Coupling textural and stable-isotope variations in fluvial stromatolites: Comparison of Pleistocene and recent records in NE Spain
C. Arenas1,2, M.C. Osácar1,2, L. Auqué1, C. Sancho1
1 Department of Earth Sciences, University of Zaragoza, 50009 Zaragoza, Spain; 2 Geogransfer Group and Institute for Research on Environmental Sciences of Aragón (IUCA), 50009 Zaragoza, Spain;
Abstract Textural and stable isotopic features of two middle Pleistocene fluvial stromatolite profiles are compared to a recent stromatolite, both formed in the River Piedra system (NE Spain), to test the reliability of climatic, hydrologic and depositional information derived from ancient records. The Pleistocene stromatolites formed in a multi-domed, highly-inclined cascade-barrage. The recent stromatolite also formed in a highly-inclined cascade of the River Piedra, the sedimentary conditions of which were periodically examined between the years 2000 and 2012. The Pleistocene stromatolites are formed of an alternation of 1) thin large-crystal laminae (type A), with elongated crystals up to 1 mm long, and 2) thick small-crystal laminae (type B), consisting of cyanobacterial fan- and bush-shaped bodies. The textural and isotopic comparison with the recent stromatolite shows that each A-B couplet corresponds to one year. The type-A laminae are comparable to the macrocrystalline laminae that occur in the cool-period deposits of the recent stromatolite, and the type-B laminae are comparable to the warm-period deposits of the recent stromatolite. Water temperatures (Tw), calculated from δ18Ocalcite and present measures of δ18Owater, were similar in the Pleistocene and recent specimens, and close to the measured river Tw. Thus, the Pleistocene stromatolites formed not far from isotopic equilibrium, as did the recent stromatolite. The Pleistocene δ18Ocalcite biannual oscillation is wider in amplitude than in the recent stromatolite, which suggests larger differences in Tw through the year in the Pleistocene than at present. The Pleistocene δ13Ccalcite does not show any pattern; and the values are slightly higher than the recent ones. The co-evolution of δ18O and δ13C is parallel in the Pleistocene stromatolites, matching the recent stromatolite behavior. These results and their comparison with other ancient examples prove that textural and isotopic features in ancient stromatolites are useful tools to infer past depositional, climatic and hydrological conditions. Moreover, interpretations from recent fluvial stromatolites can be extrapolated to past environments to help decipher patterns of past processes, in cases where both recent and ancient stromatolites can be compared within one environmental setting. Such comparisons may be used to help interpretations of ancient stromatolites where the modern ones are not available to study.
. Coupling textural and stable-isotope variations in fluvial stromatolites: Comparison of Pleistocene and recent records in NE Spain[J]. , 2019, 8(2): 150-169.
. Coupling textural and stable-isotope variations in fluvial stromatolites: Comparison of Pleistocene and recent records in NE Spain[J]. Journal of Palaeogeography, 2019, 8(2): 150-169.
Affek H.P.,M. Bar-Matthews A. Ayalon,A. Matthews, and J.M. Eiler.2008. Glacial/interglacial temperature variations in Soreq cave speleothems as recorded by ‘clumped isotope’ thermometry.Geochimica et Cosmochimica Acta 72(22): 5351-5360.
[2]
Andrews J.E.,R. Riding, and P.F. Dennis.1993. Stable isotopic compositions of Recent freshwater cyanobacterial carbonates from the British Isles: Local and regional environmental controls.Sedimentology 40(2): 303-314.
[3]
Andrews J.E.,R. Riding, and P.F. Dennis.1997. The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe.Palaeogeography, Palaeoclimatology, Palaeoecology 129(1-2): 171-189.
[4]
Andrews J.E.,M. Pedley, and P.F. Dennis.2000. Palaeoenvironmental records in Holocene Spanish tufas: A stable isotope approach in search of reliable climatic archives.Sedimentology 47(5): 961-978.
[5]
Andrews J.E.2006. Palaeoclimatic records from stable isotopes in riverine tufas: Synthesis and review.Earth-Science Reviews 75: 85-104.
[6]
Anzalone E.,V. Ferreri,M. Sprovieri, and B. D’Argenio.2007. Travertines as hydrologic archives: The case of the Pontecagnano deposits (southern Italy).Advances in Water Resources 30(10): 2159-2175.
[7]
Arenas-Abad, C., M. Vázquez-Urbez, G. Pardo-Tirapu and C. Sancho-Marcén. 2010. Fluvial and associated carbonate deposits. In: A.M. Alonso-Zarza and L.H. Tanner (Eds.), Carbonates in Continental Settings: Facies, Environments and Processes. Developments in Sedimentology 61: 133-175.
[8]
Arenas C.,C. Osácar, C. Sancho, M. Vázquez-Urbez, L. Auqué, and G. Pardo. 2010. Seasonal record from recent fluvial tufa deposits (Monasterio de Piedra, NE Spain): Sedimentological and stable isotope data. In: H.M. Pedley, and M. Rogerson (Eds.), Tufas and Speleothems: Unravelling the Microbial and Physical Controls. Geological Society Special Publications 336, London, pp. 119-142.
[9]
Arenas C.,M. Vázquez-Urbez L. Auqué,C. Sancho,C. Osácar, and G. Pardo.2014. Intrinsic and extrinsic controls of spatial and temporal variations in modern fluvial tufa sedimentation: A thirteen-year record from a semi-arid environment.Sedimentology 61(1): 90-132.
[10]
Arenas C, L. Piñuela and J.C. García-Ramos.2015. Climatic and tectonic controls on carbonate deposition in syn-rift siliciclastic fluvial systems: A case of microbialites and associated facies in the Late Jurassic.Sedimentology 62:1149-1183.
[11]
Arenas C.,B. Jones.2017. Temporal and environmental significance of microbial lamination: Insights from Recent fluvial stromatolites in the River Piedra, Spain.Sedimentology 64(6): 1597-1629.
[12]
Arenas C.,M.C. Osácar,L.F. Auqué,J.E. Andrews,G. Pardo,A. Marca,L. Martín Bello, and F.J. Pérez-Rivarés.2018. Seasonal temperatures from δ18O in recent Spanish tufa stromatolites: Equilibrium redux!Sedimentology 65(5): 1611-1630.
[13]
Arp G.1995. Lacustrine bioherms, spring mounds, and marginal carbonates of the Ries-impact-crater (Miocene, southern Germany).Facies 33(1): 35-89.
[14]
Arp G.,A. Bissett, N. Brinkmann, S. Cousin, D. de Beer, T. Friedl, K.I. Mohr, T.R. Neu, A. Reimer, F. Shiraishi, E. Stackebrandt, and B. Zippel. 2010. Tufa-forming biofilms of German karstwater streams: Microorganisms, exopolymers, hydrochemistry and calcification. In: H.M. Pedley, and M. Rogerson (Eds.), Tufas and Speleothems: Unravelling the Microbial and Physical Controls. Geological Society Special Publications 336, London, pp. 83-118.
[15]
Berrendero E.,C. Arenas,P. Mateo, and B. Jones.2016. Cyanobacterial diversity and related sedimentary facies as a function of water flow conditions: Example from the Monasterio de Piedra Natural Park (Spain).Sedimentary Geology 337: 12-28.
[16]
Böhm F.,M.M. Joachimski,W.-C. Dullo,A. Eisenhauer,H. Lehnert,J. Reitner, and G. Wörheide.2000. Oxygen isotope fractionation in marine aragonite of coralline sponges.Geochimica et Cosmochimica Acta 64(10): 1695-1703.
[17]
Brasier A.T.,J.E. Andrews,A.D. Marca-Bell, and P.F. Dennis.2010. Depositional continuity of seasonally laminated tufas: Implications for δ18O based palaeotemperatures.Global and Planetary Change 71(3-4): 160-167.
[18]
Brasier A.T.,J.E. Andrews, and A.C. Kendall.2011. Diagenesis or dire genesis? The origin of columnar spar in tufa stromatolites of central Greece and the role of chironomid larvae.Sedimentology 58(5): 1283-1302.
[19]
Capezzuoli E.,A. Gandin, and M. Pedley.2014. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art.Sedimentology 61(1): 1-21.
[20]
Cerling T.E.1984. The stable isotopic composition of modern soil carbonate and its relationship to climate.Earth and Planetary Science Letters 71(2): 229-240.
[21]
Cerling T.E.1991. Carbon dioxide in the atmosphere: Evidence from Cenozoic and Mesozoic paleosols.American Journal of Science 291(4): 377-400.
[22]
Chafetz H.S.,N.M. Utech, and S.P. Fitzmaurice.1991. Differences in the δ18O and δ13C signatures of seasonal laminae comprising travertine stromatolites.Journal of Sedimentary Petrology 61(6): 1015-1028.
[23]
Craig H.1965. The measurement of oxygen isotope palaeotemperatures. In: Tongiorgi, E. (Ed.), Stable Isotopes in Oceanographic Studies and Palaeotemperatures. Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa, pp. 161-182.
[24]
Cremaschi M.,A. Zerboni,C. Spötl, and F. Felletti.2010. The calcareous tufa in the Tadrart Acacus Mt. (SW Fezzan, Libya): An early Holocene palaeoclimate archive in the central Sahara.Palaeogeography, Palaeoclimatology, Palaeoecology 287: 81-94.
[25]
Dabkowski J.,S.H. Royle,P. Antoine,A. Marca-Bell, and J.E. Andrews.2015. High resolution δ18O seasonality record in a French Eemian tufa stromatolite (Caours, Somme Basin).Palaeogeography, Palaeoclimatology, Palaeoecology 438: 277-284.
[26]
D’Argenio B.,V. Ferreri.1988. Ambienti di deposizione e litofacies dei travertine quaternary dell’Italia centro-meridionale.Memoria della Società Geologica Italiana 41: 861-868.
[27]
Deines P.1980. The isotopic composition of reduced organic carbon. In: A.P. Fritz, and J.Ch. Fontes (Eds.), Handbook of Environmental Isotope Geochemistry. 1. The Terrestrial Environment. Elsevier, pp. 329-406.
[28]
Ford T.D.,H.M. Pedley.1996. A review of tufa and travertine deposits of the world.Earth-Science Reviews 41(3-4): 117-175.
[29]
Frantz C.M.,V.A. Petryshyn,P.J. Marenco,A. Tripati,W.M. Berelson, and F.A. Corsetti.2014. Dramatic local environmental change during the Early Eocene Climatic Optimum detected using high resolution chemical analyses of Green River Formation stromatolites.Palaeogeography, Palaeoclimatology, Palaeoecology 405: 1-15.
[30]
Friedli H.,H. Lötscher H. Oeschger,U. Siegenthaler, and B. Stauffer.1986. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries.Nature 324: 237-238.
[31]
Garnett E.R.,J.E. Andrews,R.C. Preece, and P.F. Dennis.2004. Climatic change recorded by stable isotopes and trace elements in a British Holocene tufa.Journal of Quaternary Science 19(3): 251-262.
[32]
Golubic S.1976. Chapter 4.1 Organisms that build stromatolites. In: M.R. Walter (Ed.), Stromatolites. Developments in Sedimentology, Volume 20. Amsterdam: Elsevier, pp. 113-126.
[33]
Hori M.,T. Kawai,J. Matsuoka, and A. Kano.2009. Intra-annual perturbations of stable isotopes in tufas: Effects of hydrological processes.Geochimica et Cosmochimica Acta 73(6): 1684-1695.
[34]
Kalkowsky E.1908. Oolith und stromatolith im nord-deutschen Buntsandstein.Zeitschrift der Deutschen Geologischen Gesellschaft 60: 68-125.
[35]
Kano A.,R. Hagiwara,T. Kawai,M. Hori, and J. Matsuoka.2007. Climatic conditions and hydrological change recorded in a high-resolution stable-isotope profile of a recent laminated tufa on a subtropical island, southern Japan.Journal of Sedimentary Research 77(1): 59-67.
[36]
Keeling C.D.1979. The Suess Effect: 13Carbon-14Carbon interrelations.Environment International 2(4): 229-300.
Kim S.-T.,J.R. O'Neil.1997. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates.Geochimica et Cosmochimica Acta 61(16): 3461-3475.
[39]
Leng M.J.,J.D. Marshall.2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives.Quaternary Science Reviews 23(7): 811-831.
[40]
Lisiecki L.E.,M.E. Raymo.2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20 (1): PA1003.
[41]
Liu Z.H.,H.C. Li,C.F. You,N.J. Wan, and H.L. Sun.2006. Thickness and stable isotopic characteristics of modern seasonal climate-controlled sub-annual travertine laminas in a travertine-depositing stream at Baishuitai, SW China: Implications for paleoclimate reconstruction.Environmental Geology 51(2): 257-265.
[42]
Lojen S.,T. Dolenec,B. Vokal,N. Cukrov,G. Mihelčić, and W. Papesch.2004. C and O stable isotope variability in recent freshwater carbonates (River Krka, Croatia).Sedimentology 51(2): 361-375.
[43]
Martín Bello, L., C. Arenas Abad,A.M. Alonso Zarza.2017. Preliminary interpretation of the stable-isotope composition in lacustrine stromatolites of the Sierra de Alcubierre (Miocene, Ebro Basin, Spain).Geogaceta 61: 171-174.
[44]
Matsuoka J.,A. Kano,T. Oba,T. Watanabe,S. Sakai, and K. Seto.2001. Seasonal variation of stable isotopic compositions recorded in a laminated tufa, SW Japan.Earth and Planetary Science Letters 192(1): 31-44.
[45]
Merz-Preiß M.,R. Riding.1999. Cyanobacterial tufa calcification in two freshwater streams: Ambient environment, chemical thresholds and biological processes.Sedimentary Geology 126: 103-124.
[46]
Mischke S.,C.J. Zhang.2008. A laminated tufa carbonate from the mid Holocene of the Qilian Mountains and its potential for palaeoclimate inferences.Episodes 31(4): 401-407.
[47]
Manzo E.,E. Perri, and M.E. Tucker.2012. Carbonate deposition in a fluvial tufa system: Processes and products (Corvino Valley - southern Italy).Sedimentology 59(2): 553-577.
[48]
O'Brien, G.R., D.S. Kaufman, W.D. Sharp, V. Atudorei, R.A. Parnell,L.J. Crossey.2006. Oxygen isotope composition of annually banded modern and mid-Holocene travertine and evidence of paleomonsoon floods, Grand Canyon, Arizona, USA.Quaternary Research 65(3): 366-379.
[49]
Ortiz J.E.,T. Torres,A. Delgado,E. Reyes, and A. Díaz-Bautista.2009. A review of the Tagus river tufa deposits (central Spain): Age and palaeoenvironmental record.Quaternary Science Reviews 28(9): 947-963.
[50]
Osácar M.C.,C. Arenas,M. Vázquez-Urbez C. Sancho,L.F. Auqué, and G. Pardo.2013. Environmental factors controlling the δ13C and δ18O variations of recent fluvial tufas: A 12-year record from the Monasterio de Piedra Natural Park (NE Iberian Peninsula).Journal of Sedimentary Research 83(4): 309-322.
[51]
Osácar M.C.,C. Arenas,L. Auqué,C. Sancho,G. Pardo, and M. Vázquez-Urbez.2016. Discerning the interactions between environmental parameters reflected in δ13C and δ18O of recent fluvial tufas: Lessons from a Mediterranean climate region.Sedimentary Geology 345: 126-144.
[52]
Osácar Soriano, M.C., C. Arenas Abad, C. Sancho Marcén, G. Pardo Tirapu,L. Martín Bello.2017. Stable-isotope changes in tufa stromatolites of the Quaternary Añamaza fluvial system (Iberian Ranges, Spain).Geogaceta 61: 167-170.
[53]
Paull C.K.,A.C. Neumann,B. Bebout,V. Zabielski, and W. Showers.1992. Growth rate and stable isotopic character of modern stromatolites from San Salvador, Bahamas.Palaeogeography, Palaeoclimatology, Palaeoecology 95(3-4): 335-344.
[54]
Pazdur A.,M.F. Pazdur,L. Starkel, and J. Szulc.1988. Stable isotopes of Holocene calcareous tufa in southern Poland as paleoclimatic indicators.Quaternary Research 30(2): 177-189.
[55]
Pedley H.M.1990. Classification and environmental models of cool freshwater tufas.Sedimentary Geology 68(1): 143-154.
[56]
Pedley M.2014. The morphology and function of thrombolitic calcite precipitating biofilms: A universal model derived from freshwater mesocosm experiments.Sedimentology 61(1): 22-40.
[57]
Pentecost A.1978. Blue-green algae and freshwater carbonate deposits.Proceedings of the Royal Society of London. Series B, Biological Sciences 200(1138): 43-61.
[58]
Pentecost A.1987. Growth and calcification of the freshwater cyanobacteriumRivularia haematites. Proceedings of the Royal Society of London. Series B, Biological Sciences 232(1266): 125-136.
[59]
Pentecost A.1988. Growth and calcification of the cyanobacteriumHomoeothris crustacea. Microbiology 134(10): 2665-2671.
[60]
Pentecost A.2000. A note on the stable carbon isotope composition of bryophytes in calcareous aquatic habits and its relationship to carbon dioxide assimilation.Journal of Bryology 22(1): 13-15.
Peña J.L.,C. Sancho, C. Arenas, L. Auqué, L.A. Longares, M.V. Lozano, A. Meléndez, C. Osácar, G. Pardo, and M. Vázquez-Urbez. 2014. Las tobas cuaternarias en el sector aragonés de la Cordillera Ibérica. In: J.A. González Martín, and M.J. González Amuchastegui (Eds.), Las tobas en España. Sociedad Española de Geomorfología, Badajoz, pp. 159-172.
[63]
Pérez-Mejías C.,A. Moreno,C. Sancho,M. Bartolomé H. Stoll,I. Cacho,H. Cheng, and R.L. Edwards.2017. Abrupt climate changes during Termination III in Southern Europe.Proceedings of the National Academy of Sciences of the United States of America 114(38): 10047-10052.
[64]
Riding R.2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms.Sedimentology 47(s1): 179-214.
[65]
Riding R.1991. Classification of microbial carbonates. In: R. Riding (Ed.), Calcareous Algae and Stromatolites. Springer-Verlag, Berlin, pp. 21-51.
[66]
Rodríguez-Berriguete Á.,A.M. Alonso-Zarza R. Martín-García, and M.C. Cabrera.2018. Sedimentology and geochemistry of a human-induced tufa deposit: Implications for palaeoclimatic research.Sedimentology, doi:10.1111/sed.12464
[67]
Romanek C.S.,E.L. Grossman, and J.W. Morse.1992. Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate.Geochimica et Cosmochimica Acta 56(1): 419-430.
[68]
Sancho C.,C. Arenas,M. Vázquez-Urbez G. Pardo,M.V. Lozano,J.L. Peña-Monné J. Hellstrom,J.E. Ortiz,M.C. Osácar,L. Auqué, and T. Torres.2015. Climatic implications of the Quaternary fluvial tufa record in the NE Iberian Peninsula over the last 500 ka.Quaternary Research 84(3): 398-414.
[69]
Smith J.R.,R. Giegengack, and H.P. Schwarcz.2004. Constraints on Pleistocene pluvial climates through stable-isotope analysis of fossil-spring tufas and associated gastropods, Kharga Oasis, Egypt.Palaeogeography, Palaeoclimatology, Palaeoecology 206(1-2): 157-175.
[70]
Suess H.E.1953. Natural radiocarbon and the rate of exchange of carbon dioxide between the atmosphere and the sea. In: W. Aldrich (Ed.), Nuclear Processes in Geologic Settings. University of Chicago Press, Chicago, pp. 52-56.
[71]
Talbot M.R.1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates.Chemical Geology, Isotope Geosciences Section 80: 261-279.
[72]
Travé Herrero, A.1992. Sedimentologia, petrologia i geoquímica (elements traça I isòtops) dels estromatòlits de la Conca Eocena Sudpirenenca [Unpublished PhD. Thesis]. Universitat de Barcelona, Spain.
[73]
Usdowski E.,J. Hoefs, and G. Menschel.1979. Relationship between 13C and 18O fractionation and changes in major element composition in a recent calcite-depositing spring — A model of chemical variations with inorganic CaCO3 precipitation.Earth and Planetary Science Letters 42(2): 267-276.
[74]
Vázquez-Urbez M.,C. Arenas,C. Sancho,C. Osácar,L. Auqué, and G. Pardo.2010. Factors controlling present-day tufa dynamics in the Monasterio de Piedra Natural Park (Iberian Range, Spain): Depositional environmental settings, sedimentation rates and hydrochemistry.International Journal of Earth Sciences 99(5): 1027-1049.
[75]
Vázquez-Urbez M.,G. Pardo,C. Arenas, and C. Sancho.2011. Fluvial diffluence episodes reflected in the Pleistocene tufa deposits of the River Piedra (Iberian Range, NE Spain).Geomorphology 125(1): 1-10.
[76]
Vázquez-Urbez M.,C. Arenas, and G. Pardo.2012. A sedimentary facies model for stepped, fluvial tufa systems in the Iberian Range (Spain): The Quaternary Piedra and Mesa valleys.Sedimentology 59(2): 502-526.
[77]
Vera, J.A. (Ed.). 2004. Geología de España. SGE-IGME, Madrid.
[78]
Wang H.J.,H. Yan, and Z.H. Liu.2014. Contrasts in variations of the carbon and oxygen isotopic composition of travertines formed in pools and a ramp stream at Huanglong Ravine, China: Implications for paleoclimatic interpretations.Geochimica et Cosmochimica Acta 125: 34-48.
[79]
Wright D.T.1993. Carbon isotope geochemistry of Cambrian stromatolites, NW Scotland. In: F. Barattolo, P. De Castro, and M. Parente (Eds.), Studies on Fossil Benthic Algae. Bollettino della Societa Paleontologica Italiana, Special volume no. 1, pp. 415-420.
[80]
Yan H.,Z.H. Liu, and H.L. Sun.2017. Effect of in-stream physicochemical processes on the seasonal variations in δ13C and δ18O values in laminated travertine deposits in a mountain stream channel.Geochimica et Cosmochimica Acta 202: 179-189.
[81]
Yan H.,H.L. Sun, and Z.H. Liu.2012. Equilibrium vs. kinetic fractionation of oxygen isotopes in two low-temperature travertine-depositing systems with differing hydrodynamic conditions at Baishuitai, Yunnan, SW China.Geochimica et Cosmochimica Acta 95: 63-78.
[82]
Zamarreño I.,P. Anadón, and R. Utrilla.1997. Sedimentology and isotopic composition of Upper Palaeocene to Eocene non-marine stromatolites, eastern Ebro Basin, NE Spain.Sedimentology 44(1): 159-176.