Demise of the Jabłonna Reef (Zechstein Limestone) and the onset of gypsum deposition (Wuchiapingian, west Poland): carbonate-to-evaporite transition in a saline giant
Tadeusz Marek Peryt1,*, Marek Jasionowski1, Paweł Raczyński2, Krzysztof Chłódek3
1Polish Geological Institute-National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland; 2Institute of Geological Sciences, University of Wrocław, Pl. Maksa Borna 9, 50-205 Wrocław, Poland; 3Polish Oil and Gas Company, Naftowa 3, 65-705 Zielona Góra, Poland
Abstract Microbial deposits commonly occur at the transition between carbonate and sulphate facies, and they also abound in the uppermost part of the middle Wuchiapingian Zechstein Limestone in west Poland. These deposits occur as isolated reefs of the basinal zone and in the condensed sequences in most parts of the study area. The deposits of the latter category reflect evaporative drawdown, and the abrupt boundary between the carbonate and sulphate deposits in the basin suggests the nature of evaporites that start to precipitate as soon as they reach the saturation level. A few-metre-thick unit of mostly brecciated microbial deposits at the top, reefal portion of the Zechstein Limestone records extreme palaeoenvironmental events that occurred at the transition from carbonate to sulphate deposition. These events are related first to subaerial exposure of the reef, which lasted several 105 years and then to the Lower Anhydrite transgression.
. Demise of the Jabłonna Reef (Zechstein Limestone) and the onset of gypsum deposition (Wuchiapingian, west Poland): carbonate-to-evaporite transition in a saline giant[J]. , 2020, 9(3): 363-377.
. Demise of the Jabłonna Reef (Zechstein Limestone) and the onset of gypsum deposition (Wuchiapingian, west Poland): carbonate-to-evaporite transition in a saline giant[J]. Journal of Palaeogeography, 2020, 9(3): 363-377.
Becker F.,2002. Zechsteinkalk und Unterer Werra-Anhydrit (Zechstein 1) in Hessen: Fazies, Sequenzstratigraphie und Diagenese.Geologische Abhandlungen Hessen 109: 1-231.
[2]
Becker F., Bechstädt T., 2006. Sequence stratigraphy of a carbonate-evaporite succession (Zechstein 1, Hessian Basin, Germany).Sedimentology 53: 1083-1120.
[3]
Caruso A., Pierre C., Blanc-Valleron M.M., Rouchy J.-P., 2016. Reply to the comment on “Carbonate deposition and diagenesis in evaporitic environments: the evaporative and sulphur-bearing limestones during the settlement of the Messinian Salinity Crisis in Sicily and Calabria” by Caruso et al., 2015.Palaeogeography, Palaeoclimatology, Palaeoecology 429: 136-162.
[4]
Dyjaczynski K., Górski M., Mamczur S., Peryt T.M., 2001. Reefs in the basinal facies of the Zechstein Limestone (Upper Permian) of Western Poland.Journal of Petroleum Geology 24: 265-285.
[5]
Dyjaczyński K., Peryt T.M., 2014. Controls on basal Zechstein (Wuchiapingian) evaporite deposition in SW Poland.Geological Quarterly 58: 475-492.
[6]
Fheed A.,2019. The impact of fossils on diagenetically controlled reservoir quality: the Zechstein Brońsko Reef (Upper Permian, W Poland).Annales Societatis Geologorum Poloniae 89: 47-81.
[7]
Fheed A., Świerczewska A., Krzyżak A., 2015. The isolated Wuchiapingian (Zechstein) Wielichowo Reef and its sedimentary and diagenetic evolution, SW Poland.Geological Quarterly 59: 762-780.
[8]
Füchtbauer H.,1980. Composition and diagenesis of a stromatolitic bryozoan bioherm in the Zechstein 1 (northwestern Germany).Contributions to Sedimentology 9: 233-251.
[9]
Hammes U., Krause M., Mutti M., 2013. Unconventional reservoir potential of the upper Permian Zechstein Group: a slope to basin sequence stratigraphic and sedimentological evaluation of carbonates and organic-rich mudrocks, Northern Germany.Environmental Earth Sciences 70: 3797-3816.
[10]
Handford C.R., Kendall A.C., Prezbindowski D.R., Dundam J.B., Logan B.W., 1984. Salina-margin tepees, pisoliths, and aragonite cements, Lake MacLeod, Western Australia: Their significance in interpreting ancient analogs.Geology 12: 523-527.
[11]
Jasionowski M., Peryt T.M., Durakiewicz T., 2014. Polyphase dolomitisation of the Wuchiapingian Zechstein Limestone (Ca1) isolated reefs (Wolsztyn Palaeo-Ridge, Fore-Sudetic Monocline, SW Poland).Geological Quarterly 58: 493-510.
[12]
Karnkowski P.,1999. Oil and Gas Deposits in Poland. Geosynoptics Society “Geos”, Cracow, 380 pp.
[13]
Kiersnowski H., Peryt T.M., Buniak A., Mikołajewski Z., 2010. From the intra-desert ridges to the marine carbonate island chain: middle to late Permian (Upper Rotliegend-Lower Zechstein) of the Wolsztyn-Pogorzela high, west Poland.Geological Journal 44: 319-335.
[14]
Kotarba M.J., Peryt T.M., Kosakowski P., Więcław D., 2006. Organic geochemistry, depositional history and hydrocarbon generation modelling of the Upper Permian Kupferschiefer and Zechstein Limestone strata in south-west Poland.Marine and Petroleum Geology 23: 371-386.
[15]
Logan B.W.,1987. The MacLeod Evaporite Basin of Western Australia. AAPG Memoir 44: 140 pp. Menning, M., 1995. A numerical time scale for the Permian and Triassic periods: an integrative time analysis. In: The Permian of Northern Pangea (eds. P.A. Scholle, T. M. Peryt and D.S. Ulmer-Scholle): 77-97. Springer, Berlin.
[16]
Mikołajewski Z., Buniak A., Chmielowiec-Stawska A., 2009. Charakterystyka właściwości zbiornikowych w rafowych utworach wapienia cechsztyńskiego (Ca1) na przykładzie złoża Brońsko. Przegląd Geologiczny 57: 309-310 (in Polish) .
[17]
Paul J.,1980. Upper Permian algal stromatolitic reefs, Harz Mountains (F. R. Germany).Contributions to Sedimentology 9: 253-268.
[18]
Paul J.,1986. Stratigraphy of the Lower Werra Cycle (Z1) in West Germany (preliminary results).Geological Society Special Publications 22: 149-156.
[19]
Paul J.,1987. Der Zechstein am Harzrand: Querprofil über eine permische Schwelle. In: J. Kulick and J. Paul (Eds). Internationales Symposium Zechstein 1987, Exkursionsführer II, Wiesbaden; 195-293.
[20]
Paul J.,1995. Stromatolite reefs of the upper Permian Zechstein basin (Central Europe).Facies 32: 28-31.
[21]
Paul J., Heggemann H., Dittrich D., Hug-Diegel N., Huckriede H., Nitsch E., AG Zechstein der SKPT/DSK,2018. Erläuterungen zur Stratigraphischen Tabelle von Deutschland 2016: die Zechstein-Gruppe / Comments to the Stratigraphic Chart of Germany 2016: the Zechstein Group.Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 169: 139-145.
[22]
Peryt D., Peryt T.M., Hałas S., Raczyński P., 2016a. Microfacies, foraminifers and carbon and oxygen isotopes in a basinal section of the Zechstein Limestone (Wuchiapingian): Bonikowo 2 borehole, western Poland.Geological Quarterly 60: 827-839.
[23]
Peryt D., Peryt T.M., Raczyński P., Chłódek K., 2012a. Foraminiferal colonization related to the Zechstein (Lopingian) transgression in the western part of the Wolsztyn Palaeo-Ridge area, Western Poland.Geological Quarterly 56: 529-546.
[24]
Peryt T.M.,1978. Sedimentology and paleoecology of the Zechstein Limestone (Upper Permian) in the Fore-Sudetic area (western Poland).Sedimentary Geology 20: 217-243.
[25]
Peryt T.M.,1984. Sedimentation and early diagenesis of the Zechstein Limestone in Western Poland.Prace Instytutu Geologicznego 109: 1-70 (in Polish with English summary).
[26]
Peryt T.M.,1994. The anatomy of a sulphate platform and adjacent basin system in the Łeba sub-basin of the Lower Werra Anhydrite (Zechstein, Upper Permian), northern Poland.Sedimentology 41: 83-113.
[27]
Peryt T.M., Peryt D., 2012. Geochemical and foraminiferal records of environmental changes during the Zechstein Limestone (Lopingian) deposition in northern Poland.Geological Quarterly 56: 187-198.
[28]
Peryt T.M., Piątkowski T.S., 1977. Stromatolites from the Zechstein Limestone (Upper Permian) of Poland. In: E. Flügel (Ed.), Fossil Algae, 124-135, Springer, Berlin.
[29]
Peryt T.M., Geluk M.C., Mathiesen A., Paul J., Smith K., 2010a. Zechstein. In: Petroleum Geological Atlas of the Southern Permian Basin Area (Eds. J.C. Doornenbal and A.G. Stevenson): 123-147. EAGE Publications b.v., Houten.
[30]
Peryt T.M., Hałas S., Hryniv S.P., 2010b. Sulfur and oxygen isotope signatures of Late Permian Zechstein anhydrites, West Poland: Seawater evolution and diagenetic constraints.Geological Quarterly 54: 387-400.
[31]
Peryt T.M., Hałas S., Peryt D., 2015. Carbon and oxygen isotopic composition and foraminifera of condensed basal Zechstein (Upper Permian) strata in western Poland: environmental and stratigraphic implications.Geological Journal 50: 446-464.
[32]
Peryt T.M., Ortí F., Rosell L., 1993. Sulfate platform-basin transition of the Lower Werra Anhydrite (Zechstein, Upper Permian), SW Poland: facies and petrography.Journal of Sedimentary Petrology 63: 646-658.
[33]
Peryt T.M., Raczyński P., Peryt D., Chłódek K., 2012b. Upper Permian reef complex in the basinal facies of the Zechstein Limestone (Ca1), western Poland.Geological Journal 46: 537-552.
[34]
Peryt T.M., Raczyński P., Peryt D., Chłódek K., Mikołajewski Z., 2016b. Sedimentary history and biota of the Zechstein Limestone (Permian, Wuchiapingian) of the Jabłonna Reef in Western Poland.Annales Societatis Geologorum Poloniae 86: 379-413.
[35]
Platt N.H., Wright V.P., 2018. What happens when a carbonate platform floods? Cenotes, swamps and seagrass on the Yucatán platform.Book of Abstracts, 20th International Sedimentological Congress, From 13 to 17 August, Quebec City, Canada, 1, 132.
[36]
Pöhlig C.,1986. Sedimentologie des Zechsteinkalks und des Werra-Anhydrits (Zechstein 1) in Südost-Niedersachsen.Göttinger Arbeiten zur Geologie und Paläontologie, 30.
[37]
Pope M.C., Grotzinger J.P., Schreiber B.C., 2000. Evaporitic subtidal stromatolites produced by in situ precipitation: textures, facies associations and temporal significance.Journal of Sedimentary Research 70: 1139-1151.
[38]
Raczyński P., Peryt T.M., Peryt D., 2016. Sedimentary history of two Zechstein Limestone carbonate buildups (Elżbieciny and Racot) in western Poland: the reefs that were.Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 167: 191-210.
[39]
Raczyński P., Peryt T.M., Strobel W., 2017. Sedimentary and environmental history of the Late Permian Bonikowo Reef (Zechstein Limestone, Wuchiapingian), western Poland.Journal of Palaeogeography 6: 183-205.
[40]
Richter-Bernburg G.,1955. Über salinare Sedimentation.Zeitschrift der deutschen geologischen Gesellschaft 105: 593-645.
[41]
Schmalz R.E.,1969. Deep water evaporite deposition, a genetic model.AAPG Bulletin 53: 798-823.
Sibley D.F., Gregg J.M., 1987. Classification of dolomite rock textures.Journal of Sedimentary Petrology 57: 967-975.
[44]
Smith D.B.,1958. Some observations on the Magnesian Limestone reefs of north-eastern Durham.Bulletin of the Geological Survey of Great Britain 15: 71-84.
[45]
Smith D.B.,1979. Rapid marine transgressions and regressions of the Upper Permian Zechstein Sea. Journal of the Geological Society 136: 155-156.
[46]
Smith D.B.,1980a. The evolution of the English Zechstein basin.Contributions to Sedimentology 9: 7-34.
[47]
Smith D.B.,1980b. The shelf-edge reef of the Middle Magnesian Limestone (English Zechstein Cycle 1) of north-eastern England - a summary.Contributions to Sedimentology 9: 3-5.
[48]
Smith D.B.,1986. The Trow Point Bed - a deposit of Upper Permian marine oncoids, peloids and columnar stromatolites in the Zechstein of NE England.Geological Society Special Publications 22: 113-125.
[49]
Smith D.B., Francis E.A., 1967. Geology of the country between Durham and West Hartlepool. Memoirs of the Geological Survey of Great Britain, H.M.S.O., London.
[50]
Sonnenfeld P.,1984. Brines and Evaporites. Academic Press, Orlando, 613 pp.
[51]
Wagner R.,1994. Stratigraphy and evolution of the Zechstein basin in the Polish Lowland.Prace Państwowego Instytutu Geologicznego 146: 1-71 (in Polish with English summary).
[52]
Warren J.K.,2016. Evaporites - A Geological Compendium. Springer, Berlin, 1854 pp.