1 Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332900, Jiangxi Province, China; 2 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
Abstract Quantifying the palaeoclimates of Qinghai-Tibetan Plateau is vital for understanding the uplift history of plateau and the evolution of Asian monsoon since Cenozoic. Recently, the Coexistence Approach (CA) has been employed to reconstruct the palaeoelevation and palaeoclimate of the plateau by several studies. However, the application of CA in mountainous areas and the realism of climate reconstructions via this method are seldom discussed, although the complexity of reconstructions is speculated. Here we reevaluated the realism of climate reconstruction using the CA with modern pollen samples from the Qinghai-Tibetan Plateau, and try to explore the possible factors influencing the precipitation and temperature reconstructions by CA. We suggest that the long-distance transport pollen as a result of the Asian summer monsoon potentially significantly affects the reconstructions both for precipitation and temperature. The precipitation complexly interacting with snowmelt and permafrost thaw leads to the discrepancy between the reconstructed precipitation and the real value. The response temperature for blossoming of dwarfed plants on the plateau is mostly likely higher than the air temperature (usually measured at 1.5 m above ground) due to energy flux or morphological adaptation of inflorescences during the growing season, causing the distortion of temperature reconstructions. Precipitation reconstruction is notoriously difficult as the establishers of CA have already suggested, but reconstructing the low temperatures may be even more challenging on Qinghai-Tibetan Plateau. Though all of the explorations in current paper are in a qualitative way, it offers an inspiration of how appropriately interpret the disagreements between CA results and the observations, and of how to obtain a reasonable reconstruction of palaeoclimate of the plateau.
Fund:This work was supported by National Natural Science Foundation of China (Grant No. 41861003) and Basic Work Special Project of the National Ministry of Science and Technology of China (Grant No. 2013FY111500).
. The complexity of climate reconstructions using the Coexistence Approach on Qinghai-Tibetan Plateau[J]. , 2019, 8(1): 68-77.
. The complexity of climate reconstructions using the Coexistence Approach on Qinghai-Tibetan Plateau[J]. Journal of Palaeogeography, 2019, 8(1): 68-77.
An Z.S.,J.E. Kutzbach,W.L. Prell, and S.C. Porter.2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times.Nature 411(6833): 62-66.
[3]
Böhme M.,A.A. Bruch, and A. Selmeier.2007. The reconstruction of Early and Middle Miocene climate and vegetation in southern Germany as determined from the fossil wood flora.Palaeogeography, Palaeoclimatology, Palaeoecology 253(1-2): 91-114.
[4]
Bruch A.A.,T. Utescher,V. Mosbrugger,I. Gabrielyan, and D.A. Ivanov.2006. Late Miocene climate in the circum-Alpine realm — A quantitative analysis of terrestrial palaeofloras.Palaeogeography, Palaeoclimatology, Palaeoecology 238: 270-280.
[5]
Cable D.R.1969. Competition in the semidesert grass-shrub type as influenced by root systems, growth habits, and soil moisture extraction.Ecology 50(1): 27-38.
[6]
Chen W.N.,Y. Wu,N. Wu, and P. Luo.2008. Effect of snow-cover duration on plant species diversity of alpine meadows on the eastern Qinghai-Tibetan Plateau.Journal of Mountain Science 5(4): 327-339.
[7]
Chung S.L.,C.H. Lo,T.Y. Lee,Y.Q. Zhang,Y.W. Xie,X.H. Li,K.L. Wang, and P.L. Wang.1998. Diachronous uplift of the Tibet Plateau starting 40 Myr ago.Nature 394(6695): 769-773.
[8]
Cour P.,Z. Zheng,D. Duzer,M. Calleja, and Z. Yao.1999. Vegetational and climatic significance of modern pollen rain in northwestern Tibet.Review of Palaeobotany and Palynology 104(3-4): 183-204.
[9]
DeCelles P.G.,J. Quade,P. Kapp,M. Fan,D.L. Dettman, and L. Ding.2007. High and dry in central Tibet during the Late Oligocene.Earth and Planetary Science Letters 253(3-4): 389-401.
[10]
Erdei B.,L. Hably,M. Kázmér T. Utescher, and A.A. Bruch.2007. Neogene flora and vegetation development of the Pannonian domain in relation to palaeoclimate and palaeogeography.Palaeogeography, Palaeoclimatology, Palaeoecology 253(1-2): 115-140.
[11]
Farr T.G.,P.A. Rosen,E. Caro,R. Crippen,R. Duren,S. Hensley,M. Kobrick,M. Paller,E. Rodriguez,L. Roth,D. Seal,S. Shaffer,J. Shimada,J. Umland,M. Werner,M. Oskin,D. Burbank, and D. Alsdorf.2007. The Shuttle Radar Topography Mission.Reviews of Geophysics 45(2): G2004. doi: 10.1029/2005RG000183.
[12]
Gebka M.,V. Mosbrugger,H.D. Schilling, and T. Utescher.1999. Regional-scale palaeoclimate modelling on soft proxy-data basis — An example from the Upper Miocene of the Lower Rhine Embayment.Palaeogeography, Palaeoclimatology, Palaeoecology 152(3-4): 225-258.
[13]
Grein M.,T. Utescher,V. Wilde, and A. Roth-Nebelsick.2011. Reconstruction of the middle Eocene climate of Messel using palaeobotanical data.Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 260(3): 305-318.
[14]
Grimm G.W.,J.M. Bouchal,T. Denk, and A. Potts.2016. Fables and foibles: A critical analysis of the Palaeoflora database and the Coexistence Approach for palaeoclimate reconstruction.Review of Palaeobotany and Palynology 233: 216-235.
[15]
Grimm G.W.,T. Denk.2012. Reliability and resolution of the coexistence approach — A revalidation using modern-day data.Review of Palaeobotany and Palynology 172: 33-47.
[16]
Grimm G.W.,A.J. Potts.2016. Fallacies and fantasies: The theoretical underpinnings of the Coexistence Approach for palaeoclimate reconstruction.Climate of the Past 12(3): 611-622.
[17]
Gu S.,Y.H. Tang,X.Y. Cui,T. Kato,M.Y. Du,Y.N. Li, and X.Q. Zhao.2005. Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai-Tibetan Plateau.Agricultural and Forest Meteorology 129(3): 175-185.
[18]
Hao H.,D.K. Ferguson,G.P. Feng,A. Ablaev,Y.F. Wang, and C.S. Li.2010. Early Paleocene vegetation and climate in Jiayin, NE China.Climatic Change 99(3): 547-566.
[19]
Harris I.,P.D. Jones,T.J. Osborn, and D.H. Lister.2013. Updated high-resolution grids of monthly climatic observations — The CRU TS3.10 Dataset.International Journal of Climatology 34(3): 623-642.
[20]
Hancock P.A.,M.F. Hutchinson.2006. Spatial interpolation of large climate data sets using bivariate thin plate smoothing splines.Environmental Modelling and Software 21(12): 1684-1694.
[21]
Jacques F.M.B.,S.X. Guo,T. Su,Y.W. Xing,Y.J. Huang,Y.S. Liu,D.K. Ferguson, and Z.K. Zhou.2011. Quantitative reconstruction of the Late Miocene monsoon climates of southwest China: A case study of the Lincang flora from Yunnan Province.Palaeogeography, Palaeoclimatology, Palaeoecology 304(3-4): 318-327.
[22]
Jiang H.,Z. Ding.2009. Spatial and temporal characteristics of Neogene palynoflora in China and its implication for the spread of steppe vegetation.Journal of Arid Environments 73(9): 765-772.
[23]
Kambatuku J.R.,M.D. Cramer, and D. Ward.2013. Overlap in soil water sources of savanna woody seedlings and grasses.Ecohydrology 6(3): 464-473.
[24]
Kang S.C.,Y.P. Yang, L.P. Zhu, Y.M. Ma, and W.Q. Ma. 2011. Modern Environmental Processes and Changes of the Nam Co Basin, Tibetan Plateau. Beijing: China Meteorological Press (in Chinese).
[25]
Kita Y.,F. Kazumi,M. Ito,H. Ohba, and M. Kato.2004. Molecular phylogenetic analyses and systematics of the genusSaussurea and related genera (Asteraceae, Cardueae). Taxon 53(3): 679-690.
[26]
Knoop W.T.,B.H. Walker.1985. Interactions of woody and herbaceous vegetation in a southern African savanna.Journal of Ecology 73(1): 235-253.
[27]
Li J.F.,D.K. Ferguson,J. Yang,G.P. Feng,A.G. Ablaev,Y.F. Wang, and C.S. Li.2009. Early Miocene vegetation and climate in Weichang District, North China.Palaeogeography, Palaeoclimatology, Palaeoecology 280(1-2): 47-63.
[28]
Liu X.D.,B.D. Chen.2000. Climatic warming in the Tibetan Plateau during recent decades.International Journal of Climatology 20(14): 1729-1742.
[29]
Lu X.M.,M. Herrmann,V. Mosbrugger,T.D. Yao, and L.P. Zhu.2010. Airborne pollen in the Nam Co Basin and its implication for palaeoenvironmental reconstruction.Review of Palaeobotany and Palynology 163(1-2): 104-112.
[30]
Mosbrugger V.,T. Utescher.1997. The coexistence approach — A method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils.Palaeogeography, Palaeoclimatology, Palaeoecology 134: 61-86.
[31]
Omori Y.,H. Takayama, and H. Ohba.2000. Selective light transmittance of translucent bracts in the Himalayan giant glasshouse plantRheum nobile Hook. f. & Thomson (Polygonaceae). Botanical Journal of the Linnean Society 132(1): 19-27.
[32]
Pross J.,S. Klotz, and V. Mosbrugger.2000. Reconstructing palaeotemperatures for the Early and Middle Pleistocene using the mutual climatic range method based on plant fossils.Quaternary Science Reviews 19(17-18): 1785-1799.
[33]
Qian Y.F.,Y.Q. Zheng,Y. Zhang, and M.Q. Miao.2010. Responses of China's summer monsoon climate to snow anomaly over the Tibetan Plateau.International Journal of Climatology 23(6): 593-613.
[34]
Qiang X.K.,Z.X. Li,C.McA. Powell, and H.B. Zheng.2001. Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet.Earth and Planetary Science Letters 187(1-2): 83-93.
[35]
Qin F.,D.K. Ferguson,R. Zetter,Y.F. Wang,S. Syabryaj,J.F. Li,J. Yang, and C.S. Li.2011. Late Pliocene vegetation and climate of Zhangcun region, Shanxi, North China.Global Change Biology 17(5): 1850-1870.
[36]
Quan C.,Y.S. Liu, and T. Utescher.2011. Paleogene evolution of precipitation in northeastern China supporting the Middle Eocene intensification of the East Asian monsoon.Palaios 26(11): 743-753.
[37]
Sharma P.,N. Sharma, and R. Deswal.2005. The molecular biology of the low-temperature response in plants.Bioessays 27(10): 1048-1059.
[38]
Song X.Y.,R.A. Spicer,J. Yang,Y.F. Yao, and C.S. Li.2010. Pollen evidence for an Eocene to Miocene elevation of central southern Tibet predating the rise of the High Himalaya.Palaeogeography, Palaeoclimatology, Palaeoecology 297(1): 159-168.
[39]
Spicer R.A.,N.B.W. Harris,M. Widdowson,A.B. Herman,S.X. Guo,P.J. Valdes,J.A. Wolfe, and S.P. Kelley.2003. Constant elevation of southern Tibet over the past 15 million years.Nature 421(6923): 622-624.
[40]
Sun J.M.,Q.H. Xu,W.M. Liu,Z.Q. Zhang,L. Xue, and P. Zhao.2014. Palynological evidence for the latest Oligocene-early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet.Palaeogeography, Palaeoclimatology, Palaeoecology 399: 21-30.
[41]
Terashima I.,T. Masuzawa, and H. Ohba.1993. Photosynthetic characteristics of a giant alpine plant,Rheum nobile Hook. f. et Thoms. and of some other alpine species measured at 4300 m, in the Eastern Himalaya, Nepal. Oecologia 95(2): 194-201.
[42]
Tsukaya H.,T. Tsuge.2001. Morphological adaptation of inflorescences in plants that develop at low temperatures in early spring: The convergent evolution of "downy plants".Plant Biology 3(5): 536-543.
[43]
Utescher T.,A.A. Bruch,B. Erdei,L. François D. Ivanov,F.M.B. Jacques,A.K. Kern,Y.S. Liu,V. Mosbrugger, and R.A. Spicer.2014. The Coexistence Approach — Theoretical background and practical considerations of using plant fossils for climate quantification.Palaeogeography, Palaeoclimatology, Palaeoecology 410: 58-73.
[44]
Walter H.1971. Ecology of Tropical and Subtropical Vegetation. Edinburgh: Oliver and Boyd.
[45]
Wang H.,I.C. Prentice, and J. Ni.2013. Data-based modelling and environmental sensitivity of vegetation in China.Biogeosciences 10(9): 5817-5830.
[46]
Wen J.,J.Q. Zhang,Z.L. Nie,Y. Zhong, and H. Sun.2014. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau.Frontiers in Genetics 5: 4. doi: 10.3389/fgene.2014.00004.
[47]
Wilf P.,S.L. Wing,D.R. Greenwood, and C.L. Greenwood.1998. Using fossil leaves as paleoprecipitation indicators: An Eocene example.Geology 26(3): 203-206.
[48]
Wu, Z.Y.,T.Y. Ding. 1999. Seed Plants of China. Kunming: Yunnan Science and Technology Press (Electronic publication in Chinese).
[49]
Wu J.,K.X. Zhang,Y.D. Xu,G.C. Wang,C.N. Garzione,J. Eiler,P.H. Leloup,P. Sorrel, and G. Mahéo.2018. Paleoelevations in the Jianchuan Basin of the southeastern Tibetan Plateau based on stable isotope and pollen grain analyses.Palaeogeography, Palaeoclimatology, Palaeoecology
(in press). doi: 10.1016/j.palaeo.2018.03.030
[50]
Xia K.,T. Su,Y.S. Liu,Y.W. Xing,F.M.B. Jacques, and Z.K. Zhou.2009. Quantitative climate reconstructions of the late Miocene Xiaolongtan megaflora from Yunnan, Southwest China.Palaeogeography, Palaeoclimatology, Palaeoecology 276: 80-86.
[51]
Yang J.,Y.F. Wang,R.A. Spicer,V. Mosbrugger,C.S. Li, and Q.G. Sun.2007. Climatic reconstruction at the Miocene Shanwang Basin, China, using leaf margin analysis, CLAMP, coexistence approach, and overlapping distribution analysis.American Journal of Botany 94(4): 599-608.
[52]
Yao Y.F.,S. Bera,D.K. Ferguson,V. Mosbrugger,K.N. Paudayal,J.H. Jin, and C.S. Li.2009. Reconstruction of paleovegetation and paleoclimate in the Early and Middle Eocene, Hainan Island, China.Climatic Change 92(1): 169-189.
[53]
Ying Z.X.,J.B. Liao,Y.J. Liu,S.C. Wang,H. Lu,L. Ma,D.D. Chen, and Z.Q. Li.2017. Modelling tree-grass coexistence in water-limited ecosystems.Ecological Modelling 360: 387-398.
[54]
Yu G.,L.Y. Tang,X.D. Yang,X.K. Ke, and S.P. Harrison.2001. Modern pollen samples from alpine vegetation on the Tibetan Plateau.Global Ecology and Biogeography 10(5): 503-519.
[55]
Zhang Q.Q.,T. Smith,J. Yang, and C.S. Li.2016. Evidence of a cooler continental climate in East China during the warm Early Cenozoic.PLoS One 11(5): e155507.
[56]
Zhang X.S.2007. Vegetation Map of the People’s Republic of China (1:1,000,000). Beijing: Geological Publishing House.
[57]
Zhang Y.L.,B.Y. Li, and D. Zheng.2002. A discussion on the boundary and area of the Tibetan Plateau in China.Geographical Research 21(1): 1-8 (in Chinese with English abstract).
[58]
Zhang Y.S.,T. Ohata, and T. Kadota.2003. Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau.Journal of Hydrology 283(1): 41-56.
[59]
Zhang Y.J.,L. Duo,Y.Z. Pang,V.A. Felde,H.H. Birks, and H.J.B. Birks.2018. Modern pollen assemblages and their relationships to vegetation and climate in the Lhasa Valley, Tibetan Plateau, China.Quaternary International 467(Part B): 210-221.
[60]
Zhang Z.Y.2016. Comparison of Techniques to Reconstruct Palaeoclimates of China [Doctoral dissertation]. Sydney, Australia: Macquarie University.
[61]
Zhang Z.Y.,S.P. Harrison,V. Mosbrugger,D.K. Ferguson,K.N. Paudayal,A. Trivedi, and C.S. Li.2015. Evaluation of the realism of climate reconstruction using the Coexistence Approach with modern pollen samples from the Qinghai-Tibetan Plateau.Review of Palaeobotany and Palynology 219: 172-182.
[62]
Zhang Z.Y.,C.S. Li.2017. Distributional patterns of anemophilous tree pollen indicating the pathways of Indian monsoon through Qinghai-Tibetan Plateau.Journal of Palaeogeography 6(4): 352-358.
[63]
Zhao Y.,U. Herzschuh, and Q. Li.2015. Complex vegetation responses to climate change on the Tibetan Plateau: A paleoecological perspective.National Science Review 2(4): 400-402.