Significant progress has been achieved in the research of tide-dominated envi?ronments in the past two decades. These studies highlight both the importance and diversity of tidal flats in modern coastal environments. Based on their developing settings, tidal flats are subdivided into nine types, which are in turn grouped into sheltered or exposed spectrums according to the magnitude of exposure to waves. The ternary coastal classification model is revised with an embedded triangle to highlight non-open coast tidal flats as major secondorder morphological elements to the first-order coastal environments including deltas, estuaries and lagoons. A new continuous spectrum of open coast depositional settings is proposed from muddy tidal flats of tide dominance with wave influence, through sandy tidal flats of mixed energy (tide-dominated), and tidal beaches of mixed energy (wave-dominated), to beaches of wave-dominance with tide influence. It is worth noting that no open coast setting is absolutely exempt from wave or tide influence. Three diagnostic criteria for the intertidal-flat deposits are proposed. Upon an upward-fining succession, (1) regular changes vertically from flaser bedding, through wavy bedding and to lenticular bedding are diagnostic of most of intertidal flats; (2) cyclical tidal rhythmites point to sheltered intertidal flats typically at the inner part of macrotidal estuaries; (3) rhythmic alternations of storm and tidal deposition are diagnostic of exposed intertidal flats, especially the open coast types. Intertidal-flat deposits are generally topped by saltmarsh deposits, but underlain by different subtidal successions, like thick subtidal channelfills, sand-bar complexes (sheltered coastal settings), and upwards coarsening successions of subtidal flats or thick subtidal sand ridge/bar complexes (exposed coastal environments).|
Fan Daidu*. Marine sedimentology Classifications, sedimentary features and facies associations of tidal flats[J]. Journal of Palaeogeography, 2013, 2(1): 66-80.
Fan Daidu*. Marine sedimentology Classifications, sedimentary features and facies associations of tidal flats[J]. Journal of Palaeogeography, 2013, 2(1): 66-80.
.Amos, C., 1995. Siliciclastic tidal flats. In: Perillo, G. M. E., (ed). Geomorphology and Sedimentology of Estuaries, Advances in Sedimentology 53. Amsterdam: Elsevier, 273-306.
[2]
.Anthony, E. J., Orford, J. D., 2002. Between wave- and tide-dominated coasts: The middle ground revised. Journal of Coastal Research, SI36: 8-15.
[3]
.Bhattachary, J. P., 2006. Deltas. In: Posamentier, H. W., Walker, R. G., (eds). Facies Models Revised. SEPM Special Publication, 84: 237-292.
[4]
.Boggs, S. Jr., 1987. Principles of Sedimentology and Stratigraphy. New York: Macmillan Publishing Company, 784.
[5]
.Boggs, S. Jr., 2012. Principles of Sedimentology and Stratigraphy (5th edition). New Jersey: Prentice Hall, 600.
[6]
.Boyd, R., Dalrymple, R., Zaitlin, B. A., 1992. Classification of clastic coastal depositional environments. Sedimentary Geology, 80: 139-150.
[7]
.Chang, J. H., Choi, J. Y., 2001. Tidal-flat sequence controlled by Holocene sea-level rise in Gomso Bay, west coast of Korea. Estuarine, Coastal and Shelf Science, 52: 391-399.
[8]
.Curray, J. R., 1964. Transgression and regression. In: Miller, R. L., (ed). Papers in Marine Geology, Shepard Commemorative Volume. New York: Macmillan, 175-203.
[9]
.Dalrymple, R. W., 1992. Tidal depositional systems. In: Walker, R. G., James, N. P., (eds). Facies Models: Response to Sea Level Change. Geological Association of Canada, St. John ��s, 195-218.
[10]
Dalrymple, R. W., 2010. Tidal depositional systems. In: James, N. P., Dalrymple, R. W., (eds). Facies Models 4. Geological Association of Canada, St. John ��s, 201-232.
[11]
Dalrymple, R. W., Baker, E. K., Harris, P. T., Hughes, M. G., 2003. Sedimentology and stratigraphy of a tide-dominated, foreland-basin delta (Fly River, Papua New Guinea). SEPM Special Publication, 76: 147-173.
[12]
Dalrymple, R. W., Makino, Y., Zaitlin, B. A., 1991. Temporal and spatial patterns of rhythmite deposition on mud flats in the macrotidal Cobequid Bay-Salmon River estuary, Bay of Fundy, Canada. In: Smith, D. G., Reinson, G. E., Zaitlin, B. A., Rahmain, R. A., (eds). Clastic Tidal Sedimentology. Canadian Society of Petroleum Geologists, Memoir 16: 137-160.
[13]
Davies, J. L., 1964. A morphogenic approach to world shorelines. Zeitschrift f��r Geomorphologie, 8: 127-142.
[14]
Davies, J. L., 1980. Geographical Variation in Coastal Development (2nd edition). New York: Longman, 212.
[15]
Davis R. A. Jr., 1985. Coastal Sedimentary Environments (2nd edition). New York: Springer-Verlag, 716
[16]
.Davis R. A. Jr., Dalrymple, R.W., 2011. Principles of Tidal Sedimentology. New York: Springer, 621.
[17]
Davis, R. A. Jr., Hayes, M. O., 1984. What is a wave-dominated coast? Marine Geology, 60: 319-329.
[18]
Eisma, D., 1998. Intertidal Deposits: River Mouths, Tidal Flats, and Coastal Lagoons. New York: CRC Press, 525.
[19]
Fan, D. D., 2011. Open-coast tidal flats. In: Davis, R. A. Jr., Dalrymple, R. W., (eds). Principles of Tidal Sedimentology. New York: Springer, 187-229.
[20]
Fan Daidu, 2001. Formation and Preservation of Rhythmic Deposition on the Mudflats and Quantitative Analyses on Diastems. Ph. D. dissertation, Tongji University, Shanghai, 105 (in Chinese with English abstract).
[21]
Fan, D. D., Guo, Y. X., Wang, P., Shi, J. Z., 2006. Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang Delta: With an emphasis on storm impacts. Continental Shelf Research, 26: 517-538.
[22]
Fan, D. D., Li, C. X., 2002. Rhythmic deposition on mudflats in the mesotidal Changjiang estuary, China. Journal of Sedimentary Research, 72: 543-551.
[23]
Fan, D. D., Li, C. X., Archer, A. W., Wang, P., 2002. Temporal distribution of diastems in deposits of an open-coast intertidal flat with high suspended sediment concentrations. Sedimentary Geology, 186: 211-228.
[24]
Fan, D. D., Li, C. X., Wang, D. J., Wang, P., Archer, A. W., Greb, S. F., 2004. Morphology and sedimentation on open-coast intertidal flats of the Changjiang Delta, China. Journal of Coastal Research, SI(43): 23-35.
[25]
Fan, D. D., Cai, G. F., Shang, S., Wu, Y. J., Zhang, Y. W., Gao, L., 2012. Sedimentation processes and sedimentary characters of tidal bores along the north bank of the Qiantang Estuary. Chinese Science Bulletin, in press.
[26]
Fenies, H., de Ressequier, A., Tastet, J. P., 1999. Intertidal clay-drape couplets (Gironde Estuary, France). Sedimentology, 46: 1-15.
[27]
Galloway, W. E., 1975. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems. In: Broussard, M. L., (ed). Deltas: Models for Exploration. Houston: Houston Geological Society, 87-98.
Ginsburg, R. N., 1975. Tidal Deposits: A Casebook of Recent Examples and Fossil Counterparts. Berlin: Springer-Verlag, 428.
[30]
Greb, S. F., Archer, A. W., Debore, D. G., 2011. Apogean-perigean signals encoded in tidal flats at the fluvio-estuarine transition of Glacier Creek, Turnagain Arm, Alaska: Implications for ancient tidal rhythmites. Sedimentology, 58:1434-1452.
[31]
Hayes, M. O., 1979. Barrier island morphology. In: Leatherma, S. P., (ed). Barrier Islands from the Gulf of Mexico to the Gulf of St. Lawrence. New York: Academic Press, 1-28.
[32]
Kim, B. O., 2003. Tidal modulation of storm waves on a macrotidal flat in the Yellow Sea. Estuarine, Coastal and Shelf Science, 57: 411-420.
[33]
Kirby, R., 2000. Practical implications of tidal flat shape. Continental Shelf Research, 20: 1061-1077.
[34]
Klein, G. DEV, 1975. Epilogue-tidal sedimentation: Some remaining problems. In: Ginsburg, R. N., (ed). Tidal Deposits: A Casebook of Recent Examples and Fossil Counterparts. Berlin: Springer- Verlag, 407-410.
[35]
Klein, G. DEV, 1998. Clastic tidalites-a partial retrospective view. In: Alexander, C. R., Davis, R. A. Jr., Henry, V. J., (eds). Tidalites: Processes & Products. SEPM Special Publication, 61: 5-14.
[36]
Levoy, F., Anthony, E. J., Monfort, O., Larsonneur, C., 2000. The morphodynamics of megatidal beaches in Normandy, France. Marine Geology, 171: 39-59.
[37]
Li Congxian, Han Changfu, Wang Ping, 1992. Depositional sequences and storm deposition on low-energy coast of China. Acta Sedimentologica Sinica, 10(4): 119-127 (in Chinese with English abstract).
[38]
Li Congxian, Li Ping, 1982. Sediments and sand bodies on the tidal flats. Oceanologia et Limnologia Sinica, 13: 48-59 (in Chinese with English abstract).
[39]
Li, C. X., Wang, P., Fan, D. D., 2005. Tidal flat, open ocean coasts. In: Schwartz, M. L., (ed). Encyclopedia of Coastal Science. Berlin: Springer, 975-978.
[40]
Li, C. X., Wang, P., Fan, D. D., Deng, B., Li, T. S., 2000. Open-coast intertidal deposits and the preservation potential of individual lamina: A case study from East-central China. Sedimentology, 47: 1039-1051.
[41]
Middleton, G. V., 1991. A short historical review of clastic tidal sedimentology. In: Smith, D. G., Reinson, G. E., Zaitlin, B. A., Rahmani, R. A., (eds). Clastic Tidal Sedimentology. Canadian Society of Petroleum Geology Memoir, 16: ix-xv.
[42]
Nio, S. D., Yang, C. S., 1991. Diagnostic attributes of clastic tidal deposits: A review. In: Smith, D. G., Reinson, G. E., Zaitlin, B. A., Rahmani, R. A., (eds). Clastic Tidal Sedimentology. Canadian Society of Petroleum Geology Memoir, 16: 3-28.
[43]
Nio, S. D., Yang, C. S., 1989. Recognition of Tidally-influenced Facies and Environments. International Geoservices BV, 230.
[44]
Reading, H. G., 1996. Sedimentary Environments: Processes, Facies, and Stratigraphy. New York: John Wiley & Sons, 688.
[45]
Reineck, H. E., Cheng, Y. M., 1978. Sedimentology and faunistics of tidal flats in Taiwan, I. Marine Geology. Senckenbergiana Marit, 10: 85-115.
[46]
Reineck, H. E., Singh, I. B., 1980. Depositional Sedimentary Environments (2nd edition). Berlin: Springer-Verlag, 549.
[47]
Ren, M. E., 1985. Modern Sedimentation in Coastal and Nearshore Zone of China. Berlin: Springer-Verlag, 466.
[48]
Roberts, H. H., Sydow, J., 2003. Late Quaternary stratigraphy and sedimentology of the offshore Mahakham Delta, East Kalimantan (Indonesia). In: Sidi, F. H., Nummedal, D., Imbert, P., Darman, H., Posamantier, H. W., (eds). Tropical Deltas of Southeast Asia. SEPM Special Publication, 76: 125-145.
[49]
Semeniuk, V., 1981. Long-term erosion of the tidal flats King Sound, north western Australia. Marine Geology, 43: 21-48.
[50]
Thompson, R. W., 1968. Tidal flat sedimentation on the Colorado River delta, northwestern Gulf of California. Geological Society of America, Memoir 107: 413.
[51]
Wang, A. J., Gao, S., Chen, J., Li, D. Y., 2009. Sediment dynamic response of coastal salt marsh to typhoon ��Kaemi�� in Quanzhou Bay, Fujian Province, China. Chinese Science Bulletin, 53: 120130.
[52]
Wang, Y., 1983. The mudflat system of China. In: Gordon, D. C. Jr., Hourston, A. S., (eds). Proceedings of the Symposium on the Dynamics of Turbid Coastal Environments. Canadian Journal of Fisheries and Aquatic Science, 40(supplement 1): 160-171.
[53]
Wells, J. T., Adams, C. E. Jr., Park, Y. A., Frankenberg, E. W., 1990. Morphology, sedimentology and tidal channel processes on a high-tide-range mudflat, west coast of South Korea. Marine Geology, 95: 111-130.
[54]
Yang, B. C., Dalrymple, R. W., Chun, S. S., 2006. The significance of hummocky cross-stratification (HCS) wavelengths: Evidence from an open-coast tidal flat, south Korea. Journal of Sedimentary Research, 76: 2-8.
[55]
Yang, B. C., Gingras, M. K., Pemberton, S. G., Dalrymple, R. W., 2008. Wave-generated tidal bundles as indicator of wave-dominated tidal flats. Geology, 36: 39-42.
[56]
Yang, B. C., Dalrymple, R. W., Chun, S. S., 2005. Sedimentation on a wave-dominated, open-coast tidal flat, southwestern Korea: Summer tidal flat-winter shoreface. Sedimentology, 52: 235252.