[1] Aitchison J.C.1988. An Eocene storm-generated littoral placer, Northeast Otago.New Zealand Journal of Geology and Geophysics 31: 381-383.
[2] Ali, J.R.,Jolley, D.W.1996. Chronostratigraphic framework for the Thanetian and lower Ypresian deposits of southern England.Geological Society, London, Special Publications 101: 129-144.
[3] Amaral G.1967. Potassium-argon age measurements on some Brazillian glauconites.Earth and Planetary Science Letters 3: 190-192.
[4] Amorosi A.1995. Glaucony and sequence stratigraphy; a conceptual framework of distribution in siliciclastic sequences.Journal of Sedimentary Research 65: 419-425.
[5] Amorosi A.1997. Detecting compositional, spatial, and temporal attributes of glaucony: a tool for provenance research.Sedimentary Geology 109: 135-153.
[6] Amorosi A.2011. The problem of glaucony from the Shannon Sandstone (Campanian, Wyoming).Terra Nova 23: 100-107.
[7] Amorosi A.2012. The occurrence of glaucony in the stratigraphic record: distribution patterns and sequence-stratigraphic significance.International Association of Sedimentologists Special Publications 45: 37-54.
[8] Amorosi A.,M.C. Centineo.1997. Glaucony from the Eocene of the Isle of Wight (southern UK): implications for basin analysis and sequence-stratigraphic interpretation.Journal of the Geological Society 154: 887-896.
[9] Amorosi A.,R. Guidi,R. Mas, and E. Falanga.2012. Glaucony from the Cretaceous of the Sierra de Guadarrama (Central Spain) and its application in a sequence-stratigraphic context.International Journal of Earth Sciences 101: 415-427.
[10] Amorosi A.,I. Sammartino, and F. Tateo.2007. Evolution patterns of glaucony maturity: a mineralogical and geochemical approach.Deep Sea Research Part II: Topical Studies in Oceanography 54: 1364-1374.
[11] Aubry M.P.1985. Northwestern European Paleogene magnetostratigraphy, biostratigraphy, and paleogeography: Calcareous nannofossil evidence.Geology 13: 198-202.
[12] Ayress M.A.2006. Ostracod biostratigraphy of the Oligocene-Miocene (upper Waitakian to lower Otaian) in southern New Zealand.New Zealand Journal of Geology and Geophysics 49: 359-373.
[13] Baioumy H.M.2007. Iron-phosphorus relationship in the iron and phosphorite ores of Egypt.Geochemistry 67: 229-239.
[14] Baldermann A.,M. Dietzel,V. Mavromatis,F. Mittermayr,L.N. Warr, and K. Wemmer.2017. The role of Fe on the formation and diagenesis of interstratified glauconite-smectite and illite-smectite: A case study of Upper Cretaceous shallow-water carbonates.Chemical Geology 453: 21-34.
[15] Baldermann A.,L.N. Warr,G.H. Grathoff, and M. Dietzel.2013. The rate and mechanism of deep-sea glauconite formation at the Ivory Coast-Ghana Marginal Ridge.Clays and Clay Minerals 61: 258-276.
[16] Banerjee S.,S. Jeevankumar,P.G. Eriksson.2008. Mg-rich ferric illite in marine transgressive and highstand systems tracts: Examples from the Paleoproterozoic Semri Group, central India.Precambrian Research 162: 212-226.
[17] Banerjee S.,S. Mondal,P.P. Chakraborty, and S.S. Meena.2015. Distinctive compositional characteristics and evolutionary trend of Precambrian glaucony: Example from Bhalukona Formation, Chhattisgarh Basin, India.Precambrian Research 271: 33-48.
[18] Banerjee S.,U. Bansal, and A.V. Thorat.2016a. A review on palaeogeographic implications and temporal variation in glaucony composition.Journal of Palaeogeography 5(1): 43-71.
[19] Banerjee S.,U. Bansal,K. Pande, and S.S. Meena.2016b. Compositional variability of glauconites within the Upper Cretaceous Karai Shale Formation, Cauvery Basin, India: Implications for evaluation of stratigraphic condensation.Sedimentary Geology 331: 12-29.
[20] Banerjee S.,S.L. Chattoraj,P.K. Saraswati,S. Dasgupta,U. Sarkar, and A. Bumby.2012a. The origin and maturation of lagoonal glauconites: a case study from the Oligocene Maniyara Fort Formation, western Kutch, India.Geological Journal 47: 357-371.
[21] Banerjee S.,S.L. Chattoraj,P.K. Saraswati,S. Dasgupta, and U. Sarkar.2012b. Substrate control on formation and maturation of glauconites in the Middle Eocene Harudi Formation, western Kutch, India.Marine and Petroleum Geology 30: 144-160.
[22] Banerjee S.,S. Farouk,E. Nagm,T.R. Choudhury, and S.S. Meena.2019. High Mg-glauconite in the Campanian Duwi Formation of Abu Tartur Plateau, Egypt and its implications.Journal of African Earth Sciences 156: 12-25.
[23] Bansal U.,S. Banerjee,K. Pande,A. Arora, and S.S. Meena.2017. The distinctive compositional evolution of glauconite in the Cretaceous Ukra Hill Member (Kutch Basin, India) and its implications.Marine and Petroleum Geology 82: 97-117.
[24] Bansal U.,S. Banerjee,D.K. Ruidas, and K. Pande.2018. Origin and geochemical characterization of the glauconites in the Upper Cretaceous Lameta Formation, central India.Journal of Palaeogeography 7(1): 99-116.
[25] Bansal U.,K. Pande,S. Banerjee,R. Nagendra, and K.C. Jagadeesan.2019. The timing of oceanic anoxic events in the Cretaceous succession of Cauvery Basin: Constraints from 40Ar/39Ar ages of glauconite in the Karai Shale Formation.Geological Journal 54, 308-315.
[26] Bansal U.,S. Banerjee,K. Pande, and D.K. Ruidas.2020a. Unusual seawater composition of the Late Cretaceous Tethys imprinted in glauconite of Narmada basin, central India.Geological Magazine 157: 233-247.
[27] Bansal U.,S. Banerjee, and R. Nagendra. 2020b. Is the rarity of glauconite in Precambrian deposits related to its transformation to chlorite? Precambrian Research 336, https://doi.org/10.1016/j.precamres.2019.105509.
[28] Beavington-Penney S.J.,V.P. Wright, and A. Racey.2006. The middle Eocene Seeb Formation of Oman: an investigation of acyclicity, stratigraphic completeness, and accumulation rates in shallow marine carbonate settings.Journal of Sedimentary Research 76: 1137-1161.
[29] Bekker A.,N. Planavsky,B. Rasmussen,B. Krapez,A. Hofmann,J. Slack,O. Rouxel, and K. Konhauser.2014. Iron formations: Their origins and implications for ancient seawater chemistry. In Treatise on geochemistry, ed. H. Holland and K. Turekian, 561-628. Amsterdam: Elsevier: https://doi.org/10.1016/B978-0-08-095975-7.00719-1.
[30] Bektemirova T.,A. Bakirov,R. Hu,H. He,Y. Cai,W. Tan, and A. Chen.2018. Mineralogical evolution of the Paleogene formations in the Kyzyltokoy Basin, Kyrgyzstan: Implications for the formation of glauconite.Clays and Clay Minerals 66: 43-60.
[31] Berner R.A.1981. A new geochemical classification of sedimentary environments.Journal of Sedimentary Research 51: 359-365.
[32] Bernaola G.,J.I. Baceta,X. Orue-Etxebarria L. Alegret,M. Martin-Rubio J. Arostegui, and J. Dinarès-Turell.2007. Evidence of an abrupt environmental disruption during the mid-Paleocene biotic event (Zumaia section, western Pyrenees).Geological Society of America Bulletin 119: 785-795.
[33] Bornemann A., P. Schulte, J. Sprong, E. Steurbaut, M.A. Youssef, R.P. Speijer.2009. Latest Danian carbon isotope anomaly and associated environmental change in the southern Tethys (Nile Basin, Egypt).Journal of the Geological Society of London 166: 1135-1142.
[34] Bosboom R.,O. Mandic,G. Dupont-Nivet J.N. Proust,C. Ormukov, and J. Aminov.2017. Late Eocene palaeogeography of the proto-Paratethys Sea in Central Asia (NW China, southern Kyrgyzstan and SW Tajikistan).Geological Society, London, Special Publications 427: 565-588.
[35] Boucot A.J.,C. Xu,C.R. Scotese, and R.J. Morley.2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. SEPM Concepts in Sedimentology and Paleontology 11. Society for Sedimentary Geology, Tulsa, OK, 478.
[36] Boukhalfa K.,A. Amorosi,M. Soussi, and K.B. Ismail-Lattrache.2015. Glauconitic-rich strata from Oligo-Miocene shallow-marine siliciclastic deposits of the northern margin of Africa (Tunisia): Geochemical approach for basin analysis.Arabian Journal of Geosciences 8: 1731-1742.
[37] Boukhalfa K.,M. Soussi, E. Ozcan, S. Banerjee, and A. Tounekti. 2020. The Oligo-Miocene siliciclastic foreland basin deposits of northern Tunisia: Stratigraphy, sedimentology and paleogeography. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2020.103932.
[38] Bralower T.J.,I. Premoli Silva,M.J. Malone.2002. New evidence for abrupt climate change in the Cretaceous and Paleogene: An Ocean Drilling Program expedition to Shatsky Rise, northwest Pacific.Geological Society of America Today 12: 4-10
[39] Burst J.F.1958. “Glauconite” pellets: Their mineral nature and applications to stratigraphic interpretations.AAPG Bulletin 42: 310-327.
[40] Campbell H.J.,P.B. Andrews,A.G. Beu,A.R. Edwards,N.D. Hornibrook,M.G. Laird,P.A. Maxwell, and W.A. Watters.1988. Cretaceous-Cenozoic lithostratigraphy of the Chatham Islands.Journal of the Royal Society of New Zealand 18: 285-308.
[41] Cecil C.B.1990. Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks.Geology 18: 533-536.
[42] Cecil C.B.,R.W. Stanton,S.G. Neuzil,F.T. Dulong,L.F. Ruppert, and B.S. Pierce.1985. Paleoclimate controls on late Paleozoic sedimentation and peat formation in the central Appalachian Basin (USA).International Journal of Coal Geology 5: 195-230.
[43] Chattoraj S.L.,S. Banerjee, and P.K. Saraswati.2009. Glauconites from the Late Palaeocene-Early Eocene Naredi Formation, western Kutch and their genetic implications.Journal of the Geological Society of India 73: 567.
[44] Clark M.,A. Robertson.2005. Uppermost Cretaceous-Lower Tertiary Ulukışla Basin, south-central Turkey: Sedimentary evolution of part of a unified basin complex within an evolving Neotethyan suture zone.Sedimentary Geology 173: 15-51.
[45] Clemmensen A.,E. Thomsen.2005. Palaeoenvironmental changes across the Danian-Selandian boundary in the North Sea Basin.Palaeogeography, Palaeoclimatology, Palaeoecology 219: 351-394.
[46] Cook P.J.,M.W. McElhinny.1979. A reevaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics.Economic Geology 74: 315-330.
[47] Cosović V.,K. Drobne.1995. Palaeoecological significance of morphology of orthophragminids from the Istrian Peninsula (Croatia and Slovenia).Geobios 28: 93-99.
[48] Cosović V.,K. Drobne, and A. Moro.2004. Paleoenvironmental model for Eocene foraminiferal limestones of the Adriatic carbonate platform (Istrian Peninsula).Facies 50: 61-75.
[49] Cramer B.S.,M.P. Aubry,K.G. Miller,R.K. Olsson,J.D. Wright, and D.V. Kent.1999. An exceptional chronologic, isotopic, and clay mineralogic record of the latest Paleocene thermal maximum, Bass River, NJ, ODP 174AX.Bulletin de la Société géologique de France 170: 883-897.
[50] Cramer B.S.,J.D. Wright,D.V. Kent, and M.P. Aubry.2003. Orbital climate forcing of δ13C excursions in the late Paleocene-early Eocene (chrons C24n-C25n). Paleoceanography 18 (4). https://doi.org/10.1029/2003PA000909.
[51] Crouch E.M.,C. Heilmann-Clausen H. Brinkhuis,H.E. Morgans,K.M. Rogers,H. Egger, and B. Schmitz.2001. Global dinoflagellate event associated with the late Paleocene thermal maximum.Geology 29: 315-318.
[52] Crouch E.M.,G.R. Dickens,H. Brinkhuis,M.P. Aubry,C.J. Hollis,K.M. Rogers, and H. Visscher.2003. The Apectodinium acme and terrestrial discharge during the Paleocene-Eocene thermal maximum: New palynological, geochemical and calcareous nannoplankton observations at Tawanui, New Zealand.Palaeogeography, Palaeoclimatology, Palaeoecology 194: 387-403.
[53] Czuryłowicz K.,A. Lejzerowicz,S. Kowalczyk, and A. Wysocka.2014. The origin and depositional architecture of Paleogene quartz-glauconite sands in the Lubartów area, eastern Poland.Geological Quarterly 58: 125-144.
[54] Dallanave E.,V. Bachtadse,E.M. Crouch,L. Tauxe,C.L. Shepherd,H.E. Morgans,C.J. Hollis,B.R. Hines, and S. Sugisaki.2016. Constraining early to middle Eocene climate evolution of the southwest Pacific and Southern Ocean.Earth and Planetary Science Letters 433: 380-392.
[55] De Man, E.,S. Van Simaeys.2004. Late Oligocene Warming Event in the southern North Sea Basin: benthic foraminifera as paleotemperature proxies.Netherlands Journal of Geosciences 83: 227-239.
[56] Dill H.G.,A. Köthe,F. Gramann, and R. Botz.1996. A palaeoenvironmental and palaeoecological analysis of fine-grained Paleogene estuarine deposits of North Germany.Palaeogeography, Palaeoclimatology, Palaeoecology 124: 273-326.
[57] Dix G.R.,A. Parras.2014. Integrated diagenetic and sequence stratigraphy of a late Oligocene-early Miocene, mixed-sediment platform (Austral Basin, southern Patagonia): Resolving base-level and paleoceanographic changes, and paleoaquifer characteristics.Sedimentary Geology 307: 17-33.
[58] Duarte M.A.T.,M.L. Martínez.2002. K-Ar dating and geological significance of clastic sediments of the Paleocene Sepultura Formation, Baja California, México.Journal of South American Earth Sciences 15: 725-730.
[59] Dypvik H.,L. Riber,F. Burca,D. Rüther,D. Jargvoll,J. Nagy, and M. Jochmann.2011. The Paleocene-Eocene thermal maximum (PETM) in Svalbard — clay mineral and geochemical signals.Palaeogeography, Palaeoclimatology, Palaeoecology 302: 156-169.
[60] Egger H.,C. Heilmann-Clausen, and B. Schmitz.2009. From shelf to abyss: Record of the Paleocene/Eocene-boundary in the Eastern Alps (Austria).Geologica Acta: an International Earth Science Journal 7: 215-227.
[61] El Albani, A., A. Meunier,F. Fürsich.2005. Unusual occurrence of glauconite in a shallow lagoonal environment (Lower Cretaceous, northern Aquitaine Basin, SW France).Terra Nova 17: 537-544.
[62] El-Habaak G.,M. Askalany,M. Galal, and M. Abdel-Hakeem.2016. Upper Eocene glauconites from the Bahariya depression: An evidence for the marine regression in Egypt.Journal of African Earth Sciences 117: 1-11.
[63] Ellison R.A.,J.R. Ali,N.M. Hine, and D.W. Jolley.1996. Recognition of chron C25n in the upper Paleocene Upnor Formation of the London Basin, UK.Geological Society, London, Special Publications 101: 185-193.
[64] Ferrow E.,V. Vajda,C.B. Koch,B. Peucker-Ehrenbrink, and P.S. Willumsen.2011. Multiproxy analysis of a new terrestrial and a marine Cretaceous-Paleogene (K-Pg) boundary site from New Zealand.Geochimica et Cosmochimica Acta 75: 657-672.
[65] Fitch F.J.,P.J. Hooker,J.A. Miller, and N.R. Brereton.1978. Glauconite dating of Palaeocene-Eocene rocks from East Kent and the time-scale of Palaeogene volcanism in the North Atlantic region.Journal of the Geological Society 135: 499-512.
[66] Franzosi C.,L.N. Castro, and A.M. Celeda.2014. Technical evaluation of glauconies as alternative potassium fertilizer from the Salamanca Formation, Patagonia, Southwest Argentina.Natural Resources Research 23: 311-320.
[67] Frieling J.,A.I. Iakovleva,G.J. Reichart,G.N. Aleksandrova,Z.N. Gnibidenko,S. Schouten, and A. Sluijs.2014. Paleocene-Eocene warming and biotic response in the epicontinental West Siberian Sea.Geology 42: 767-770.
[68] Garnit H.,S. Bouhlel, and I. Jarvis.2017. Geochemistry and depositional environments of Paleocene-Eocene phosphorites: Metlaoui Group, Tunisia.Journal of African Earth Sciences 134: 704-736.
[69] Gavrilov Y.O.,E.A. Shcherbinina,O.V. Golovanova, and B.G. Pokrovskii.2013. The late Cenomanian paleoecological event (OAE 2) in the eastern Caucasus basin of Northern Peri-Tethys.Lithology and Mineral Resources 48: 457-488.
[70] Gedl P.2014. Eocene dinoflagellate cysts from the Sołokija Graben (Roztocze, SE Poland).Geological Quarterly 58: 707-728.
[71] Geptner A.R.,T.A. Ivanovskaya,E.V. Pokrovskaya, and N.P. Kuralenko.2008. Glauconite from Paleogene volcano-terrigenous rocks in Western Kamchatka.Lithology and Mineral Resources 43: 228-249.
[72] Gibson T.G.,L.M. Bybell, and D.B. Mason.2000. Stratigraphic and climatic implications of clay mineral changes around the Paleocene/Eocene boundary of the northeastern US margin.Sedimentary Geology 134: 65-92.
[73] Gibson T.G.,L.M. Bybell, and J.P. Owens.1993. Latest Paleocene lithologic and biotic events in neritic deposits of southwestern New Jersey.Paleoceanography 8: 495-514.
[74] Glenn C.R.,M.A. Arthur.1990. Anatomy and origin of a Cretaceous phosphorite-greensand giant, Egypt.Sedimentology 37: 123-154.
[75] Goodman D.K.1979. Dinoflagellate “communities”; from the lower Eocene Nanjemoy Formation of Maryland USA.Palynology 3: 169-190.
[76] Gradstein F.M.,J.G. Ogg, and M. Schmitz.2012. The Geologic Time Scale 2012. Elsevier.
[77] Hamberg L.,G. Dam,C. Wilhelmson, and T.G. Ottesen.2005. Paleocene deep-marine sandstone plays in the Siri Canyon, offshore Denmark-southern Norway. In Geological Society, London, Petroleum Geology Conference Series, eds. A.G. Doré, and B.A. Vining. 6: 1185-1198. Geological Society of London.
[78] Harder H.1980. Syntheses of glauconite at surface temperatures.Clays and Clay Minerals 28: 217-222.
[79] Harland W.B., A.V. Cox, P.G. Llewellyn, C.A.G. Pickton, A.G. Smith, and R. Walters. 1982. A Geologic Time Scale. Cambridge, Cambridge University Press.
[80] Harris W.B.,P.D. Fullagar, and J.A. Winters.1984. Rb-Sr glauconite ages, Sabinian, Claibornian and Jacksonian Units, southeastern Atlantic Coastal Plain, USA.Palaeogeography, Palaeoclimatology, Palaeoecology 47: 53-76.
[81] Haq B.U.,J. Hardenbol, and P.R. Vail.1987. Chronology of fluctuating sea levels since the Triassic.Science 235: 1156-1167.
[82] Hegab O.A.,A.G.A. El-Wahed.2016. Origin of the glauconite from the middle Eocene, Qarara formation, Egypt.Journal of African Earth Sciences 123: 21-28.
[83] Hesselbo S.P.,J.M. Huggett.2001. Glaucony in ocean-margin sequence stratigraphy (Oligocene-Pliocene, offshore New Jersey, USA; ODP Leg 174A).Journal of Sedimentary Research 71: 599-607.
[84] Hessler A.M.,J. Zhang,J. Covault, and W. Ambrose.2017. Continental weathering coupled to Paleogene climate changes in North America.Geology 45: 911-914.
[85] Hines B.R.,D.K. Kulhanek,C.J. Hollis,C.B. Atkins, and H.E.G. Morgans.2013. Paleocene-Eocene stratigraphy and paleoenvironment at Tora, Southeast Wairarapa, New Zealand.New Zealand Journal of Geology and Geophysics 56: 243-262.
[86] Homoky W.B.2017. Biogeochemistry: Deep ocean iron balance.Nature Geoscience 10: 162-163.
[87] Hower J.1961. Some factors concerning the nature and origin of glauconite.American Mineralogists 46: 313-334.
[88] Huggett J.,J. Adetunji,F. Longstaffe, and D. Wray.2017. Mineralogical and geochemical characterisation of warm-water, shallow-marine glaucony from the Tertiary of the London Basin.Clay Minerals 52: 25-50.
[89] Huggett J.M.,J. Cuadros, 2010. Glauconite formation in lacustrine/palaeosol sediments, Isle of Wight (Hampshire Basin), UK.Clay Minerals 45: 35-49.
[90] Huggett J.M.,A.S. Gale.1997. Petrology and palaeoenvironmental significance of glaucony in the Eocene succession at Whitecliff Bay, Hampshire Basin, UK.Journal of the Geological Society 154: 897-912.
[91] Hughes A.D.,D. Whitehead.1987. Glauconitization of detrital silica substrates in the Barton Formation (upper Eocene) of the Hampshire Basin, southern England.Sedimentology 34: 825-835.
[92] Iakovleva A.I.,I.A. Kulkova.2003. Paleocene-Eocene dinoflagellate zonation of Western Siberia.Review of Palaeobotany and Palynology 123: 185-197.
[93] Jenkyns H.C.2003. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world.Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 361: 1885-1916.
[94] Jiang Z.,D. Chen,L. Qiu,H. Liang, and J. Ma.2007. Source-controlled carbonates in a small Eocene half-graben lake basin (Shulu Sag) in central Hebei Province, North China.Sedimentology 54: 265-292.
[95] John C.M.,S.M. Bohaty, J.C. Zachos, A. Sluijs, S. Gibbs, H. Brinkhuis, and T.J. Bralower. 2008. North American continental margin records of the Paleocene-Eocene thermal maximum: Implications for global carbon and hydrological cycling. Paleoceanography 23. S.M. Bohaty, J.C. Zachos, A. Sluijs, S. Gibbs, H. Brinkhuis, and T.J. Bralower. 2008. North American continental margin records of the Paleocene-Eocene thermal maximum: Implications for global carbon and hydrological cycling. Paleoceanography 23. http://doi.org/10.1029/2007PA001465.
[96] Jorry S.,E. Davaud, and B. Caline.2003. Controls on the distribution of nummulite facies: A case study from the Late Ypresian El Garia Formation (Kesra Plateau, central Tunisia).Journal of Petroleum Geology 26: 283-306.
[97] Kalia P.,R. Kintso.2006. Planktonic foraminifera at the Paleocene/Eocene boundary in the Jaisalmer Basin, Rajasthan, India.Micropaleontology 52: 521-536.
[98] Kechiched R.,R. Laouar,O. Bruguier,S. Salmi-Laouar L. Kocsis,D. Bosch,A. Foufou,O. Ameur-Zaimeche, and H. Larit.2018. Glauconite-bearing sedimentary phosphorites from the Tébessa region (eastern Algeria): Evidence of REE enrichment and geochemical constraints on their origin.Journal of African Earth Sciences 145: 190-200.
[99] Kelly D.C.2002. Response of Antarctic (ODP Site 690) planktonic foraminifera to the Paleocene-Eocene thermal maximum: Faunal evidence for ocean/climate change. Paleoceanography 17 (4): 1071. 2002. Response of Antarctic (ODP Site 690) planktonic foraminifera to the Paleocene-Eocene thermal maximum: Faunal evidence for ocean/climate change. Paleoceanography 17 (4): 1071. http://doi.org/10.1029/2002PA000761.
[100] Kelly J.C.,J.A. Webb.1999. The genesis of glaucony in the Oligo-Miocene Torquay Group, southeastern Australia: Petrographic and geochemical evidence.Sedimentary Geology 125: 99-114.
[101] Khanolkar S.,P.K. Saraswati.2015. Ecological response of shallow-marine foraminifera to early Eocene warming in equatorial India.The Journal of Foraminiferal Research 45: 293-304.
[102] Khanolkar S.,P.K. Saraswati.2019. Eocene foraminiferal biofacies in Kutch Basin (India) in context of palaeoclimate and palaeoecology.Journal of Palaeogeography 8(1): 1-16.
[103] Khanolkar S.,P.K. Saraswati, and K. Rogers.2017. Ecology of foraminifera during the middle Eocene climatic optimum in Kutch, India.Geodinamica Acta 29: 181-193.
[104] Kharkwal A.D.1966. Glauconite in the Subathu beds (Eocene) of the Simla Hills of India.Nature 211: 615.
[105] Kimberley M.M.1979. Origin of oolitic iron formations.Journal of Sedimentary Research 49: 111-131.
[106] Kimoto K.,T. Ishimura,U. Tsunogai,T. Itaki, and Y. Ujiié.2009. The living triserial planktic foraminifer Gallitellia vivans (Cushman): distribution, stable isotopes, and paleoecological implications.Marine Micropaleontology 71: 71-79.
[107] Knox R.W.B.1979. Igneous grains associated with zeolites in the Thanet Beds of Pegwell Bay, northeast Kent.Proceedings of the Geologists' Association 90: 55-59.
[108] Konhauser K.O.,N.J. Planavsky,D.S. Hardisty,L.J. Robbins,T.J. Warchola,R. Haugaard,S.V. Lalonde,C.A. Partin,P.B.H. Oonk,H. Tsikos, and T.W. Lyons.2017. Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history.Earth-Science Reviews 172: 140-177.
[109] Kouwenhoven T.J.,R.P. Speijer,C.W.M. Van Oosterhout, and G.J. Van der Zwaan.1997. Benthic foraminiferal assemblages between two major extinction events: the Paleocene El Kef section, Tunisia.Marine Micropalaentology 29: 105-127.
[110] Kroon D.,A.J. Nederbragt.1990. Ecology and Paleoecology of triserial planktic foraminifera.Marine Micropalaentology 16: 25-38.
[111] Lewis D.W.,S. Belliss.1984. Mid tertiary unconformities in the Waitaki subdivision, North Otago.Journal of the Royal Society of New Zealand 14: 251-276.
[112] Li Q.,P.J. Davies, and B. McGowran.1999. Foraminiferal sequence biostratigraphy of the Oligo-Miocene Janjukian strata from Torquay, southeastern Australia.Australian Journal of Earth Sciences 46: 261-273.
[113] Liu C.,J.V. Browning,K.G. Miller, and R.K. Olsson.1997. Upper Cretaceous to Miocene planktonic foraminiferal biostratigraphy: results of Leg 150X, the New Jersey Coastal Plain drilling project. In Proceedings of the Ocean Drilling Program. Scientific Results, eds. K.G. Miller, and S.W. Snyder, 156: 111-127.
[114] Liu A.,D. Tang,X. Shi,X. Zhou,L. Zhoue,M. Shang,Y. Li, and H. Fang.2020. Mesoproterozoic oxygenated deep seawater recorded by early diagenetic carbonate concretions from the Member IV of the Xiamaling Formation, North China.Precambrian Research 341: 105667
[115] Lourens L.J.,A. Sluijs,D. Kroon,J.C. Zachos,E. Thomas,U. Röhl,J. Bowles, and I. Raffi.2005. Astronomical pacing of late Palaeocene to early Eocene global warming events.Nature 435: 1083-1087.
[116] Lucas J.,L. Prévôt-Lucas.1995. Tethyan phosphates and bioproductites. In The Tethys Ocean, ed. A.E.M. Nairn, L.E. Ricou, B. Vrielynck, and [J]. Dercourt, pp. 367-391. Springer, Boston, MA.
[117] Lurcock P.C.,G.S. Wilson.2013. The palaeomagnetism of glauconitic sediments.Global and Planetary Change 110: 278-288.
[118] MacGregor A.R.1983. The Waitakere Limestone, a temperate algal carbonate in the lower Tertiary of New Zealand.Journal of the Geological Society 140: 387-399.
[119] Mancini E.A.1981. Lithostratigraphy and biostratigraphy of Paleocene subsurface strata in southwest Alabama.Gulf Coast Association of Geological Societies Transactions 31: 359-367
[120] Mancini E.A.,B.H. Tew.1993. Eustasy versus subsidence: Lower Paleocene depositional sequences from southern Alabama, eastern Gulf Coastal Plain.Geological Society of America Bulletin 105: 3-17.
[121] Mandal S.,S. Banerjee, S. Sarkar, I. Mondal, and T.R. Choudhury. 2020. Origin and sequence stratigraphic implications of high-alumina glauconite within the Lower Quartzite, Vindhyan Supergroup. Marine and Petroleum Geology 112. https://doi.org/10.1016/j.marpetgeo.2019.104040.
[122] Marivaux L.,E.M. Essid,W. Marzougui,H. Khayati Ammar,S. Adnet,B. Marandat,G. Merzeraud,A. Ramdarshan,R. Tabuce,M. Vianey-Liaud, and J. Yans.2014. A morphological intermediate between eosimiiform and simiiform primates from the late middle Eocene of Tunisia: macroevolutionary and paleobiogeographic implications of early anthropoids.American Journal of Physical Anthropology 154: 387-401.
[123] McConchie D.M.,D.W. Lewis.1978. Authigenic, perigenic, and allogenic glauconites from the Castle Hill Basin, North Canterbury, New Zealand.New Zealand Journal of Geology and Geophysics 21: 199-214.
[124] Messadi A.M.,B. Mardassi,J.A. Ouali, and J. Touir.2016. Sedimentology, diagenesis, clay mineralogy and sequential analysis model of Upper Paleocene evaporite-carbonate ramp succession from Tamerza area (Gafsa Basin: Southern Tunisia).Journal of African Earth Sciences 118: 205-230.
[125] Metwally A.A.,K.H. Mahfouz.2018. The Paleocene/Eocene (P/E) boundary along the eastern plateau of Kharga-Baris oases, Western Desert, Egypt.Journal of African Earth Sciences 147: 569-584.
[126] Meunier A.,A. El Albani.2007. The glauconite-Fe-illite-Fe-smectite problem: A critical review.Terra Nova 19: 95-104.
[127] Miller K.G.,J.D. Wright,M.E. Katz,B.S. Wade,J.V. Browning,B.S. Cramer, and Y. Rosenthal.2009. Climate threshold at the Eocene-Oligocene transition: Antarctic ice sheet influence on ocean circulation. In The Late Eocene Earth: Hothouse, Icehouse, and Impacts, ed. C. Koeberl, and A. Montanari, 452: 169-178 Geological Society of America, Special Bulletin.
[128] Morad S.,J.M. Ketzer, and L.F. De Ros.2012. Linking diagenesis to sequence stratigraphy: An integrated tool for understanding and predicting reservoir quality distribution.Linking Diagenesis to Sequence Stratigraphy. Special Publication of the International Association of Sedimentologists 45: 1-36.
[129] Morton A.C.,R.J. Merriman, and J.G. Mitchell.1984. Genesis and significance of glauconitic sediments of the Southwest Rockall Plateau.Initial Reports of the Deep Sea Drilling Project 81: 645-652.
[130] Nahon D.,A.V. Carozzi, and C. Parron.1980. Lateritic weathering as a mechanism for the generation of ferruginous ooids.Journal of Sedimentary Research 50: 1287-1298.
[131] Nicolo M.J.,G.R. Dickens,C.J. Hollis, and J.C. Zachos.2007. Multiple early Eocene hyperthermals: Their sedimentary expression on the New Zealand continental margin and in the deep sea.Geology 35: 699-702.
[132] Nicolo M.J.,G.R. Dickens, and C.J. Hollis.2010. South Pacific intermediate water oxygen depletion at the onset of the Paleocene-Eocene Thermal Maximum as depicted in New Zealand margin sections. Paleoceanography 25: Pa4210. https://doi.org/10.1029/2009pa001904.
[133] Nigam R.,A. Mazumder,P.J. Henriques, and R. Saraswat.2007. Benthic foraminifera as proxy for oxygen-depleted conditions off the central west coast of India.Journal of the Geological Society of India 70: 1047-1054.
[134] Odin G.S.,A. Matter.1981. De glauconiarum origine.Sedimentology 28: 611-641.
[135] Peters S.E.,R.R. Gaines.2012. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion.Nature 484: 363.
[136] Petters S.W.,R.K. Olsson.1979. Planktonic foraminifera from the Ewekoro type section (Paleocene) Nigeria.Micropaleontology 25: 206-213.
[137] Pietsch C.,H.C. Harrison, and W.D. Allmon.2016. Whence the Gosport Sand (Upper Middle Eocene, Alabama)? The origin of glauconitic shell beds in the Paleogene of the US Gulf Coastal Plain.Journal of Sedimentary Research 86: 1249-1268.
[138] Polevaya N.I.,G.A. Murina, and G.A. Kazakov.1961. Utilization of glauconite in absolute dating.Annals of the New York Academy of Sciences 91: 298-310.
[139] Porrenga D.H.1968. Non-marine glauconitic illite in the lower Oligocene of Aardebrug, Belgium.Clay Minerals 7: 421-430.
[140] Poulton S.W.,D.E. Canfield.2011. Ferruginous conditions: A dominant feature of the ocean through Earth's history.Elements 7:107-112.
[141] Prasad V.,I.B. Singh,S. Bajpai,R. Garg,B. Thakur,A. Singh,N. Saravanan, and V.V. Kapur.2013. Palynofacies and sedimentology-based high-resolution sequence stratigraphy of the lignite-bearing muddy coastal deposits (early Eocene) in the Vastan Lignite Mine, Gulf of Cambay, India.Facies 59: 737-761.
[142] Raju S.V.,N. Mathur.2013. Rajasthan lignite as a source of unconventional oil.Current Science (Bangalore) 104: 752-757.
[143] Rasmussen E.S.,K. Dybkjær.2005. Sequence stratigraphy of the Upper Oligocene-Lower Miocene of eastern Jylland Denmark: role of structural relief and variable sediment supply in controlling sequence development.Sedimentology 52: 25-63.
[144] Rasser M.W.,W.E. Piller.2004. Crustose algal frameworks from the Eocene Alpine Foreland.Palaeogeography, Palaeoclimatology, Palaeoecology 206: 21-39.
[145] Ridgwell A.,D.N. Schmidt.2010. Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release.Nature Geoscience 3: 196-200.
[146] Rudmin M.,S. Banerjee, and A. Mazurov.2017. Compositional variation of glauconites in Upper Cretaceous-Palaeogene sedimentary iron-ore deposits in south-eastern western Siberia.Sedimentary Geology 355: 20-30.
[147] Rudmin M.,S. Banerjee,E. Abdullayev,A. Ruban,E. Filimonenko,E. Lyapina,R. Kashapov, and A. Mazurov.2020. Ooidal ironstones in the Meso-Cenozoic sequences in western Siberia: Assessment of formation processes and relationship with regional and global earth processes.Journal of Palaeogeography 9(1): 1-21.
[148] Rudmin M.,A. Mazurov, and S. Banerjee.2019. Origin of ooidal ironstones in relation to warming events: Cretaceous-Eocene Bakchar deposit, south-east Western Siberia.Marine and Petroleum Geology 100: 309-325.
[149] Sageman B.B.,R.C. Speed.2003. Upper Eocene limestones, associated sequence boundary, and proposed Eocene tectonics in Eastern Venezuela. In AAPG Memoir, ed. C. Bartolini, R.T. Buffler, and [J]. Blickwede, 79: 1-17.
[150] Saikia B.K.,R.K. Boruah, and P.K. Gogoi.2009. A X-ray diffraction analysis on graphene layers of Assam coal.Journal of Chemical Sciences 121: 103-106.
[151] Samanta A.,M.K. Bera,R. Ghosh,S. Bera,T. Filley,K. Pande,S.S. Rathore,J. Rai, and A. Sarkar.2013a. Do the large carbon isotopic excursions in terrestrial organic matter across Paleocene-Eocene boundary in India indicate intensification of tropical precipitation?Palaeogeography, Palaeoclimatology, Palaeoecology 387: 91-103.
[152] Samanta A.,A. Sarkar,M.K. Bera,J. Rai, and S.S. Rathore.2013b. Late Paleocene-early Eocene carbon isotope stratigraphy from a near-terrestrial tropical section and antiquity of Indian mammals.Journal of Earth System Science 122: 163-171.
[153] Saraswati P.K.,S. Khanolkar, and S. Banerjee.2018. Paleogene stratigraphy of Kutch, India: An update about progress in foraminiferal biostratigraphy.Geodinamica Acta 30: 100-118.
[154] Saraswati P.K.,S. Khanolkar,D.S.N. Raju,S. Dutta, and S. Banerjee.2014. Foraminiferal biostratigraphy of lignite mines of Kutch India: Age of lignite fossil vertebrates.Journal of Palaeogeography 3(1): 90-98.
[155] Sarma J.N.,S. Basumallick.1979. Glauconite in some Eocene carbonate rocks of Mikir hills, Assam.Indian Journal of Earth Sciences 6: 186-190.
[156] Sarmah R.K.,R. Borgohain.2012. Lithostratigraphy of the Paleogene shelf sediments in Assam and Meghalaya — A Review.Indian Streams Research Journal 12: 1-4.
[157] Savrda C.E.,J.V. Browning,H. Krawinkel, and S.P. Hesselbo.2001. Firmground ichnofabrics in deep-water sequence stratigraphy, Tertiary clinoform-toe deposits, New Jersey slope.Palaios 16: 294-305.
[158] Schiøler P.,K. Rogers,R. Sykes,C.J. Hollis,B. Ilg,D. Meadows,L. Roncaglia, and C. Uruski.2010. Palynofacies, organic geochemistry and depositional environment of the Tartan Formation (Late Paleocene), a potential source rock in the Great South Basin, New Zealand.Marine and Petroleum Geology 27: 351-369.
[159] Schmitz B.,B. Peucker-Ehrenbrink, C. Heilmann-Clausen, G. Åberg,F. Asaro, and C.T.A. Lee.2004. Basaltic explosive volcanism, but no comet impact, at the Paleocene-Eocene boundary: High-resolution chemical and isotopic records from Egypt, Spain and Denmark.Earth and Planetary Science Letters 225: 1-17.
[160] Schulte P.,L. Schwark,P. Stassen,T.J. Kouwenhoven,A. Bornemann, and R.P. Speijer.2013. Black shale formation during the Latest Danian Event and the Paleocene-Eocene Thermal Maximum in central Egypt: Two of a kind?Palaeogeography, Palaeoclimatology, Palaeoecology 371: 9-25.
[161] Schweitzer C.E.,V. Ćosović, and R.M. Feldmann.2005. Harpactocarcinus from the Eocene of Istria, Croatia, and the paleoecology of the Zanthopsidae Via, 1959 (Crustacea: Decapoda: Brachyura).Journal of Paleontology 79: 663-669.
[162] Self-Trail J.M.,D.S. Powars,D.K. Watkins, and G.A. Wandless.2012. Calcareous nannofossil assemblage changes across the Paleocene-Eocene Thermal Maximum: Evidence from a shelf setting.Marine Micropaleontology 92: 61-80.
[163] Shiloni Y.,A. Segev,G.M. Martinotti, and M. Raab1977. An Early Eocene glauconitic bed in Hor Hahar, Northern Negev, Israel.Israel Journal of Earth-Sciences 26: 102-107.
[164] Sluijs A.,L. Van Roij,G.J. Harrington,S. Schouten,J.A. Sessa,L.J. LeVay,G.J. Reichart, and C.P. Slomp.2014. Warming, euxinia and sea level rise during the Paleocene-Eocene Thermal Maximum on the Gulf Coastal Plain: Implications for ocean oxygenation and nutrient cycling.Climate of the Past 10: 1421-1439.
[165] Sorrentino L.,J.D. Stilwell, and C. Mays.2014. A model of tephra dispersal from an early Palaeogene shallow submarine Surtseyan-style eruption(s), the Red Bluff Tuff Formation, Chatham Island New Zealand.Sedimentary Geology 300: 86-102.
[166] Soudry D.,C.R. Glenn,Y. Nathan,I. Segal, and D. VonderHaar.2006. Evolution of Tethyan phosphogenesis along the northern edges of the Arabian-African shield during the Cretaceous-Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation.Earth-Science Reviews 78: 27-57.
[167] Speijer R.P.,B. Schmitz.1998. A benthic foraminiferal record of Paleocene sea level and trophic/redox conditions at Gebel Aweina, Egypt.Palaeogeography, Palaeoclimatology, Palaeoecology 137: 79-101.
[168] Sprong J.,T.J. Kouwenhoven,A. Bornemann,C. Dupuis,R.P. Speijer,P. Stassen, and E. Steurbaut.2013. In search of the Latest Danian Event in a paleobathymetric transect off Kasserine Island north-central Tunisia.Palaeogeography, Palaeoclimatology, Palaeoecology 379: 1-16.
[169] Stap L.,A. Sluijs,E. Thomas, and L. Lourens.2009. Patterns and magnitude of deep sea carbonate dissolution during Eocene Thermal Maximum 2 and H2, Walvis Ridge, southeastern Atlantic Ocean. Paleoceanography 24 (1): A1211. https://doi.org/10.1029/2008PA001655.
[170] Stap L.,L.J. Lourens,E. Thomas,A. Sluijs,S. Bohaty, and J.C. Zachos.2010. High-resolution deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2.Geology 38: 607-610.
[171] Stassen P.,E. Thomas, and R.P. Speijer.2015. Paleocene-Eocene Thermal Maximum environmental change in the New Jersey Coastal Plain: benthic foraminiferal biotic events.Marine Micropaleontology 115: 1-23.
[172] Steurbaut E.,C. Dupuis,I. Arenillas,E. Molina, and M.F. Matmati.2000. The Kalaat Senan section in central Tunisia: A potential reference section for the Danian/Selandian boundary.GFF 122: 158-160.
[173] Steurbaut E.,R. Magioncalda,C. Dupuis,S. Van Simaeys,E. Roche, and M. Roche.2003. Palynology, paleoenvironments, and organic carbon isotope evolution in lagoonal Paleocene-Eocene boundary settings in North Belgium, InCauses and Consequences of Globally Warm Climates in the Early Paleogene, eds. S.L. Wing, P.D. Gingerich, B. Schmitz, and E. Thomas. Boulder, Colorado, Geological Society of America Special Paper 369: 291-317.
[174] Strickler M.E.,R.E. Ferrell Jr.1990. Fe substitution for Al in glauconite with increasing diagenesis in the first Wilcox sandstone (lower Eocene), Livingston Parish, Louisiana.Clays and Clay Minerals 38: 69-76.
[175] Tang D.,X. Shi,J. Ma,G. Jiang,X. Zhou, and Q. Shi.2017a. Formation of shallow water glaucony in weakly oxygenated Precambrian ocean: An example from the Mesoprterozoic Tieling Formation in north China.Precambrian Research 294: 214-229.
[176] Tang D.,X. Shi,G. Jiang,X. Zhou, and Q. Shi, 2017b. Ferruginous seawater facilitates the transformation of glauconite to chamosite: An example from the Mesoproterozoic Xiamaling Formation of North China.American Mineralogist 102: 2317-2332.
[177] Taylor K.G.,J.H. Macquaker.2011. Iron minerals in marine sediments record chemical environments.Elements 7: 113-118.
[178] Tazaki K.,W.S. Fyfe.1992. Microbial green marine clay from Izu-Bonin (west Pacific) deep-sea sediments.Chemical Geology 102: 105-118.
[179] Thomas E.1998. Biogeography of the late Paleocene benthic foraminiferal extinction. In Late Paleocene-Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records, ed. M.P. Aubry, pp. 214-243.
[180] Tlig S.,S. Sahli,L. Er-Raioui R. Alouani, and M. Mzoughi.2010. Depositional environment controls on petroleum potential of the Eocene in the North of Tunisia.Journal of Petroleum Science and Engineering 71: 91-105.
[181] Todd S.E.,P.K. Pufahl,J.B. Murphy, and K.G. Taylor.2019. Sedimentology and oceanography of Early Ordovician ironstone, Bell Island Newfoundland: Ferruginous seawater and upwelling in the Rheic Ocean.Sedimentary Geology 379: 1-15.
[182] Tóth E.,T.G. Weiszburg,T. Jeffries,C.T. Williams,A. Bartha,é. Bertalan, and I. Cora.2010. Submicroscopic accessory minerals overprinting clay mineral REE patterns (celadonite-glauconite group examples).Chemical Geology 269: 312-328.
[183] van der Lingen, G.J., D. Smale,D.W. Lewis.1978. Alteration of a pelagic chalk below a paleokarst surface, Oxford, South Island New Zealand.Sedimentary Geology 21: 45-66.
[184] van Houten, F.B.1992. Review of Cenozoic ooidal ironstones.Sedimentary Geology 78: 101-110.
[185] Vanhove D.,P. Stassen,R.P. Speijer, and E. Steurbaut.2011. Assessing paleotemperature and seasonality during the early Eocene climatic optimum (EECO) in the Belgian Basin by means of fish otolith stable O and C isotopes.Geologica Belgica 14: 143-157.
[186] Wei W.2004. Opening of the Australia-Antarctica Gateway as dated by nannofossils.Marine Micropaleontology 52: 133-152.
[187] Wei W.,T.J. Algeo,Y. Lu,Y. Lu,H. Liu,S. Zhang,L. Peng,J. Zhang, and L. Chen.2018. Identifying marine incursions into the Paleogene Bohai Bay Basin lake system in northeastern China.International Journal of Coal Geology 200: 1-17.
[188] Wigley R.A.,J.S. Compton.2006. Late Cenozoic evolution of the outer continental shelf at the head of the Cape Canyon, South Africa.Marine Geology 226: 1-23.
[189] Zachos J.C.,K.C. Lohmann,J.C. Walker, and S.W. Wise.1993. Abrupt climate change and transient climates during the Paleogene: A marine perspective.The Journal of Geology 101: 191-213.
[190] Zachos J.C.,H. McCarren,B. Murphy,U. Röhl, and T. Westerhold.2010. Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals.Earth and Planetary Science Letters 299: 242-249.
[191] Zachos J.C.,M. Pagani,L. Sloan,E. Thomas, and K. Billups.2001. Trends, rhythms, and aberrations in global climate 65 Ma to present.Science 292: 686-693.
[192] Zarasvandi A.,Z. Fereydouni,H. Pourkaseb,M. Sadeghi,B. Mokhtari, and B. Alizadeh.2019. Geochemistry of trace elements and their relations with organic matter in Kuh-e-Sefid phosphorite mineralization, Zagros Mountain, Iran.Ore Geology Reviews 104: 72-87. |