Ooidal ironstones in the Meso-Cenozoic sequences in western Siberia: Assessment of formation processes and relationship with regional and global Earth processes
Maxim Rudmin1,*, Santanu Banerjee2, Elshan Abdullayev3, Aleksey Ruban1, Ekaterina Filimonenko1, Elena Lyapina4, Roman Kashapov1, Aleksey Mazurov1
1Division for Geology, School of Earth Sciences and Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia; 2Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India; 3Acad. H. Aliyev Institute of Geography, Azerbaijan National Academy of Science, H. Javid, 115, Baku, Azerbaijan; 4Institute of Monitoring of Climatic and Ecological System of SB of RAS, 634055 Tomsk, Russia
Abstract This study investigates the process of formation of ooidal ironstones in the Upper Cretaceous-Paleogene succession in western Siberia. The Formation of such carbonate-based ironstones is a continuing problem in sedimentary geology, and in this study, we use a variety of data and proxies assembled from core samples to develop a model to explain how the ooidal ironstones formed. Research on pyrite framboids and geochemical redox proxies reveals three intervals of oceanic hypoxia during the deposition of marine ooidal ironstones in the Late Cretaceous to the Early Paleogene Bakchar ironstone deposit in western Siberia; the absence of pyrite indicates oxic conditions for the remaining sequence. While goethite formed in oxic depositional condition, chamosite, pyrite and siderite represented hypoxic seawater. Euhedral pyrite crystals form through a series of transition originating from massive aggregate followed by normal and polygonal framboid. Sediments associated with goethite-chamosite ironstones, encompassing hypoxic intervals exhibit positive cerium, negative europium, and negative yttrium anomalies. Mercury anomalies, associated with the initial stages of hypoxia, correlate with global volcanic events. Redox sensitive proxies and ore mineral assemblages of deposits reflect hydrothermal activation. Rifting and global volcanism possibly induced hydrothermal convection in the sedimentary cover of western Siberia, and released iron-rich fluid and methane in coastal and shallow marine environments. This investigation, therefore, reveals a potential geological connection between Large Igneous Provinces (LIPs), marine hypoxia, rifting and the formation of ooidal ironstones in ancient West Siberian Sea.
. Ooidal ironstones in the Meso-Cenozoic sequences in western Siberia: Assessment of formation processes and relationship with regional and global Earth processes[J]. , 2020, 9(1): 88-108.
. Ooidal ironstones in the Meso-Cenozoic sequences in western Siberia: Assessment of formation processes and relationship with regional and global Earth processes[J]. Journal of Palaeogeography, 2020, 9(1): 88-108.
Algeo T.J.,N. Tribovillard.2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation.Chemical Geology 268: 211-225.
[2]
Aller R.C.,J.E. Mackin, and R.T. Cox.1986. Diagenesis of Fe and S in Amazon inner shelf muds: Apparent dominance of Fe reduction and implications for the genesis of ironstones. Continental Shelf Research 6: 263-289.
[3]
Arthur M.A.,W.E. Dean, and L.M. Pratt.1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary.Nature 335: 714-717.
[4]
Asochakova E.2014. Clay minerals of oolitic iron ores from the Bakchar deposit (Western Siberia). In: International Multidisciplinary Scientific GeoConference, Surveying Geology and Mining Ecology Management (SGEM): pp. 859-866.
[5]
Bau M.1999. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect.Geochimica et Cosmochimica Acta 63: 67-77.
[6]
Bau M.,P. Dulski.1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater.Chemical Geology 155: 77-90.
[7]
Bekker A.,N.J. Planavsky, B. Krapež, B. Rasmussen, A. Hofmann, J.F. Slack, O.J. Rouxel, and K.O. Konhauser. 2014. 9.18 - Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry. In: Treatise on Geochemistry. pp. 561-628. https://doi.org/10.1016/B978-0-08-095975-7.00719-1.
[8]
Belous N.C.,I.V. Nikolaeva,Y.P. Kazansky,A.P. Berdnikov,V.M. Klyarovskiy,V.P. Kuznetsov, and A.A. Babin.1964. The Western-Siberian Iron Ore Basin. Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk (in Russia).
[9]
Berner R.A.1984. Sedimentary pyrite formation: An update.Geochimica et Cosmochimica Acta 48: 605-615.
[10]
Bond D.P.G.,P.B.Wignall.2010. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction.Bulletin of the Geological Society of America 122: 1265-1279.
[11]
Brumsack H.-J.2006. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation.Palaeogeography, Palaeoclimatology, Palaeoecology 232: 344-361.
[12]
Burkhalter R.M.1995. Ooidal ironstones and ferruginous microbialites: Origin and relation to sequence stratigraphy (Aalenian and Bajocian, Swiss Jura mountains).Sedimentology 42: 57-74.
[13]
Castano, J.R.,Garrels, R.M.1950. Experiments on the deposition of iron with special reference to the Clinton iron ore deposits.Economic Geology 45: 755-770.
[14]
Dahanayake K.,W. Krumbein.1986. Microbial structures in oolitic iron formations.Mineralium Deposita 21: 85-94.
[15]
Di Bella, M., G. Sabatino, S. Quartieri, A. Ferretti, B. Cavalazzi, R. Barbieri, F. Foucher, F. Messori,F. Italiano, 2019. Modern Iron Ooids of Hydrothermal Origin as a Proxy for Ancient Deposits.Scientific Reports 9: 7107.
[16]
Dill H.G.,R. Botz,Z. Berner, and A.M.B. Abu Hamad.2010. The origin of pre- and synrift, hypogene Fe-P mineralization during the Cenozoic along the Dead Sea transform fault, northwest Jordan.Economic Geology 105, 1301-1319.
[17]
El-Habaak G.,M. Askalany,M. Faraghaly, and M. Abdel-Hakeem.2016. The economic potential of El-Gedida glauconite deposits, El-Bahariya Oasis, Western Desert, Egypt.Journal of African Earth Sciences 120: 186-197.
[18]
Ernst R.E.,N. Youbi.2017. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology 478: 30-52.
[19]
Gnibidenko Z.N.,N.K. Lebedeva, and A.V. Levicheva.2015. Magnetostratigraphy of the Campanian-Maastrichtian Bakchar Basin (southeastern West Siberia).Russian Geology and Geophysics 56: 1652-1661.
[20]
Hearty P.J.,J.M. Webster,D.A. Clague,D.S. Kaufman,J. Bright,J. Southon, and W. Renema.2010. A pulse of ooid formation in Maui Nui (Hawaiian Islands) during Termination I.Marine Geology 268: 152-162.
[21]
Heikoop J.M.,C.J. Tsujita,M.J. Risk,T. Tomascik, and A.J. Mah.1996. Modern iron ooids from a shallow-marine volcanic setting: Mahengetang, Indonesia.Geology 24: 759-762.
[22]
Homoky W.B.2017. Biogeochemistry: Deep ocean iron balance.Nature Geoscience 10: 162-164.
[23]
Huber N.K.,R.M. Garrels.1953. Relation of pH and oxidation potential to sedimentary iron mineral formation. Economic Geology 48: 337-357.
Jones M.M.,D.E. Ibarra,Y. Gao,B.B. Sageman,D. Selby,C.P. Chamberlain, and S.A. Graham.2018. Evaluating Late Cretaceous OAEs and the influence of marine incursions on organic carbon burial in an expansive East Asian paleo-lake.Earth and Planetary Science Letters 484: 41-52.
[26]
Keller G.,P. Mateo,J. Punekar,H. Khozyem,B. Gertsch,J. Spangenberg,A.M. Bitchong, and T. Adatte.2018. Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene Thermal Maximum: Implications for the Anthropocene.Gondwana Research 56: 69-89.
[27]
Kholodov V.N.2014. Geochemical problems of the behavior of phosphorus: A basis for the biogenic hypothesis of phosphorite formation.Lithology and Mineral Resources 49: 228-249.
[28]
Kimberley M.M.1979. Origin of Oolitic Iron Formations.SEPM Journal of Sedimentary Research 49: 111-131.
[29]
Kimberley M.M.1989. Exhalative origins of iron formations.Ore Geology Reviews 5: 13-145.
[30]
Kimberley M.M.1994. Debate about ironstone: Has solute supply been surficial weathering, hydrothermal convection, or exhalation of deep fluids?Terra Nova 6: 116-132.
[31]
Konhauser K.O.,N.J. Planavsky,D.S. Hardisty,L.J. Robbins,T.J. Warchola,R. Haugaard,S.V. Lalonde,C.A. Partin,P.B.H. Oonk,H. Tsikos,T.W. Lyons,A. Bekker, and C.M. Johnson.2017. Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history.Earth-Science Reviews 172: 140-177.
[32]
Kraemer D.,N. Tepe,O. Pourret, and M. Bau.2017. Negative cerium anomalies in manganese (hydr)oxide precipitates due to cerium oxidation in the presence of dissolved siderophores.Geochimica et Cosmochimica Acta 196: 197-208.
[33]
Lebedel V.,C. Lezin,B. Andreu,M.-J. Wallez,E.M. Ettachfini, and L. Riquier.2013. Geochemical and palaeoecological record of the Cenomanian-Turonian Anoxic Event in the carbonate platform of the Preafrican Trough, Morocco.Palaeogeography, Palaeoclimatology, Palaeoecology 369: 79-98.
[34]
Lebedeva N.K.,G.N. Aleksandrova,B.N. Shurygin,M.N. Ovechkina, and Z.N. Gnibidenko.2013. Paleontological and magnetostratigraphic data on Upper Cretaceous deposits from borehole No. 8 (Russkaya Polyana District, Southwestern Siberia).Stratigraphy and Geological Correlation 21: 48-78.
[35]
Lebedeva N.K.,O.B. Kuzmina,E.S. Sobolev, and I.V. Khazina.2017. Stratigraphy of Upper Cretaceous and Cenozoic deposits of the Bakchar iron ore deposit (southwestern Siberia): New data.Stratigraphy and Geological Correlation 25: 76-98.
[36]
Maynard J.B.1986. Geochemistry of oolitic iron ores, an electron microprobe study.Economic Geology 81: 1473-1483.
[37]
McLaughlin P.I.,P. Emsbo, and C.E. Brett.2012. Beyond black shales: The sedimentary and stable isotope records of oceanic anoxic events in a dominantly oxic basin (Silurian; Appalachian Basin, USA). Palaeogeography, Palaeoclimatology, Palaeoecology 367-368: 153-177.
[38]
Merinero R.,V. Cárdenes.2018. Theoretical growth of framboidal and sunflower pyrite using the R-package frambgrowth.Mineralogy and Petrology 112: 577-589.
[39]
Merinero R.,R. Lunar,L. Somoza,V. Díaz-Del-Río, and J. Martínez-Frías.2009. Nucleation, growth and oxidation of framboidal pyrite associated with hydrocarbon-derived submarine chimneys: lessons learned from the Gulf of Cadiz.European Journal of Mineralogy 21: 947-961.
[40]
Merinero R.,V. Cárdenes R. Lunar,M.N. Boone, and V. Cnudde.2017. Representative size distributions of framboidal, euhedral, and sunflower pyrite from high-resolution X-ray tomography and scanning electron microscopy analyses.American Mineralogist 102: 620-631.
[41]
Nikolaeva I.V.1967. Bakchar Oolitic Iron Ore Deposit. Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk (in Russia).
[42]
Núñez-Useche F.,C. Canet,R. Barragán, and P. Alfonso.2016. Bioevents and redox conditions around the Cenomanian-Turonian anoxic event in Central Mexico.Palaeogeography, Palaeoclimatology, Palaeoecology 449: 205-226.
[43]
Pavlov D.I.1989. Relationship of sedimentary iron and manganese deposits with petroleum and gas-bearing basins.Geology of Ore Deposits 31: 80-91.
[44]
Pavlov D.I.1996. Oolitic iron-ore deposits: Supergene and catagenetic-sedimentary deposits.Transactions (Doklady) of the Russian Academy of Sciences. Earth Science Sections 343: 120-123.
[45]
Pavlov D.I.,D.I. Gorzhevskiy,G.A. Goleva,M.K. Kalinko,A.A. Kartsev, and A.V. Lipayeva.1991. Conjunction of ore- and oil-forming systems in sedimentary basins and the prediction of ore deposits.International Geology Review 33: 822-829.
[46]
Percival L.M.E.,H.C. Jenkyns,T.A. Mather,A.J. Dickson,S.J. Batenburg,M. Ruhl,S.P. Hesselbo,R. Barclay,I. Jarvis,S.A. Robinson, and L. Woelders.2018. Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of Oceanic Anoxic Event 2 and the end-Cretaceous to other Mesozoic events.American Journal of Science 318: 799-860.
[47]
Percival L.M.E.,M.L.I. Witt,T.A. Mather,M. Hermoso,H.C. Jenkyns,S.P. Hesselbo,A.H. Al-Suwaidi M.S. Storm,W. Xu, and M. Ruhl.2015. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo-Ferrar Large Igneous Province.Earth and Planetary Science Letters 428: 267-280.
[48]
Petranek, J.,F.B. Van Houten. 1997. Phanerozoic ooidal ironstones. In: Czech Geological Survey Special Papers. pp. 4-71.
[49]
Podobina V.M.,T.G. Kseneva.2005. Upper Cretaceous zonal stratigraphy of the West Siberian Plain based on foraminifera. Cretaceous Research 26: 133-143.
[50]
Raven M.R.,D.A. Fike,M.L. Gomes,S.M. Webb,A.S. Bradley, and H.-L.O. McClelland.2018. Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization.Nature Communications 9: 3409.
[51]
Rickard D.2019. How long does it take a pyrite framboid to form?Earth and Planetary Science Letters 513: 64-68.
[52]
Rudmin M.,A. Mazurov, and L. Bolsunovskaya.2014. Mineral and elemental composition features of “loose” oolitic ores in Bakchar iron ore cluster (Tomsk oblast). IOP Conference Series: Earth and Environmental Science 21: 1-6. https://doi.org/10.1088/1755-1315/21/1/012003.
[53]
Rudmin M.,A. Mazurov, and S. Banerjee.2019. Origin of ooidal ironstones in relation to warming events: Cretaceous-Eocene Bakchar deposit, south-east Western Siberia.Marine and Petroleum Geology 100: 309-325.
[54]
Rudmin M.,A.P. Roberts,C.-S. Horng,A. Mazurov,O. Savinova,A. Ruban,R. Kashapov, and M. Veklich.2018. Ferrimagnetic Iron Sulfide Formation and Methane Venting Across the Paleocene-Eocene Thermal Maximum in Shallow Marine Sediments, Ancient West Siberian Sea.Geochemistry, Geophysics, Geosystems 19: 1-22.
[55]
Rudmin M.A.,A.K. Mazurov.2016. Oolitic ores in the Bakchar iron-ore cluster (Tomsk Oblast).Doklady Earth Sciences 471: 1238-1241.
[56]
Sabatino N.,S. Ferraro,R. Coccioni,M. Bonsignore,M. Del Core,V. Tancredi, and M. Sprovieri.2018. Mercury anomalies in upper Aptian-lower Albian sediments from the Tethys realm.Palaeogeography, Palaeoclimatology, Palaeoecology 495: 163-170.
[57]
Saraev S.V.,T.P. Baturina, and A.V. Travin.2011. Petrology, sedimentology, geochemistry, and absolute age of Triassic volcanosedimentary rocks from the southwest of the West Siberian geosyneclise (Kurgan Region).Russian Geology and Geophysics 52: 871-887.
[58]
Sawlowicz Z.1993. Pyrite framboids and their development: A new conceptual mechanism.Geologische Rundschau 82: 148-156.
[59]
Scaife J.D.,M. Ruhl,A.J. Dickson,T.A. Mather,H.C. Jenkyns,L.M.E. Percival,S.P. Hesselbo,J. Cartwright,J.S. Eldrett,S.C. Bergman, and D. Minisini.2017. Sedimentary Mercury Enrichments as a Marker for Submarine Large Igneous Province Volcanism? Evidence from the Mid-Cenomanian Event and Oceanic Anoxic Event 2 (Late Cretaceous).Geochemistry, Geophysics, Geosystems 18, 4253-4275.
[60]
Schlanger S.O.,H.C. Jenkyns.1976. Cretaceous oceanic anoxic events: Causes and consequences.Geologie en Mijnbouw 55: 179-184.
[61]
Siehl A.,J. Thein.1989. Minette-type ironstones. Phanerozoic Ironstones Geological Society Special Publication 175-193.
[62]
Song H.H.,G. Jiang,S.W. Poulton,P.B. Wignall,J. Tong,H.H. Song,Z. An,D. Chu,L. Tian,Z. She, and C. Wang.2017. The onset of widespread marine red beds and the evolution of ferruginous oceans.Nature Communications 8: 399.
[63]
Strakhov N.M.1947. Iron Ore Facies and Their Analogues in the Earth’s History: Experience of Historical-Geographical Analysis of Sedimentary Processes. Trud IGN AN SSSR. Geol. Ser. 22.
[64]
Sturesson U.2003. Lower Paleozoic iron oolites and volcanism from a Baltoscandian perspective. Sedimentary Geology 159: 241-256.
[65]
Sturesson U.,J.M. Heikoop, and M.J. Risk.2000. Modern and Palaeozoic iron ooids — A similar volcanic origin.Sedimentary Geology 136: 137-146.
[66]
Surkov V.S.2002. Neogean evolution of the young ural-Siberian platform.Geologiya i Geofizika 43: 754-761.
[67]
Sylvestre G.,N.T. Evine Laure,K.N. Gus Djibril,D.S. Arlette,M. Cyriel,N. Timoléon, and N. Jean Paul.2017. A mixed seawater and hydrothermal origin of superior-type banded iron formation (BIF)-hosted Kouambo iron deposit, Palaeoproterozoic Nyong series, Southwestern Cameroon: Constraints from petrography and geochemistry.Ore Geology Reviews 80: 860-875.
[68]
Taylor K.G.,K.O. Konhauser.2011. Iron in earth surface systems: A major player in chemical and biological processes.Elements 7: 83-88.
[69]
Them T.R.,C.H. Jagoe,A.H. Caruthers,B.C. Gill,S.E. Grasby,D.R. Gröcke,R. Yin, and J.D. Owens.2019. Terrestrial sources as the primary delivery mechanism of mercury to the oceans across the Toarcian Oceanic Anoxic Event (Early Jurassic).Earth and Planetary Science Letters 507: 62-72.
[70]
Todd S.E.,P.K. Pufahl,J.B. Murphy, and K.G. Taylor.2019. Sedimentology and oceanography of Early Ordovician ironstone, Bell Island, Newfoundland: Ferruginous seawater and upwelling in the Rheic Ocean.Sedimentary Geology 379: 1-15.
[71]
Tribovillard N.,T.J. Algeo,F. Baudin, and A. Riboulleau.2012. Analysis of marine environmental conditions based on molybdenum-uranium covariation — Applications to Mesozoic paleoceanography.Chemical Geology 324: 46-58.
[72]
Tribovillard N.,T.J. Algeo,T. Lyons, and A. Riboulleau.2006. Trace metals as paleoredox and paleoproductivity proxies: An update.Chemical Geology 232: 12-32.
[73]
Turgeon S.C.,R.A. Creaser.2008. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode.Nature 454: 323-326.
[74]
Van Houten, F.B.1986. Search for Milankovitch patterns among oolitic ironstones.Paleoceanography 1: 459-466.
[75]
Van Houten, F.B.,D.P. Bhattacharyya.1982. Phanerozoic Oolitic Ironstones - Geologic Record and Facies Model. Annual Review of Earth and Planetary Sciences 10: 441-457. https://doi.org/10.1146/annurev.ea.10.050182.002301.
[76]
Van Houten, F.B.,M.A. Arthur.1989. Temporal patterns among Phanerozoic oolitic ironstones and oceanic anoxia. Geological Society Special Publication 46, 33-49. https://doi.org/10.1144/GSL.SP.1989.046.01.06.
[77]
Van Houten, F.B.,M.E. Purucker.1984. Glauconitic peloids and chamositic ooids - favorable factors, constraints, and problems.Earth-Science Reviews 20: 211-243.
[78]
Vibe Y.,H.-P. Bunge, and S.R. Clark.2018. Anomalous subsidence history of the West Siberian Basin as an indicator for episodes of mantle induced dynamic topography.Gondwana Research 53: 99-109.
[79]
Wagreich M.2012. “OAE 3” - regional Atlantic organic carbon burial during the Coniacian-Santonian. Climate of the Past 8: 1447-1455. https://doi.org/10.5194/cp-8-1447-2012.
[80]
Wei H.,T.J. Algeo,H. Yu,J. Wang,C. Guo, and G. Shi.2015. Episodic euxinia in the Changhsingian (late Permian) of South China: Evidence from framboidal pyrite and geochemical data.Sedimentary Geology 319: 78-97.
[81]
Wignall P.B.,R. Newton, and M.E. Brookfield.2005. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir.Palaeogeography, Palaeoclimatology, Palaeoecology 216 183-188.
[82]
Wilkin R.T.,H.L. Barnes, and S.L. Brantley.1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions.Geochimica et Cosmochimica Acta 60: 3897-3912.
[83]
Young T.P.1989. Phanerozoic ironstones: An introduction and review. Geological Society Special Publication 46: ix-xxv. https://doi.org/10.1144/GSL.SP.1989.046.01.02.
[84]
Zhao J.,J. Liang,X. Long,J. Li,Q. Xiang,J. Zhang, and J. Hao.2018. Genesis and evolution of framboidal pyrite and its implications for the ore-forming process of Carlin-style gold deposits, southwestern China.Ore Geology Reviews 102: 426-436.