Abstract Terrigenous clastic sediments are generated by the integration of the Earth surface processes and their deep-time counterparts provide a valuable archive for regional/global climatic, geographic and landscape evolution. It is thus important to read and interpret these deep-time sedimentary records, especially for reconstructing continent climate. Previous studies on the Early Permian sequences from the North China document a dominant control of source chemical weathering on mudstone compositions and its linkage with continent climate conditions. Based on the weathering geochemical data of these mudstones, element mobility during weathering can be ordered as Ca > Na ≥ Mg > Sr > K ≥ Ba > Rb. The weathering regime in the source area is inferred to be supply-limited according to the estimated continent physical erosion rate and regional tectonic evolution, sedimentation in North China. Further exploration of palaeoclimate implication is presented in terms of variation of high-low latitudinal temperature gradient across the Early Permian glacial to post-glacial climate transition.
Fund:This study is financially supported by the National Natural Science Foundation of China (No. 41572078) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUG160604).
Corresponding Authors:* Corresponding author.
E-mail: Chemical weathering|Weathering geochemistry|Mudstones|Early Permian|North China
Cite this article:
Jiang-Hai Yang,Yuan-Sheng Du. Weathering geochemistry and palaeoclimate implication of the Early Permian mudstones from eastern Henan Province, North China[J]. , 2017, 6(4): 370-380.
Jiang-Hai Yang,Yuan-Sheng Du. Weathering geochemistry and palaeoclimate implication of the Early Permian mudstones from eastern Henan Province, North China[J]. Journal of Palaeogeography, 2017, 6(4): 370-380.
.Aubert, D., Stille, P., Probst, A., 2001. REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochimica et Cosmochimica Acta, 65(3), 387�C406.
[2]
.Babechuk, M.G., Widdowson, M., Kamber, B.S., 2014. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chemical Geology, 363(1), 56�C75.
[3]
.Breecker, D.O., Sharp, Z.D., McFadden, L.D., 2010. Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted for A.D. 2100. Proceedings of the National Academy of Sciences of the United States of America, 107(2), 576�C580.
[4]
.Cantrell, K.J., Byrne, R.H., 1987. Rare earth element complexation by carbonate and oxalate ions. Geochimica et Cosmochimica Acta, 51(3), 597�C605.
[5]
.Condie, K.C., Dengate, J., Cullers, R.L., 1995. Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA. Geochimica et Cosmochimica Acta, 59(2), 279�C294.
[6]
.Dere, A.L., White, T.S., April, R.H., Reynolds, B., Miller, T.E., Knapp, E.P., McKay, L.D., Brantley, S.L., 2013. Climate dependence of feldspar weathering in shale soils along a latitudinal gradient. Geochimica et Cosmochimica Acta, 122(6), 101�C126.
[7]
.Dixon, J.L., Hartshorn, A.S., Heimsath, A.M., DiBiase, R.A., Whipple, K.X., 2012. Chemical weathering response to tectonic forcing: A soils perspective from the San Gabriel Mountains, California. Earth and Planetary Science Letters, 323�C324, 40�C49.
[8]
.Dixon, J.L., Heimsath, A.M., Kaste, J., Amundson, R., 2009. Climate-driven processes of hillslope weathering. Geology, 37(11), 975�C978.
[9]
.Duddy, L.R., 1980. Redistribution and fractionation of rare-earth and other elements in a weathering profile. Chemical Geology, 30(4), 363�C381.
[10]
Embleton, B.J.J., McElhinny, M.W., Ma, X.H., Zhang, Z.K., Li, Z.X., 1996. Permo-Triassic magnetostratigraphy in China: The type section near Taiyuan, Shanxi Province, North China. Geophysical Journal International, 126(2), 382�C388.
[11]
Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary-rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), 921�C924.
[12]
Fedo, C.M., Young, G.M., Nesbitt, H.W., Hanchar, J.M., 1997. Potassic and sodic metasomatism in the Southern Province of the Canadian Shield: Evidence from the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada. Precambrian Research, 84(1�C2), 17�C36.
[13]
Feng, B., 2012. Study on coal-accumulating characteristic of Shanxi Formation and lower Shihezi Formation in Yongcheng Coalfield, Henan Province. Journal of Henan Polytechnic University (Natural Science), 31(2), 177�C181 (in Chinese with English abstract).
[14]
Ferrier, K.L., Riebe, C.S., Hahm, W.J., 2016. Testing for supply�\limited and kinetic�\limited chemical erosion in field measurements of regolith production and chemical depletion. Geochemistry Geophysics Geosystems, 17(6), 2270�C2285.
[15]
Fielding, C.R., Frank, T.D., Birgenheier, L.P., Rygel, M.C., Jones, A.T., Roberts, J., 2008. Stratigraphic imprint of the Late Palaeozoic Ice Age in eastern Australia: A record of alternating glacial and nonglacial climate regime. Journal of the Geological Society, 165(1), 129�C140.
[16]
Frey, H.M., Szramek, K.J., Manon, M.R., Kissane, M.T., 2013. Slow chemical weathering in a semiarid climate: Changes in the mineralogy and geochemistry of subaerial lava flows in the Deschutes River Basin, central Oregon. Chemical Geology, 347, 135�C152.
[17]
Gaillardet, J., Dupr��, B., All��gre, C.J., 1999. Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer? Geochimica et Cosmochimica Acta, 63(23�C24), 4037�C4051.
[18]
Gao, S., Luo, T.C., Zhang, B.R., Zhang, H.F., Han, Y.W., Zhao, Z.D., Hu, Y.K., 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11), 1959�C1975.
[19]
Garzanti, E., Padoan, M., Setti, M., L��pez-Galindo, A., Villa, I.M., 2014. Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chemical Geology, 366(3), 61�C74.
[20]
Garzanti, E., Padoan, M., Setti, M., Najman, Y., Peruta, L., Villa, I.M., 2013. Weathering geochemistry and Sr�CNd fingerprints of equatorial upper Nile and Congo muds. Geochemistry, Geophysics, Geosystems, 14(2), 292�C316.
[21]
Ghosh, S., Sarkar, S., 2010. Geochemistry of Permo-Triassic mudstone of the Satpura Gondwana basin, central India: Clues for provenance. Chemical Geology, 277(1�C2), 78�C100.
[22]
Gislason, S.R., Oelkers, E.H., Eiriksdottir, E.S., Kardjilov, M.I., Gisladottir, G., Sigfusson, B., Snorrason, A., Elefsen, S., Hardardottir, J., Torssander, P., Oskarsson, N., 2009. Direct evidence of the feedback between climate and weathering. Earth and Planetary Science Letters, 277(1�C2), 213�C222.
[23]
Goldberg, K., Humayun, M., 2010. The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Paran�� Basin, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 293(1�C2), 175�C183.
[24]
Henry, L.C., Isbell, J.L., Limarino, C.O., 2014. The late Paleozoic El Imperial Formation, western Argentina: Glacial to post-glacial transition and stratigraphic correlations with arc-related basins in southwestern Gondwana. Gondwana Research, 25(4), 1380�C1395.
[25]
Hofmann, A.W., 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3), 297�C314.
[26]
Huang, B.C., Otofuji, Y.-i., Zhu, R.X., Shi, R.P., Wang, Y.C., 2001. Paleomagnetism of Carboniferous sediments in the Hexi corridor: Its origin and tectonic implications. Earth and Planetary Science Letters, 194(1�C2), 135�C149.
[27]
Isbell, J.L., Henry, L.C., Gulbranson, E.L., Limarino, C.O., Fraiser, M.L., Koch, Z.J., Ciccioli, P.L., Dineen, A.A., 2012. Glacial paradoxes during the late Paleozoic ice age: Evaluating the equilibrium line altitude as a control on glaciation. Gondwana Research, 22(1), 1�C19.
[28]
Koch, J.T., Frank, T.D., 2011. The Pennsylvanian�CPermian transition in the low-latitude carbonate record and the onset of major Gondwanan glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(3�C4), 362�C372.
[29]
Korte, C., Jasper, T., Kozur, H.W., Veizer, J., 2005. ��18O and ��13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 224(4), 333�C351.
[30]
Korte, C., Jones, P.J., Brand, U., Mertmann, D., Veizer, J., 2008. Oxygen isotope values from high-latitudes: Clues for Permian sea-surface temperature gradients and Late Palaeozoic deglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 269(1�C2), 1�C16.
[31]
Kronberg, B.I., Nesbitt, H.W., Fyfe, W.S., 1987. Mobilities of alkalis, alkaline earths and halogens during weathering. Chemical Geology, 60(1�C4), 41�C49.
[32]
Lan, Z.W., Chen, Z.Q., 2012. Megaripples from the Mesoproterozoic of the Kimberley region, northwestern Australia and its geological implications. Journal of Palaeogeography, 1(1), 15�C25.
[33]
Li, C., Yang, S.Y., 2010. Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins? American Journal of Science, 310(2), 111�C127.
[34]
Liu, X.T., Rendle-B��hring, R., Henrich, R., 2017. Geochemical composition of Tanzanian shelf sediments indicates Holocene climatic and sea-level changes. Quaternary Research, 87(3), 442�C454.
[35]
Maynard, J.B., 1992. Chemistry of modern soils as a guide to interpreting Precambrian paleosols. The Journal of Geology, 100(3), 279�C289.
[36]
McLennan, S.M., 1993. Weathering and global denudation. The Journal of Geology, 101(2), 295�C303.
[37]
McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America, Special Papers, 284, 21�C40.
[38]
Meinhold, G., Kostopoulos, D., Reischmann, T., 2007. Geochemical constraints on the provenance and depositional setting of sedimentary rocks from the islands of Chios, Inousses and Psara, Aegean Sea, Greece: Implications for the evolution of Palaeotethys. Journal of the Geological Society, 164(6), 1145�C1163.
[39]
Middelburg, J.J., van der Weijden, C.H., Woittiez, J.R.W., 1988. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chemical Geology, 68(3�C4), 253�C273.
[40]
Montaez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D., Fielding, C.R., Isbell, J.L., Birgenheier, L.P., Rygel, M.C., 2007. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science, 315(5808), 87�C91.
[41]
Nesbitt, H.W., 1979. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279(5710), 206�C210.
[42]
Nesbitt, H.W., Fedo, C.M., Young, G.M., 1997. Quartz and feldspar stability, steady and non-steady-state weathering, and petrogenesis of siliciclastic sands and muds. The Journal of Geology, 105(2), 173�C191.
[43]
Nesbitt, H.W., Markovics, G., 1997. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta, 61(8), 1653�C1670.
[44]
Nesbitt, H.W., Markovics, G., Price, R.C., 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44(11), 1659�C1666.
[45]
Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715�C717.
[46]
Nesbitt, H.W., Young, G.M., 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7), 1523�C1534.
[47]
Nesbitt, H.W., Young, G.M., 1989. Formation and diagenesis of weathering profiles. The Journal of Geology, 97(2), 129�C147.
[48]
Norton, K.P., von Blanckenburg, F., 2010. Silicate weathering of soil-mantled slopes in an active Alpine landscape. Geochimica et Cosmochimica Acta, 74(18), 5243�C5258.
[49]
Parker, A., 1970. An index of weathering for silicate rocks. Geological Magazine, 107(6), 501�C504.
[50]
Price, J.R., Velbel, M.A., 2003. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202(3�C4), 397�C416.
[51]
Rasmussen, C., Brantley, S., Richter, D. deB., Blum, A., Dixon, J., White, A.F., 2011. Strong climate and tectonic control on plagioclase weathering in granitic terrain. Earth and Planetary Science Letters, 301(3�C4), 521�C530.
[52]
Raymo, M.E., Ruddiman, W.F., 1992. Tectonic forcing of Late Cenozoic climate. Nature, 359(6391), 117�C122.
[53]
Reiche, P., 1943. Graphic representation of chemical weathering. Journal of Sedimentary Petrology, 13(2), 58�C68.
[54]
Riebe, C.S., Kirchner, J.W., Finkel, R.C., 2004. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth and Planetary Science Letters, 224(3�C4), 547�C562.
[55]
Riebe, C.S., Kirchner, J.W., Granger, D.E., Finkel, R.C., 2001. Strong tectonic and weak climatic control of long-term chemical weathering rates. Geology, 29(6), 511�C514.
[56]
Rieu, R., Allen, P.A., Platze, M., Pettke, T., 2007. Climatic cycles during a Neoproterozoic "snowball" glacial epoch. Geology, 35(4), 299�C302.
[57]
Ruxton, B.P., 1968. Measures of degree of chemical weathering of rocks. The Journal of Geology, 76(5), 518�C527.
[58]
Scheffler, K., Buehmann, D., Schwark, L., 2006. Analysis of Late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies �� Response to climate evolution and sedimentary environment. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1�C2), 184�C203.
[59]
Scheffler, K., Hoernes, S., Schwark, L., 2003. Global changes during Carboniferous�CPermian glaciation of Gondwana: Linking polar and equatorial climate evolution by geochemical proxies. Geology, 31(7), 605�C608.
[60]
Stephenson, M.H., 2007. The Early Permian fossil record of Gondwana and its relationship to deglaciation: A review. In: Williams, M., Haywood, A.M., Gregory, F.J., Schmidt, D.N. (Eds.), Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies. The Micropalaeontological Society, Special Publications. The Geological Society, London, pp. 103�C122.
[61]
Veevers, J.J., Powell, C.McA., 1987. Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica. GSA Bulletin, 98 (4), 475�C487.
[62]
Wan, S.M., Clift, P.D., Zhao, D.B., Hovius, N., Munhoven, G., France-Lanord, C., Wang, Y.X., Xiong, Z.F., Huang, J., Yu, Z.J., 2017. Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: A sink for atmospheric CO2. Geochimica et Cosmochimica Acta, 200, 123�C144.
[63]
Wang, H., 1985. Atlas of the Palaeogeography of China. Cartographic Publishing House, Beijing, pp. 74�C80 (in Chinese).
[64]
Wang, H.Z., Mo, X.X., 1995. An outline of the tectonic evolution of China. Episodes, 18(1�C2), 6�C16.
[65]
Weijers, J.W.H., Schouten, S., Sluijs, A., Brinkhuis, H., Sinninghe Damst��, J.S., 2007. Warm arctic continents during the Palaeocene�CEocene thermal maximum. Earth and Planetary Science Letters, 261(1�C2), 230�C238.
[66]
West, A.J., 2012. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks. Geology, 40(9), 811�C814.
[67]
West, A.J., Galy, A., Bickle, M., 2005. Tectonic and climatic controls on silicate weathering. Earth and Planetary Science Letters, 235(1�C2), 211�C228.
[68]
White, A.F., Blum, A.E., 1995. Effects of climate on chemical weathering in watersheds. Geochimica et Cosmochimica Acta, 59(9), 1729�C1747.
[69]
Wilson, M.J., 2004. Weathering of the primary rock-forming minerals: Processes, products and rates. Clay Minerals, 39(3), 233�C266.
[70]
Yan, D.T., Chen, D.Z., Wang, Q.C., Wang, J.G., 2010. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, South China. Geology, 38(7), 599�C602.
[71]
Yang, J.H. Paleoclimate perspectives of source-to-sink sedimentary processes. Earth Sciences, accepted paper (in Chinese with English abstract).
[72]
Yang, J.H., Cawood, P.A., Du, Y.S., Feng, B., Yan, J.X., 2014. Global continental weathering trends across the Early Permian glacial to postglacial transition: Correlating high- and low-paleolatitude sedimentary records. Geology, 42(10), 835�C838.
[73]
Yang, J.H., Cawood, P.A., Du, Y.S., Li, W.Q., Yan, J.X., 2016. Reconstructing Early Permian tropical climates from chemical weathering indices. GSA Bulletin, 128(5-6), 739�C751.
[74]
Yang, J.H., Du, Y.S., Cawood, P.A., Xu, Y.J., 2012. Modal and geochemical compositions of the Lower Silurian clastic rocks in North Qilian, NW China: Implications for provenance, chemical weathering, and tectonic setting. Journal of Sedimentary Research, 82(2), 92�C103.
[75]
Yang, S.Y., Jung, H.-S., Li, C.X., 2004. Two unique weathering regimes in the Changjiang and Huanghe drainage basins: Geochemical evidence from river sediments. Sedimentary Geology, 164(1�C2), 19�C34.
[76]
Young, G.M., Minter, W.E.L., Theron, J.N., 2004. Geochemistry and palaeogeography of Upper Ordovician glaciogenic sedimentary rocks in the Table Mountain Group, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 214(4), 323�C345.
[77]
Yusoff, Z.M., Ngwenya, B.T., Parsons, I., 2013. Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chemical Geology, 349�C350, 71�C86.
[78]
Zhu, H., Yang, G.X., Sheng, A.X., 1996. A study on palaeomagnetism of Permian strata in the Dafengkou section, Yuzhou, Henan Province. Acta Geologica Sinica, 70(2), 121�C128 (in Chinese with English abstract).