Garcia Moreno, D., Avsar, U., Altonok, S., Fagel, N., aatay, N., 2017. Earthquake imprints on a lacustrine deltaic system: Example of the Kürk Delta along the East Anatolian Fault (Turkey). Geophysical Research Abstracts, 19, EGU2017-5581.
[131]. Hurst, A., Cartwright, J., 2007. Sand injectites: Implications for hydrocarbon exploration. AAPG Memoir, 87, 288.
[132]. Hurst, A., Scott, A., Vigorito, M., 2011. Physical characteristics of sand injectites. Earth-Science Reviews, 106, 215-246.
[133]. Hussain, M., Warren, J.K., 1989. Nodular and enterolithic gypsum: The "Sabkha-Tization" of Salt Flat playa, west Texas. Sedimentary Geology, 63, 13-24.
Huuse, M., Duranti, D., Steinsland, N., Guargena, C.G., Prat, P., Holm, K., Cartwright, J.A., Hurst, A., 2004. Seismic characteristics of large-scale sandstone intrusions in the Paleogene of the South Viking Graben, UK and Norwegian North Sea. In: Davies, R.J., Cartwright, J.A., Stewart, S.A., Lappin, M., Underhill, J.R., (Eds.), 3D Seismic Technology: Application to the Exploration of Sedimentary Basins. Geological Society of London, Memoir, 29, 263-278, doi: 10.1144/GSL.EM.2004.029.01.2.
[135]. Huuse, M., Jackson, C., Cartwright, J.A., Hurst, A., 2009. Large-scale sand injectites in the North Sea: Seismic and event stratigraphy and implications for hydrocarbon exploration. AAPG Annual Convention, Denver, Colorado, June 7-10, 2009. Search and Discovery Article #40481 (2009).
[136]. Huuse, M., Jackson, C.A.L., Van Rensbergen, P., Davies, R.J., Flemings, P.B., Dixon, R.J., 2010. Subsurface sediment remobilization and fluid flow in sedimentary basins: An overview. Basin Research, 22, 342-360.
[137]. Ito, M., Ishimoto, S., Ito, K., Kotake, N., 2016. Geometry and lithofacies of coarse-grained injectites and extrudites in a late Pliocene trench-slope basin on the southern Boso Peninsula, Japan. Sedimentary Geology, 344, 336-349.
[138]. Jaeger, J.M., Gulick, S.P.S., LeVay, L.J., the Expedition 341 Scientists, 2014a. Expedition 341 Summary. In: Jaeger, J.M., Gulick, S.P.S., LeVay, L.J., the Expedition 341 Scientists, (Eds.), Proceedings of the Integrated Ocean Drilling Program, Volume 341, pp. 1-130.
Huuse, M., Duranti, D., Steinsland, N., Guargena, C.G., Prat, P., Holm, K., Cartwright, J.A., Hurst, A., 2004. Seismic characteristics of large-scale sandstone intrusions in the Paleogene of the South Viking Graben, UK and Norwegian North Sea. In: Davies, R.J., Cartwright, J.A., Stewart, S.A., Lappin, M., Underhill, J.R., (Eds.), 3D Seismic Technology: Application to the Exploration of Sedimentary Basins. Geological Society of London, Memoir, 29, 263-278, doi: 10.1144/GSL.EM.2004.029.01.2.
[135]. Huuse, M., Jackson, C., Cartwright, J.A., Hurst, A., 2009. Large-scale sand injectites in the North Sea: Seismic and event stratigraphy and implications for hydrocarbon exploration. AAPG Annual Convention, Denver, Colorado, June 7-10, 2009. Search and Discovery Article #40481 (2009).
[136]. Huuse, M., Jackson, C.A.L., Van Rensbergen, P., Davies, R.J., Flemings, P.B., Dixon, R.J., 2010. Subsurface sediment remobilization and fluid flow in sedimentary basins: An overview. Basin Research, 22, 342-360.
[137]. Ito, M., Ishimoto, S., Ito, K., Kotake, N., 2016. Geometry and lithofacies of coarse-grained injectites and extrudites in a late Pliocene trench-slope basin on the southern Boso Peninsula, Japan. Sedimentary Geology, 344, 336-349.
[138]. Jaeger, J.M., Gulick, S.P.S., LeVay, L.J., the Expedition 341 Scientists, 2014a. Expedition 341 Summary. In: Jaeger, J.M., Gulick, S.P.S., LeVay, L.J., the Expedition 341 Scientists, (Eds.), Proceedings of the Integrated Ocean Drilling Program, Volume 341, pp. 1-130.
Jaeger, J.M., Gulick, S.P.S., LeVay, L.J., the Expedition 341 Scientists, 2014b. Site U1418. In: Jaeger, J.M., Gulick, S.P.S., LeVay, L.J., the Expedition 341, (Eds.), Proceedings of the Integrated Ocean Drilling Program, Volume 341. doi:10.2204/iodp.proc.341.104.2014.
[140]. Jiang, H., Zhong, N., Li, Y., Xu, H., Yang, H., Peng, X., 2016. Soft sediment deformation structures in the Lixian lacustrine sediments, Eastern Tibetan Plateau and implications for postglacial seismic activity. Sedimentary Geology, 344, 123-134.
[141]. Jones, A.P., Omoto, K., 2000. Towards establishing criteria for identifying trigger mechanisms for soft-sediment deformation: A case study of Late Pleistocene lacustrine sands and clays, Onikobe and Nakayamadaira Basins, northeastern Japan. Sedimentology, 47, 1211-1226.
[142]. Jones, M.E., Preston, R.M.F., 1987. Deformation of Sediments and Sedimentary Rocks. Geological Society of London, Special Publication, p. 29.
[143]. Kahle, C.E., 2002. Seismogenic deformation structures in microbialites and mudstones, Silurian Lockport Dolomite, northwestern Ohio, USA. Journal of Sedimentary Research, 72 (1), 201-216.
[144]. Kang, H., Paik, I., Lee, H., Lee, J., Chun, J., 2010. Soft-sediment deformation structures in Cretaceous non-marine deposits of southeastern Gyeongsang Basin, Korea: Occurrences and origin. The Island Arc, 19 (4), 628-646.
[145]. Karcz, I., Shanmugam, G., 1974. Decrease in scour rate of fresh deposited muds. Proceedings of the American Society of Civil Engineers. Journal of the Hydraulics Division, 100, 1735-1738.
[146]. Kearey, P., Klepeis, K.A., Vine, F.J., 2009. Global Tectonics, Third Edition. Wiley-Blackwell, p. 496.
[147]. Kelling, G., Walton, E.K., 1957. Load-cast structures: Their relationship to upper surface structures and their mode of formation. Geological Magazine, 94, 481-490.
[148]. Kennett, J.P., Fackler-Adams, B.N., 2000. Relationship of clathrate instability to sediment deformation in the Upper Neogene of California. Geology, 28 (3), 215-218.
[149]. King, L.H., MacLean, B., 1970. Pockmarks on the Scotian Shelf. GSA Bulletin, 81, 3141-3148.
[150]. Kirkland, D.W., Anderson, R.Y., 1970. Microfolding in the Castile and Todilto Evaporites, Texas and New Mexico. GSA Bulletin, 81, 3259-3282.
[151]. Klein, G.D., Melo, U., Della Favera, J.C., 1972. Subaqueous gravity processes on the front of Cretaceous deltas, Reconcavo basin, Brazil. GSA Bulletin, 83, 1469-1492.
Klein, G.D., Kobayashi, K., White, S.M., 1980. Introduction and Explanatory Notes, Deep Sea Drilling Project Leg 58. pp. 3-18, doi:10.29
Jaeger, J.M., Gulick, S.P.S., LeVay, L.J., the Expedition 341 Scientists, 2014b. Site U1418. In: Jaeger, J.M., Gulick, S.P.S., LeVay, L.J., the Expedition 341, (Eds.), Proceedings of the Integrated Ocean Drilling Program, Volume 341. doi:10.2204/iodp.proc.341.104.2014.
[140]. Jiang, H., Zhong, N., Li, Y., Xu, H., Yang, H., Peng, X., 2016. Soft sediment deformation structures in the Lixian lacustrine sediments, Eastern Tibetan Plateau and implications for postglacial seismic activity. Sedimentary Geology, 344, 123-134.
[141]. Jones, A.P., Omoto, K., 2000. Towards establishing criteria for identifying trigger mechanisms for soft-sediment deformation: A case study of Late Pleistocene lacustrine sands and clays, Onikobe and Nakayamadaira Basins, northeastern Japan. Sedimentology, 47, 1211-1226.
[142]. Jones, M.E., Preston, R.M.F., 1987. Deformation of Sediments and Sedimentary Rocks. Geological Society of London, Special Publication, p. 29.
[143]. Kahle, C.E., 2002. Seismogenic deformation structures in microbialites and mudstones, Silurian Lockport Dolomite, northwestern Ohio, USA. Journal of Sedimentary Research, 72 (1), 201-216.
[144]. Kang, H., Paik, I., Lee, H., Lee, J., Chun, J., 2010. Soft-sediment deformation structures in Cretaceous non-marine deposits of southeastern Gyeongsang Basin, Korea: Occurrences and origin. The Island Arc, 19 (4), 628-646.
[145]. Karcz, I., Shanmugam, G., 1974. Decrease in scour rate of fresh deposited muds. Proceedings of the American Society of Civil Engineers. Journal of the Hydraulics Division, 100, 1735-1738.
[146]. Kearey, P., Klepeis, K.A., Vine, F.J., 2009. Global Tectonics, Third Edition. Wiley-Blackwell, p. 496.
[147]. Kelling, G., Walton, E.K., 1957. Load-cast structures: Their relationship to upper surface structures and their mode of formation. Geological Magazine, 94, 481-490.
[148]. Kennett, J.P., Fackler-Adams, B.N., 2000. Relationship of clathrate instability to sediment deformation in the Upper Neogene of California. Geology, 28 (3), 215-218.
[149]. King, L.H., MacLean, B., 1970. Pockmarks on the Scotian Shelf. GSA Bulletin, 81, 3141-3148.
[150]. Kirkland, D.W., Anderson, R.Y., 1970. Microfolding in the Castile and Todilto Evaporites, Texas and New Mexico. GSA Bulletin, 81, 3259-3282.
[151]. Klein, G.D., Melo, U., Della Favera, J.C., 1972. Subaqueous gravity processes on the front of Cretaceous deltas, Reconcavo basin, Brazil. GSA Bulletin, 83, 1469-1492.
Klein, G.D., Kobayashi, K., White, S.M., 1980. Introduction and Explanatory Notes, Deep Sea Drilling Project Leg 58. pp. 3-18, doi:10.29
[111]. Grotzinger, J.P., Arvidson, R.E., Bell, J.F., Calvin, W., Clark, B.C., Fike, D.A., Golombek, M., Greeley, R., Haldemann, A., Herkenhoff, K.E., Jolliff, B.L., Knoll, A.H., Malin, M., McLennan, S.M., Parker, T., Soderblom, L., Sohl-Dickstein, J.L., Squyres, S.W., Tosca, N.J., Watters, W.A., 2005. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 11-72.
[112]. Grotzinger, J.P., Milliken, R.E., 2012. The sedimentary rock record of Mars: Distribution, origins, and global stratigraphy. In: Grotzinger, J.P., Milliken, R.E., (Eds.), Sedimentology of Mars. SEPM Special Publication, 102, pp. 1-48.
[113]. Gruszka, B., Fard, A.M., van Loon, A.J., 2016. A fluctuating ice front over an esker near Ryssj-n (S Sweden) as a cause of a giant load cast. Sedimentary Geology, 344, 47-56.
[114]. Hampton, M.A., 1972. The role of subaqueous debris flows in generating turbidity currents. Journal of Sedimentary Petrology, 42, 775-793.
[115]. Han, H., Wang, Y., Li, X.S., Yu, J.X., Feng, J.C., Zhang, Y., 2016. Experimental study on sediment deformation during methane hydrate decomposition in sandy and silty clay sediments with a novel experimental apparatus. Fuel, 15, 446-453.
[116]. Hansen, M.J., 1984. Strategies for classification of landslides. In: Brunsden, D., Prior, D.B., (Eds.), Slope Instability. John Wiley & Sons Ltd, Chichester, pp. 1-25.
[117]. Hardie, L.A., Lowenstein, T.K., 2004. Did the Mediterranean Sea dry out during the Miocene? A reassessment of the evaporite evidence from DSDP Legs 13 and 42A Cores. Journal of Sedimentary Research, 74, 453-461.
[118]. He, B.Z., Qiao, X.F., 2015. Advances and overview of the study on paleo-earthquake events: A review of seismites. Acta Geologica Sinica (English Edition), 89, 1702-1746.
[119]. Heezen, B.C., Fischer, A.G., Boyce, R.E., Bukry, D., Douglas, R.G., Garrison, R.E., Kling, S.A., Krasheninnikov, V., Lisitzin, A.P., Pimm, A.C., 1971. Site 44, Leg VI, Deep Sea Drilling Project. In: Fischer, A.G., (Ed.), Initial Reports of the Deep Sea Drilling Project, Volume 6. United States Government Printing Office, Washington, pp. 17-39.
[120]. Helwig, J., 1970. Slump folds and early structures, northeastern Newfoundland Appalachians. Journal of Geology, 78, 172-187.
[121]. Hempton, M.R., Dewey, J.F., 1983. Earthquake-induced deformational structures in young lacustrine sediments East-Anatolian Fault, south-east Turkey. Tectonophysics, 98, T7-T14.
[122]. Hibsch, C., Alvarado, A., Yepes, H., Perez, V.H., 1997. Holocene liquefaction and soft-sediment deformation in Quito (Ecuador): A paleoseismic history recorded in lacustrine sediments. Journal of Geodynamics, 24, 259-280.
[123]. Hilbert-Wolf, H.L., Roberts, E.M., Simpson, E.L., 2016. New sedimentary structures in seismites from SW Tanzania: Evaluating gas- vs. water-escape mechanisms of soft deformation. Sedimentary Geology, 344, 253-262.
[124]. Holsapple, K.A., 1993. The scaling of impact processes in planetary sciences. Annual Reviews of Earth and Planetary Sciences, 21, 333-373.
[125]. Holzer, T.L., Youd, T.L., 2007. Liquefaction, ground oscillation, and soil deformation at the Wildlife Array, California. GSA Bulletin, 97, 961-976.
Horowitz, D., 1982. Geometry and origin of large scale deformation structures in some ancient wind blown sand deposits. Sedimentology, 29, 155-180, doi:10.1111/j.1365-3091.1982.tb01717.x.
[127]. Hovland, M., Judd, A.G., 1988. Seabed pockmarks and seepages. Graham and Trotman, London, p. 293.
[128]. Hovland, M., Svensen, H., Forsberg, C.F., Johansen, H., Fichler, C., Foss, J.H., Jonsson, R., Ruesltten, H., 2005. Complex pockmarks with carbonate-ridges off mid-Norway: Products of sediment degassing. Marine Geology, 218, 191-206.
Hsü, K.J., Cita, M.B., Ryan, W.B.F., 1973. The origin of the Mediterranean evaporite. In: Ryan, W.B., Hsü, K.J., (Eds.), Initial Reports of the Deep Sea Drilling Project, Vol. 13, Part 2. United States Government Printing Office, Washington, pp. 1203-1231, doi:10.2973/dsdp.proc.13.143.1973.
[130]. Hubert-Ferrari, A., El-Ouahabi, M., Garcia Moreno, D., Avsar, U., Altonok, S., Fagel, N., aatay, N., 2017. Earthquake imprints on a lacustrine deltaic system: Example of the Kürk Delta along the East Anatolian Fault (Turkey). Geophysical Research Abstracts, 19, EGU2017-5581.
[131]. Hurst, A., Cartwright, J., 2007. Sand injectites: Implications for hydrocarbon exploration. AAPG Memoir, 87, 288.
[132]. Hurst, A., Scott, A., Vigorito, M., 2011. Physical characteristics of sand injectites. Earth-Science Reviews, 106, 215-246.
[133]. Hussain, M., Warren, J.K., 1989. Nodular and enterolithic gypsum: The "Sabkha-Tization" of Salt Flat playa, west Texas. Sedimentary Geology, 63, 13-24.
Huuse, M., Duranti, D., Steinsland, N., Guargena, C.G., Prat, P., Holm, K., Cartwright, J.A., Hurst, A., 2004. Seismic characteristics of large-scale sandstone intrusions in the Paleogene of the South Viking Graben, UK and Norwegian North Sea. In: Davies, R.J., Cartwright, J.A., Stewart, S.A., Lappin, M., Underhill, J.R., (Eds.), 3D Seismic Technology: Application to the Exploration of Sedimentary Basins. Geological Society of London, Memoir, 29, 263-278, doi: 10.1144/GSL.EM.2004.029.01.2.
[135]. Huuse, M., Jackson, C., Cartwright, J.A., Hurst, A., 2009. Large-scale sand injectites in the North Sea: Seismic and event stratigraphy and implications for hydrocarbon exploration. AAPG Annual Convention, Denver, Colorado, June 7-10, 2009. Search and Discovery Article #40481 (2009).
[136]. Huuse, M., Jackson, C.A.L., Van Rensbergen, P., Davies, R.J., Flemings, P.B., Dixon, R.J., 2010. Subsurface sediment remobilization and fluid flow in sedimentary basins: An overview. Basin Research, 22, 342-360.
[137]. Ito, M., Ishimoto, S., Ito, K., Kotake, N., 2016. Geometry and lithofacies of coarse-grained injectites and extrudites in a late Pliocene trench-slope basin on the southern Boso Peninsula, Japan. Sedimentary Geology, 344, 336-349.
[138]. Jaeger, J.M., Gulick, S.P.S., LeVay, L.J., the Expedition 341 Scientists, 2014a. Expedition 341 Summary. In: Jaeger, J.M., Gulick, S.P.S., LeVay, L.J., the Expedition 341 Scientists, (Eds.), Proceedings of the Integrated Ocean Drilling Program, Volume 341, pp. 1-130.
Jaeger, J.M., Gulick, S.P.S., LeVay, L.J., the Expedition 341 Scientists, 2014b. Site U1418. In: Jaeger, J.M., Gulick, S.P.S., LeVay, L.J., the Expedition 341, (Eds.), Proceedings of the Integrated Ocean Drilling Program, Volume 341. doi:10.2204/iodp.proc.341.104.2014.
[140]. Jiang, H., Zhong, N., Li, Y., Xu, H., Yang, H., Peng, X., 2016. Soft sediment deformation structures in the Lixian lacustrine sediments, Eastern Tibetan Plateau and implications for postglacial seismic activity. Sedimentary Geology, 344, 123-134.
[141]. Jones, A.P., Omoto, K., 2000. Towards establishing criteria for identifying trigger mechanisms for soft-sediment deformation: A case study of Late Pleistocene lacustrine sands and clays, Onikobe and Nakayamadaira Basins, northeastern Japan. Sedimentology, 47, 1211-1226.
[142]. Jones, M.E., Preston, R.M.F., 1987. Deformation of Sediments and Sedimentary Rocks. Geological Society of London, Special Publication, p. 29.
[143]. Kahle, C.E., 2002. Seismogenic deformation structures in microbialites and mudstones, Silurian Lockport Dolomite, northwestern Ohio, USA. Journal of Sedimentary Research, 72 (1), 201-216.
[144]. Kang, H., Paik, I., Lee, H., Lee, J., Chun, J., 2010. Soft-sediment deformation structures in Cretaceous non-marine deposits of southeastern Gyeongsang Basin, Korea: Occurrences and origin. The Island Arc, 19 (4), 628-646.
[145]. Karcz, I., Shanmugam, G., 1974. Decrease in scour rate of fresh deposited muds. Proceedings of the American Society of Civil Engineers. Journal of the Hydraulics Division, 100, 1735-1738.
[146]. Kearey, P., Klepeis, K.A., Vine, F.J., 2009. Global Tectonics, Third Edition. Wiley-Blackwell, p. 496.
[147]. Kelling, G., Walton, E.K., 1957. Load-cast structures: Their relationship to upper surface structures and their mode of formation. Geological Magazine, 94, 481-490.
[148]. Kennett, J.P., Fackler-Adams, B.N., 2000. Relationship of clathrate instability to sediment deformation in the Upper Neogene of California. Geology, 28 (3), 215-218.
[149]. King, L.H., MacLean, B., 1970. Pockmarks on the Scotian Shelf. GSA Bulletin, 81, 3141-3148.
[150]. Kirkland, D.W., Anderson, R.Y., 1970. Microfolding in the Castile and Todilto Evaporites, Texas and New Mexico. GSA Bulletin, 81, 3259-3282.
[151]. Klein, G.D., Melo, U., Della Favera, J.C., 1972. Subaqueous gravity processes on the front of Cretaceous deltas, Reconcavo basin, Brazil. GSA Bulletin, 83, 1469-1492.
Klein, G.D., Kobayashi, K., White, S.M., 1980. Introduction and Explanatory Notes, Deep Sea Drilling Project Leg 58. pp. 3-18, doi:10.29