Eocene foraminiferal biofacies in Kutch Basin (India) in context of palaeoclimate and palaeoecology
Sonal Khanolkar1,2, Pratul Kumar Saraswati1
1 Department of Earth Sciences, Indian Institute of Technology Bombay, Mumbai-400076, India; 2 Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur-208016, India
Abstract The Eocene Epoch passed through multiple hyperthermal events and recorded highest temperatures in the Cenozoic. Very few studies from Eocene palaeotropical sites have recorded changes in shallow marine foraminiferal assemblages. The present study investigates the foraminiferal biofacies of shallow marine successions from a palaeotropical site in western India (Kutch Basin) to understand the palaeoclimate and its impact on the ecology of foraminifera. The sections were biostratigraphically constrained using planktic and larger benthic foraminifera. Four biofacies are recognized by detrended correspondence analysis of the sample-wise distribution of foraminifera. Low diversity and dwarfed foraminifera characterize Bulimina-Chiloguembelina biofacies (SBZ5/6-SBZ10), corresponding to the interval of Paleocene-Eocene Thermal Maxima (PETM) and Eocene Thermal Maxima 2 (ETM 2). Rectilinear benthic foraminifera and biserial and triserial planktic foraminifera, typical of high runoff, upwelling or eutrophic conditions, are dominant taxa in this biofacies. The specialist taxa increased significantly in Asterigerina-Cibicides biofacies, corresponding to SBZ11 (Early Eocene Climatic Optimum, EECO), and the environment became oligotrophic. The Jenkinsina-Brizalina biofacies (E12) is distinguished by foraminiferal assemblage ecologically like that of Bulimina-Chiloguembelina biofacies. It is characterized by high abundance of rectilinear benthic foraminifera and bloom of triserial planktic foraminifera, suggesting eutrophy and high runoff at the initiation of Middle Eocene Climatic Optimum (MECO). The foraminifera were more diverse and abundant in Cibicides-Nonion biofacies. The highly diverse larger benthic foraminiferal assemblage in this biofacies, signify warm and clear-water oligotrophic sea that promoted the development of platform carbonate in Kutch Basin and other basins in western India. The EECO and MECO did not have an adverse impact on shallow marine foraminifera, and particularly the larger benthic foraminifera attained high diversity, high abundance, larger size and wider latitudinal distribution in the middle Eocene.
. Eocene foraminiferal biofacies in Kutch Basin (India) in context of palaeoclimate and palaeoecology[J]. , 2019, 8(3): 209-224.
. Eocene foraminiferal biofacies in Kutch Basin (India) in context of palaeoclimate and palaeoecology[J]. Journal of Palaeogeography, 2019, 8(3): 209-224.
Agnini C.,P. Macrì,J. Backman,H. Brinkhuis,E. Fornaciari,L. Giusberti,V. Luciani,D. Rio,A. Sluijs, and F. Speranza.2009. An early Eocene carbon cycle perturbation at ��52.5 Ma in the Southern Alps: Chronology and biotic response.Paleoceanography 24(2): A2209.
[2]
Banerjee S.,S. Khanolkar, and P.K. Saraswati.2018. Facies and depositional settings of the Middle Eocene-Oligocene carbonates in Kutch.Geodinamica Acta 30(1): 119-136.
[3]
Banerjee S.,S.L. Chattoraj,P.K. Saraswati,S. Dasgupta, and U. Sarkar.2012. Substrate control on formation and maturation of glauconites in the Middle Eocene Harudi Formation, western Kutch, India.Marine and Petroleum Geology 30(1): 144-160.
[4]
Beavington-Penney S.J.,A. Racey.2004. Ecology of extant nummulitids and other larger benthic foraminifera: Applications in palaeoenvironmental analysis.Earth-Science Reviews 67(3-4): 219-265.
[5]
Biswas S.K.1987. Regional tectonic framework, structure and evolution of the western marginal basins of India.Tectonophysics 135(4): 307-327.
[6]
Biswas S.K.1992. Tertiary stratigraphy of Kutch.Journal of the Palaeontological Society of India 37: 1-29.
[7]
Chattoraj S.L.,U. Sarkar,S. Chakraborty,S. Banerjee, and P.K. Saraswati.2012. Facies and palaeogeography of the Middle Eocene Fulra limestone, Kutch.Journal Indian Association Sedimentologists 31: 1-9.
[8]
Clementz M.,S. Bajpai,V. Ravikant,J.G.M. Thewissen,N. Saravanan,I.B. Singh, and V. Prasad.2011. Early Eocene warming events and the timing of terrestrial faunal exchange between India and Asia.Geology 39(1): 15-18.
[9]
Dettmering C.,R. Röttger,J. Hohenegger, and R. Schmaljohann.1998. The trimorphic life cycle in foraminifera: Observations from cultures allow new evaluation.European Journal of Protistology 34(4): 363-368.
[10]
Dutta S.K.2007. Integrated Biostratigraphy and Chemostratigraphy of Eocene Sequence, Kutch [Master’s thesis]. Indian Institute of Technology, Bombay, India.
[11]
Dutta S.,S.M. Tripathi,M. Mallick,R.P. Mathews,P.F. Greenwood,M.R. Rao, and R.E. Summons.2011. Eocene out-of-India dispersal of Asian dipterocarps.Review of Palaeobotany and Palynology 166(1): 63-68.
[12]
Boscolo Galazzo, F., L. Giusberti, V. Luciani,E. Thomas.2013. Paleoenvironmental changes during the Middle Eocene Climatic Optimum (MECO) and its aftermath: The benthic foraminiferal record from the Alano section (NE Italy).Palaeogeography, Palaeoclimatology, Palaeoecology 378: 22-35.
[13]
Garg R.,V. Prasad., B. Thakur., I.B. Singh, and K. Ateequzzaman.2011. Dinoflagellate cysts from the Naredi Formation, southwestern Kutch, India: Implication on age and palaeoenvironment.Journal of the Palaeontological Society of India 56(2): 201-218.
[14]
Hallock P.1987. Fluctuations in the trophic resource continuum: A factor in global diversity cycles? Paleoceanography 2(5): 457-471.
[15]
Hallock P.1988. Interoceanic differences in foraminifera with symbiotic algae: A result of nutrient supplies? Proceedings of the 6th International Coral Reef Symposium, Australia 1988.
[16]
Hammer O.,D.A.T. Harper, and P.D. Ryan.2001. PAST: paleontological statistics software package for education and data analysis.Palaeontologia Electronica 4(1): 1-9.
[17]
Hottinger L.1983. Processes determining the distribution of larger foraminifera in space and time.Utrecht Micropaleontological Bulletins 30: 239-253.
[18]
Hottinger L.1998. Shallow benthic foraminifera at the Paleocene-Eocene boundary.Strata 9(9): 61-64.
[19]
Ben İsmail-Lattrache, K., E. Özcan, K. Boukhalfa, P.K. Saraswati, M. Soussi,L. Jovane.2013. Early Bartonian orthophragminids (Foraminiferida) from Reineche Limestone, North African platform, Tunisia: Taxonomy and paleobiogeographic implications.Geodinamica Acta 26(1-2): 94-121.
[20]
Jafar, S.A and Rai, J.1994. Late Middle Eocene (Bartonian) calcareous nannofossils and its bearing on coeval post-trappean transgressive event in Kutch Basin, western India.Geophytology 24: 23-42.
[21]
Kalia P.1978. Buliminds from the Middle Eocene of Rajasthan, India.Journal of the Palaeontological Society of India 21(22): 44-48.
[22]
Kennett J.P.,L.D. Stott.1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene.Nature 353(6341): 225-229.
[23]
Khanolkar S.,J. Sharma.2019. Record of early to middle Eocene paleoenvironmental changes from lignite mines, western India.Journal of Micropalaeontology 38(1): 1-24.
[24]
Khanolkar S.,P.K. Saraswati.2015. Ecological response of shallow marine foraminifera to early Eocene warming in equatorial India.Journal of Foraminiferal Research 45(3): 293-304.
[25]
Khanolkar S.,P.K. Saraswati, and K. Rogers.2017. Ecology of foraminifera during the middle Eocene climatic optimum in Kutch, India.Geodinamica Acta 29(2): 181-193.
[26]
Lipps J.H.1982. Biology/paleobiology of foraminifera.Studies in Geology, Notes for a Short Course 6: 1-21.
[27]
Loeblich A.R.,H. Tappan.2015. Foraminiferal Genera and Their Classification. Springer.
[28]
Lourens L.J.,A. Sluijs,D. Kroon,J.C. Zachos,E. Thomas,U. Röhl,J. Bowles, and I. Raffi.2005. Astronomical pacing of late Palaeocene to early Eocene global warming events.Nature 435(7045): 1083-1087.
[29]
McGowran, B. 1977. Maastrichtian to Eocene foraminiferal assemblages in the northern and eastern Indian Ocean region: Correlations and historical patterns, in: Indian Ocean Geology and Biostratigraphy, edited by: J.R. Heirtzler, H.M. Bolli, T.A. Davies, J.B. Saunders, and J.G. Sclater. American Geophysical Union Special Publication: 417-458.
[30]
McGowran B.1979. The Tertiary of Australia: Foraminiferal overview.Marine Micropaleontology 4: 235-264.
[31]
McGowran B.,G.R. Holdgate,Q. Li, and S.J. Gallagher.2004. Cenozoic stratigraphic succession in southeastern Australia.Australian Journal of Earth Sciences 51(4): 459-496.
[32]
Miller K.G.,J.D. Wright, and R.G. Fairbanks.1991. Unlocking the Ice House: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion.Journal of Geophysical Research: Solid Earth 96(B4): 6829-6848.
[33]
Murray, J.W,C.A. Wright.1974. Palaeogene Foraminiferida and palaeoecology, Hampshire and Paris Basins and the English Channel.Special Papers in Palaeontology 14: 1-129.
[34]
Nagappa Y.1959. Foraminiferal biostratigraphy of the Cretaceous-Eocene succession in the India-Pakistan-Burma region.Micropaleontology 5(2): 145-177.
[35]
Nagy J.1992. Environmental significance of foraminiferal morphogroups in Jurassic North sea deltas.Palaeogeography, Palaeoclimatology, Palaeoecology 95(1-2): 111-134.
[36]
Nicolo M.J.,G.R. Dickens,C.J. Hollis, and J.C. Zachos.2007. Multiple early Eocene hyperthermals: Their sedimentary expression on the New Zealand continental margin and in the deep sea.Geology 35(8): 699-702.
[37]
Nigam R.,A. Mazumder,P.J. Henriques, and R. Saraswat.2007. Benthic foraminifera as proxy for oxygen-depleted conditions off the central west coast of India.Journal of the Geological Society of India 70(6): 1047-1054.
[38]
Özcan E.,P.K. Saraswati,M. Hanif, and N. Ali.2016. Orthophragminids with new axial thickening structures from the Bartonian of the Indian Subcontinent.Geologica Acta 14(3): 261-282.
[39]
Pearson P.N.,R.K. Olsson,C. Hemblen,B.T. Huber, and W.A. Berggren (Eds.).2006. Atlas of Eocene Planktonic Foraminifera. Fredericksburg, USA: Cushman Special Publication, 513 pp.
[40]
Preece R.C.,M.A. Kaminski, and T.W. Dignes.1999. Miocene benthonic foraminiferal morphogroups in an oxygen minimum zone, offshore Cabinda.Geological Society, London, Special Publications 153: 267-282.
[41]
Rai J.1997. Scanning-electron microscopic studies of the late middle Eocene (Bartonian) calcareous nannofossils from the Kutch Basin, western India.Journal of the Palaeontological Society of India 42: 147-167.
[42]
Raju D.S.N.2008. Phanerozoic cycles of sea level change on Indian Plate: An overview with a base chart. Paper presented at the meeting of GEO India Convention and Exhibition, Delhi, India.
[43]
Reolid M.,F.J. Rodríguez-Tovar J. Nagy, and F. Olóriz.2008. Benthic foraminiferal morphogroups of mid to outer shelf environments of the Late Jurassic (Prebetic Zone, southern Spain): Characterization of biofacies and environmental significance.Palaeogeography, Palaeoclimatology, Palaeoecology 261(3-4): 280-299.
[44]
Sahni A.,P.K Saraswati,R.S. Rana,K. Kumar,H. Singh,H. Alimohammadian,N. Sahni,K.D Rose,L. Singh, and T. Smith.2006. Temporal constraints and depositional palaeoenvironments of the Vastan lignite sequence, Gujarat: Analogy for the Cambay Shale hydrocarbon source rock.Indian Journal of Petroleum Geology 15(1):1-20.
[45]
Samanta A.,M.K. Bera,R. Ghosh,S. Bera,T. Filley,K. Pande,S.S. Rathore,J. Rai, and A. Sarkar.2013. Do the large carbon isotopic excursions in terrestrial organic matter across Paleocene-Eocene boundary in India indicate intensification of tropical precipitation? Palaeogeography, Palaeoclimatology, Palaeoecology 387: 91-103.
[46]
Saraswati P.K.,P.K. Patra, and R.K. Banerji.2000. Biometric study of some EoceneNummulites and Assilina from Kutch and Jaisalmer. Journal of the Palaeontological Society of India 45: 91-122.
[47]
Saraswati P.K.,R. Ramesh, and S.V. Navada.1993. Palaeogene isotopic temperatures of western India.Lethaia 26(1): 89-98.
[48]
Saraswati P.K.,S. Khanolkar,D.S.N. Raju,S. Dutta, and S. Banerjee.2014. Foraminiferal biostratigraphy of lignite mines of Kutch, India: Age of lignite and fossil vertebrates.Journal of Palaeogeography 3(1): 90-98.
[49]
Saraswati, P.K, R.H. Williams, A. Chattopadhyay, S. Khanolkar, R.E. Summons,S. Dutta.2013. Integrated biostratigraphy, carbon isotope stratigraphy and biomarker study of an early Eocene section in western India: Hyperthermal events and palaeoenvironment. 26th International Meeting on Organic Geochemistry, held in Costa Adeje, Tenerife, Spain, 15th-20th September.
[50]
Saraswati P.K.,S. Banerjee. U. Sarkar,S. Chakraborty,S. Khanolkar.2016. Eocene depositional sequences and cycles in Kutch. Journal of Geological Society of India (Special Publication) 6: 46-56. https://doi.org/10.17491/cgsi/2016/105409.
[51]
Saraswati P.K.,S. Khanolkar, and S. Banerjee.2018. Paleogene stratigraphy of Kutch, India: An update about progress in foraminiferal biostratigraphy.Geodinamica Acta 30(1): 100-118.
[52]
Saraswati P.K.,U. Sarkar, and S. Banerjee.2012. Nummulites solitarius — Nummulites burdigalensis lineage in Kutch with remarks on the age of Naredi Formation. Journal of the Geological Society of India 79(5): 476-482.
[53]
Sarkar U.,S. Banerjee, and P.K. Saraswati.2012. Integrated borehole and outcrop study for documentation of sea level cycles within the Early Eocene Naredi Formation, western Kutch, India.Journal of Palaeogeography 1(2): 126-137.
[54]
Scheibner C.,R.P. Speijer.2008. Late Paleocene-early Eocene Tethyan carbonate platform evolution — A response to long- and short-term paleoclimatic change.Earth-Science Reviews 90(3-4): 71-102.
[55]
Serra-Kiel J.,L. Hottinger,E. Caus,K. Drobne,C. Ferrandez,A.K. Jauhri,G. Less,R. Pavlovec,J. Pignatti, and J.M. Samso.1998. Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene.Bulletin de la Société géologique de France 169(2): 281-299.
[56]
Sharma J.,P.K. Saraswati.2015. Lignites of Kutch, western India: Dinoflagellate biostratigraphy and palaeoclimate.Revue de micropaléontologie 58(2): 107-119.
[57]
Singh A.D.,A.K. Rai,K. Verma,S. Das, and S.K. Bharti.2015. Benthic foraminiferal diversity response to the climate induced changes in the eastern Arabian Sea oxygen minimum zone during the last 30 ka BP.Quaternary International 374: 118-125.
[58]
Singh S.N.,P. Kalia.1970. A new planktonic foraminifer from the middle Eocene of India.Micropaleontology 16(1): 76-82.
[59]
Stap L.,A. Sluijs,E. Thomas, and L. Lourens.2009. Patterns and magnitude of deep sea carbonate dissolution during Eocene Thermal Maximum 2 and H2, Walvis Ridge, southeastern Atlantic Ocean. Paleoceanography and Paleoclimatology 24 (1). https://doi.org/10.1029/2008PA001655.
[60]
Stassen P.,E. Steurbaut,A. Morsi,P. Schulte, and R. Speijer.2012. Biotic impact of Eocene Thermal Maximum 2 in a shelf setting (Dababiya, Egypt).Austrian Journal of Earth Sciences 105(1): 154-160.
[61]
Whidden K.J.,R.W. Jones.2012. Correlation of Early Paleogene global diversity patterns of large benthic foraminifera with Paleocene and Eocene climatic events.Palaios 27(4): 235-251.
[62]
Zachos J.,M. Pagani,L. Sloan,E. Thomas, and K. Billups.2001. Trends, rhythms, and aberrations in global climate 65 Ma to present.Science 292(5517): 686-693.