1. State Key Laboratory of Biological and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China;2. School of Earth Science and Resources, China University of Geosciences (Beijing), Beijing 100083, China;3. Department of Geoscience, University of Nevada, Las Vegas, NV 89154-4010, USA
Abstract Thrombolites are widespread in the Mesoproterozoic Wumishan Formation in the North China Platform. This study shows that they mainly concentrated in subtidal carbonate facies with relatively low hydrodynamic conditions, rather than in intertidal zone as suggested previously. From the deep lower to the shallow upper subtidal facies, the thrombolites show evident changes in morphology from dominantly domal to tabular forms, likely suggestive of environmental controls on their morphogenesis and distribution. As the most important component in thrombolites, mesoclots typically consist of organic-rich micritic nuclei and organic-poor fibrous aragonite rims. Mesoclots may vary considerably in their morphology, but a type of specifically shaped mesoclots tends to concentrate predominantly in a particular group of thrombolites. The proportion of the fibrous aragonite rims in mesoclots decrease as the depositional environments become shallower, likely suggesting that the environmental changes also have controls on the internal fabrics of thrombolites. Putative filamentous bacterial colonies are well preserved in some aragonite fans in the matrix between mesoclots, invoking rapid precipitation and aragonite-supersaturated conditions in the ambient waters. It seems that a suboxic to anoxic environment, highly alkaline seawater and relatively low hydrodynamic conditions were among the important factors that facilitated the development and preservation of thrombolites in the Mesoproterozoic epeiric sea on the North China Platform.
Fund:The study was supported by the Ministry of Science and Technology (No. 2011CB808806), and the National Natural Science Foundation (No. 41272039 and No. 40921062) of China. We are grateful to Prof. Feng Zengzhao, Franz T. F��rsich, Spencer G. Lucas and Wang Yongbiao for their constructive suggestions and enlightening comments, which improved the paper greatly. Thanks are given to Zhao Guisheng, Wu Jinjian and Li Danqiu for their assistance during field work.
Tang Dongjie,Shi Xiaoying,Jiang Ganqing et al. Environment controls on Mesoproterozoic thrombolite morphogenesis: A case study from the North China Platform[J]. , 2013, 2(3): 275-296.
Tang Dongjie,Shi Xiaoying,Jiang Ganqing et al. Environment controls on Mesoproterozoic thrombolite morphogenesis: A case study from the North China Platform[J]. Journal of Palaeogeography, 2013, 2(3): 275-296.
Adams, E. W., Grotzinger, J. P., Watters, W. A., Schr?der, S., McCormick, D. S., Al-Siyabi, H. A., 2005. Digital characterization of thrombolite-stromatolite reef distribution in a carbonate ramp system (terminal Proterozoic, Nama Group, Namibia). AAPG Bulletin, 89: 1293-1318.
Aitken, J. D., 1967. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology, 37(4): 1163-1178.
Aitken, J. D., Narbonne, G. M., 1989. Two occurrences of Precambrian thrombolites from the Mackenzie Mountains, northwestern Canada. Palaios, 4(4): 384-388.
Altermann, W., 2008. Accretion, trapping and binding of sediment in Archean stromatolites��Morphological expression of the antiquity of life. Space sciences series, 25: 55-79.
Anbar, A. D., Knoll A. H., 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297(5584): 1137-1142.
Arp, G., Reimer, A., Reitner, J., 2003. Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. Journal of Sedimentary Research, 73(1): 105-127.
Bartley, J. K., Knoll, A. H., Grotzinger, J. P., Sergeev, V. N., 2000. Lithification and fabric genesis in precipitated stromatolites and associated peritidal carbonates, Mesoproterozoic Billyakh Group, Siberia. In: Grotzinger, J. P., James, N. P., (eds). Precambrian Carbonates. Society of Economic Paleontologists and Mineralogists Special Publication, Tulsa, Oklahoma, 65: 59-74.
Baumgartner, L. K., Reid, R. P., Dupraz, C., Decho, A. W., Buckley, D. H., Spear, J. R., Przekop, K. M., Visscher, P. T., 2006. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sedimentary Geology, 185(3-4): 131-145.
Braissant, O., Decho, A. W., Dupraz, C., Glunk, C., Przekop, K. M., Visscher, P. T., 2007. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5(4): 401-411.
Brocks, J. J., Love, G. D., Summons, R. E., Knoll, A. H., 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature, 437: 866-870.
Burne, R. V., Moore, L. S., 1987. Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios, 2(3): 241-254.
Campbell, K. A., Francis, D. A., Collins, M., Gregory, M. R., Campbell, S. N., Greinertd, J., Aharone, P., 2008. Hydrocarbon seep-carbonates of a Miocene forearc (East Coast Basin), North Island, New Zealand. Sedimentary Geology, 204(3-4): 83-105.
Canfield, D. E., 1998. A new model for Proterozoic ocean chemistry. Nature, 396: 450-453.
Chen Jinbiao, Zhang Pengyuan, Gao Zhenjia, Sun Shufen, 1999. Stratigraphical lexicon of China: The Mesoproterozoic Era. Beijing: Geological Publishing House, 89 (in Chinese).
Cheng Yuqi, Wang Zejiu, Huang Zhigao, 2009. Stratigraphical lexicon of China: The General Introduction. Beijing: Geological Publishing House, 411 (in Chinese).
Decho, A. W., Visscher, P. T., Reid, R. P., 2005. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1-2): 71-86.
Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., Visscher, P. T., 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96(3): 141-162.
Dupraz, C., Visscher, P. T., 2005. Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology, 13(9): 429-438.
Dupraz, C., Visscher, P. T., Baumgartner, L. K., Reid, R. P., 2004. Microbe-mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology, 51(4): 745-765.
Ezaki, Y., Liu, J., Adachi, N., 2003. Earliest Triassic microbialite micro to macrostructures in the Huaying area of Sichuan Province, South China: Implications for the nature of oceanic conditions after the end-Permian extinction. Palaios, 18: 388-402.
2.0.CO;2 target="_blank">
Ezaki, Y., Liu, J., Adachi, N., 2012. Lower Triassic stromatolites in Luodian County, Guizhou Province, South China: Evidence for the protracted devastation of the marine environments. Geobiology, 10: 48-59.
Ezaki, Y., Liu, J., Nagano, T., Adachi, N., 2008. Geobiological aspects of the earliest Triassic microbialites along the southern periphery of the tropical Yangtze Platform: Initiation and cessation of a microbial regime. Palaios, 23: 356-369.
Feldmann, M., McKenzie, J. A., 1997. Messinian stromatolite-thrombolite associations, Santa Pola, SE Spain: An analogue for the Paleozoic? Sedimentology, 44(5): 893-914.
Feldmann, M., McKenzie, J. A., 1998. Stromatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas. Palaios, 13(2): 201-212.
Ferris, F. G., Thompson, J. B., Beveridge, T. J., 1997. Modern freshwater microbialites from Kelly Lake, British Columbia, Canada. Palaios, 12(3): 213-219.
Gallagher, K. L., Kading, T. J., Braissant, O., Dupraz, C., Visscher, P. T., 2012. Inside the alkalinity engine: The role of electron donors in the organomineralization potential of sulfate-reducing bacteria. Geobiology, 10(6): 518-530.
Gao Linzhi, Zhang Chuanheng, Liu Pengju, Ding Xiaozhong, Wang Ziqiang, Zhang Yanjie, 2009. Recognition of Meso- and Neoproterozoic stratigraphic framework in North and South China. Acta Geoscientica Sinica, 30(4): 433-446 (in Chinese with English abstract).
Gao Linzhi, Zhang Chuanheng, Shi Xiaoying, Song Biao, Wang Ziqiang, Liu Yaoming, 2008b. Mesoproterozoic age for Xiamaling Formation in North China plate indicated by zircon SHRIMP dating. Chinese Science Bulletin, 53(17): 2665-2671.
Gao Linzhi, Zhang Chuanheng, Shi Xiaoying, Zhou Hongrui, Wang Ziqiang, 2007. Zircon SHRIMP U-Pb dating of the tuff bed in the Xiamaling Formation of the Qingbaikouan System in North China. Geological Bulletin of China, 26: 249-255 (in Chinese with English abstract).
Gao Linzhi, Zhang Chuanheng, Yin Chongyu, Shi Xiaoying, Wang Ziqiang, Liu Yaoming, Liu Pengju, Tang Feng, Song Biao, 2008a. SHRIMP zircon ages: Basis for refining the chronostratigraphic classification of the Meso- and Neoproterozoic strata in North China old land. Acta Geoscientica Sinica, 29(3): 366-376 (in Chinese with English abstract).
Gischler, E., Gibson, M. A., Oschmann, W., 2008. Giant Holocene freshwater microbialites, Laguna Bacalar, Quintana Roo, Mexico. Sedimentology, 55(5): 1293-1309.
Gischler, E., Golubic, S., Gibson, M., Oschmann, W., Harold Hudson, J., 2011. Microbial mats and microbialites in the freshwater Laguna Bacalar, Yucatan Peninsula, Mexico. In: Reitner, J., Qu��ric, N. V., Arp, G., (eds). Advances in Stromatolite Geobiology. Lecture Notes in Earth Sciences, Springer-Verlag, Berlin, Germany, 131: 187-205.
Grammer, G. M., Ginsburg, R. N., Swart, P. K., McNeill, D. F., Timothy Jull, A. J., Prezbindowski, D. R., 1993. Rapid growth rates of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Belize. Journal of Sedimentary Petrology, 63(5): 983-989.
Grammer, G. M., McNeill, D. F., Crescini, C. M., 1996. Quantifying rates of syndepositional marine cementation across a carbonate platform and margin, Bahamas (abstract). Geological Society of America, 28: 337.
Grotzinger, J. P., 1989. Facies and evolution of Precambrian carbonate depositional systems: Emergence of the modern platform archetype. In: Crevello, P. D., Wilson, J. L., Sarg, J. F., Read, J. F., (eds). Controls on carbonate platform and basin development. Society of Economic Paleontologists and Mineralogists, Special Publication, Tulsa, Oklahoma, 44: 79-106.
Grotzinger, J. P., James, N. P., 2000. Precambrian carbonates: Evolution of understanding. Carbonate Sedimentology and Diagenesis in the Evolving Precambrian World, SEPM Special Publications, 67: 3-20.
Grotzinger, J. P., Kasting, J. F., 1993. New constraints on Precambrian ocean composition. Journal of Geology, 101: 235-243.
Grotzinger, J. P., Knoll, A. H., 1995. Anomalous carbonate precipitates: Is the Precambrian the key to the Permian? Palaios, 10(6): 578-596.
Grotzinger, J. P., Knoll, A. H., 1999. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27: 313-358.
Hardie, L. A., 1996. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y. Geology, 24(3): 279-283.
2.3.CO;2 target="_blank">
Hardie, L. A., 2003. Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas. Geology, 31(9): 785-788.
Harwood, C. L., Sumner, D. Y., 2011. Microbialites of the Neoproterozoic Beck Spring Dolomite, Southern California. Sedimentology, 58: 1648-1673.
Helm, C., Schulke, I., 2006. Patch reef development in the florigemma-Bank Member (Oxfordian) from the Deister Mts (NW Germany): A type example for Late Jurassic coral thrombolite thickets. Facies, 52: 441-467.
Hicks, M., Rowland, S. M., 2009. Early Cambrian microbial reefs, archaeocyathan inter-reef communities, and associated facies of the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 281: 137-153.
Hofmann, H. J., 1973. Stromatolite characteristics and utility. Earth Science Reviews, 9(4): 339-373.
ICS, 2012. International stratigraphic chart. International Commission on Stratigraphy.
Jahnert, R. J., Collins, L. B., 2011. Significance of subtidal microbial deposits in Shark Bay, Australia. Marine Geology, 286(1-4): 106-111.
Jahnert, R. J., Collins, L. B., 2012. Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia. Marine Geology, 303-306(1): 115-136.
Kah, L. C., Grotzinger, J. P., 1992. Early Proterozoic (1.9 Ga) thrombolites of the Rocknest Formation, Northwest Territories. Palaios, 7(3): 305-315.
Kah, L. C., Lyons, T. W., Frank, T. D., 2004. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature, 431: 834-838.
Kempe, S., Kazmierczak, J., 1993. Satonda Crater Lake, Indonesia: Hydrogeochemistry and Bicarbonates. Facies, 28(1): 1-31.
Kennard, J. M., 1989. Cambro-Ordovician thrombolites of Western Newfoundland. Newfoundland: Ph.D. Thesis, Memorial University, Unpublished, 447.
Kennard, J. M., 1994. Thrombolites and stromatolites within shale-carbonate cycles, Middle-Late Cambrian Shannon formation, Amadeus Basin, central Australia. In: Bertrand-Sarfati, J., Monty, C., (eds). Phanerozoic stromatolites II. Kluwer Academic, Dordrecht, 443-471.
Kennard, J. M., Chow, N., James, N. P., 1989, Thrombolite-stromatolite bioherm, Middle Cambrian, Port au Port Peninsula, Western Newfoundland. In: Geldsetzer, H. H. J., James, N. P., Tebbutt, G. E., (eds). Reefs: Canada and Adjacent Areas. Canadian Society of Petroleum Geologists, Memoir, 13: 151-155.
Kennard, J. M., James, N. P., 1986. Thrombolites and stromatolites: Two distinct types of microbial structures. Palaios, 1(5): 492-503.
Kershaw, S., Crasquin, S., Forel, M. B., Randon, C., Collin, P. Y., Kosun, E., Richoz, S., Baud, A., 2011. Earliest Triassic microbialites in ?��r��k Dag, southern Turkey: Composition, sequences and controls on formation. Sedimentology, 58: 739-755.
Kershaw, S., Li, Y., Crasquin-Soleau, S., Feng, Q., Mu, X., Collin, P. Y., Reynolds, A., Guo, L., 2007. Earliest Triassic microbialites in the South China block and other areas: Controls on their growth and distribution. Facies, 53, 409-425.
Knoll, A. H., Semikhatov, M. A., 1998. The genesis and time distribution of two distinctive Proterozoic stromatolite microstructures. Palaios, 13(3): 408-422.
Laval, B., Cady, S. L., Pollack, J. C., McKay, C. P., Bird, J. S., Grotzinger, J. P., Ford, D. C., Bohm, H. R., 2000. Modern freshwater microbialite analogues for ancient dendritic reef structures. Nature, 407: 626-629.
Leinfelder, R. R., Schmid, D. U., 2000. Mesozoic reefal thrombolites and other microbolites. In: Riding, R. E., Awramik, S. M., (eds). Microbial sediments. Springer-Verlag, Berlin Heidelberg, New York, 289-294.
Li Chao, Love, G. D., Lyons, T. W., Fike, D. A., Sessions, A. L., Chu Xuelei, 2010. A stratified redox model for the Ediacaran ocean. Science, 328(5974): 80-83.
Li Huaikun, Zhu Shixing, Xiang Zhenqun, Su Wenbo, Lu Songnian, Zhou Hongying, Geng Jianzhen, Li Sheng, Yang Fengjie, 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton. Acta Petrologica Sinica, 26(7): 2131-2140 (in Chinese with English abstract).
Loucks, R. G., Folk, R. L., 1976. Fanlike rays of former aragonite in Permian Capitan Reef pisolite. Journal of Sedimentary Petrology, 46(3): 483-485.
Lu Songnian, Li Huimin, 1991. A precise U-Pb single zircon age determination for the volcanics of Dahongyu Formation, Changcheng system in Jixian. Acta Geosicientia Sinica, 22(1): 137-145 (in Chinese with English abstract).
Macintyre, I. G., Prufert-Bebout, L., Reid, R. P., 2000. The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamas stromatolites. Sedimentology, 47(5): 915-921.
Mancini, E. A., Llin��s, J. C., Parcell, W. C., Aurell, M., B��denas, B., Leinfelder, R. R., Benson, D. J., 2004. Upper Jurassic thrombolite reservoir play, northeastern Gulf of Mexico. AAPG Bulletin, 88: 1573-1602.
Mancini, E. A., Llinas, J. C., Scott, R. W., Llinas, R., 2006. Potential reef-reservoir facies: Lower Cretaceous deep-water thrombolites, onshore central gulf of Mexico. GCAGS Transactions, 55: 505-515.
Matyszkiewicz, J., Krajewski, M., K?dzierski, M., 2006. Origin and evolution of an Upper Jurassic complex of carbonate buildups from Zegarowe Rocks (Krak��w-Wielu�� Upland, Poland). Facies, 52: 249-263.
Mazzullo, S. J., 1980. Calcite pseudospar replacive of marine acicular aragonite, and implications for aragonite cement diagenesis. Journal of Sedimentary Petrology, 50(2): 409-422.
McCormick, D. S., Grotzinger, J. P., 2001. Digital mapping of Neoproterozoic thrombolite-grainstone facies architecture in Namibia; analog for intrasalt reservoirs in South Oman salt basin. Annual Meeting, Expanded Abstracts. American Association of Petroleum Geologists, 130.
Mobberley, J. M., Ortega, M. C., Foster, J. S., 2012. Comparative microbial diversity analyses of modern marine thrombolitic mats by barcoded pyrosequencing. Environmental Microbiology, 14(1): 82-100.
Myshrall, K. L., Mobberley, J. M., Green, S. J., Visscher, P. T., Havemann, S. A., Reid, R. P., Foster, J. S., 2010. Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas. Geobiology, 8: 337-354.
Ogg, J. G., Ogg, G., Gradstein, F. M., 2008. The concise geologic time scale. Cambridge: Cambridge University Press. ISBN: 9780521898492.
Olivier, N., Hantzpergue, P., Gaillard, C., Pittet, B., Leinfelder, R. R., Schmid, D. U., Werner, W., 2003. Microbialite morphology, structure and growth: A model of the Upper Jurassic reefs of the Chay Peninsula (Western France). Palaeogeography, Palaeoclimatology, Palaeoecology, 193: 383-404.
Peryt, T. M., Hoppe, A., Bechstaedt, T., Koester, J., Pierre, C., Richter, D. K., 1990. Late Proterozoic aragonitic cement crusts, Bambui Group, Minas Gerais, Brazil. Sedimentology, 37(2): 279-286.
Planavsky, N. J., McGoldrick, P., Scott, C. T., Li, C., Reinhard, C. T., Kelly, A. E., Chu, X. L., Bekker, A., Love, G. D., Lyons, T. W., 2011. Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature, 477: 448-451.
Planavsky, N., Ginsburg, R. N., 2009. Taphonomy of modern marine Bahamian microbialites. Palaios, 24(1): 5-17.
Pratt, B. R., James, N. P., 1982. Cryptalgal-metazoan bioherms of Early Ordovician age in the St. George Group, western Newfoundland. Sedimentology, 29(4): 543-569.
Puckett, M. K., McNeal, K. S., Kirkland, B. L., Corley, M. E., Ezell, J. E., 2011. Biogeochemical stratification and carbonate dissolution-precipitation in hypersaline microbial mats (Salt Pond, San Salvador, The Bahamas). Aquatic Geochemistry, 17(4-5): 397-418.
Qiao Xiufu, Gao Linzhi, 2007. Mesoproterozoic palaeoearthquake and palaeogeography in Yan-Liao Aulacogen. Journal of Palaeogeography, 9(4): 337-352 (in Chinese with English abstract).
Qiao Xiufu, Gao Linzhi, Zhang Chuanheng, 2007. New idea of the Meso- and Neoproterozoic chronostratigraphic chart and tectonic environment in Sino-Korean Plate. Geological Bulletin of China, 26(5): 503-509 (in Chinese with English abstract).
Raviolo, M. M., Bordonaro, O. L., Pratt, B. R., 2010. Thrombolites (Microbial Reefs) of the Form-Genus Favosamaceria in the Upper Cambrian of the Eastern Precordillera, San Juan, Argentina. Ameghiniana, 47(3): 331-341.
Reid, R. P., James, N. P., Macintyre, I. G., Dupraz, C. P., Burne, R. V., 2003. Shark Bay stromatolites: Microfabrics and reinterpretation of origins. Facies, 49(1): 299-324.
Riding, R., 1999. The term stromatolite: Towards an essential definition. Lethaia, 32: 321-330.
Riding, R., 2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47: 179-214.
Riding, R., 2002. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories. Earth-Science Reviews, 58(1-2): 163-231.
Riding, R., 2006. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185: 229-238.
Riding, R., 2008. Abiogenic, microbial and hybrid authigenic carbonate crusts: Components of Precambrian stromatolites. Geologia Croatica, 61(2-3): 73-103.
Riding, R., Braga, J. C., Martin, J. R., 1991. Oolite stromatolites and thrombolites, Miocene, Spain: analogues of recent giant Bahamian examples. Sedimentary Geology, 71: 121-127.
Rouxel, O. J., Bekker, A., Edwards, K. J., 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science, 307(5712): 1088-1091.
Sandberg, P., 1985. Aragonite cements and their occurrence in ancient limestone. In: Schneidermann, N., Harris, P. M., (eds). Carbonate Cements. SEPM, Special Publication, 36: 33-57.
Sass, A. M., Eschemann, A., Kuhl, M., Thar, R., Sass, H., Cypionka, H., 2002. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients. FEMS Microbiology Ecology, 40(1): 47-54.
Sass, H., Cypionka, H., Babenzien, H., 2006. Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin. FEMS Microbiology Ecology, 22(3): 245-255.
Shapiro, R. S., 2000. A comment on the systematic confusion of thrombolites. Palaios, 15(2): 166-169.
2.0.CO;2 target="_blank">
Sheehan, P. M., 2001. History of marine biodiversity. Geological Journal, 36(3-4): 231-249.
Sheehan, P. M., Harris, M. T., 2004. Microbialite resurgence after the Late Ordovician extinction. Nature, 430: 75-78.
Shi Xiaoying, Jiang Ganqing, 2011. Precambrian geobiology and evolution of the Earth surface systems: Co-evolution of early life and environments. In: Xie Shucheng, Yin Hongfu, Shi Xiaoying, (eds). Geobiology-Interaction and Co-evolution of life and Earth Environment. Beijing: Science Press, 190-235 (in Chinese).
Shi Xiaoying, Zhang Chuanheng, Jiang Ganqing, Liu Juan, Wang Yi, Liu Dianbo, 2008. Microbial Mats in the Mesoproterozoic carbonates of the north China Platform and their potential for hydrocarbon generation. Journal of China University of Geosciences, 19(5): 549-566.
Su Wenbo, Li Huaikun, Huff, W. D., Ettensohn, F. R., Zhang Shihong, Zhou Hongying, Wan Yusheng, 2010. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation, North China. Chinese Science Bulletin, 55(29): 3312-3323.
Su Wenbo, Zhang Shihong, Huff, W. D., Li Huaikun, Ettensohn, F. R., Chen Xiaoyu, Yang Hongmei, Han Yigui, Song Biao, Santosh, M., 2008. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation: Implications for revised subdivision of the Meso- to Neoproterozoic history of the North China Craton. Gondwana Research, 14(3): 543-553.
Sumner, D. Y., 2002. Decimeter-thick encrustations of calcite and aragonite on the sea-floor and implications for Neoarchaean and Neoproterozoic ocean chemistry. In: Altermann, W., Corcoran, P. L., (eds). Precambrian sedimentary environments: A modern approach to ancient depositional systems. International Association of Sedimentologists, Special Publication, 33: 107-120.
Sumner, D. Y., Grotzinger, J. P., 1996. Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? Geology, 24: 119-122.
2.3.CO;2 target="_blank">
Sumner, D. Y., Grotzinger, J. P., 2000. Neoarchean aragonite precipitation: Petrography, facies associations, and environmental significance. In: Grotzinger, J. P., James, N. P., (eds). Carbonate sedimentation and diagenesis in the evolving Precambrian world. Society of Economic Paleontologists and Mineralogists, Special Publication, Tulsa, Oklahoma, 67: 123-144.
Tang Dongjie, Shi Xiaoying, Jiang Ganqing, 2013a. Mesoproterozoic biogenic thrombolites from the North China platform. International Journal of Earth Sciences, 102(2): 401-413.
Tang Dongjie, Shi Xiaoying, Jiang Ganqing, Zhang Wenhao, 2013b. Microfabrics in Mesoproterozoic microdigitate stromatolite: Evidence of biogenicity and organo-mineralization at micron and nanometer scales. Palaios, 28(3): 178-194.
Tang Dongjie, Shi Xiaoying, Pei Yunpeng, Jiang Ganqing, Zhao Guisheng, 2011. Redox status of the Mesoproterozoic epeiric sea in North China. Journal of Palaeogeography, 13(5): 563-580 (in Chinese with English abstract).
Turner, E. C., James, N. P., Narbonne, G. M., 2000. Taphonomic control on microstructure in Early Neoproterozoic reefal stromatolites and thrombolites. Palaios, 15(2): 87-111.
2.0.CO;2 target="_blank">
Visscher, P. T., Reid, R. P., Bebout, B. M., 2000. Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology, 28(10): 919-922.
Visscher, P. T., Stolz, J. F., 2005. Microbial mats as bioreactors: Populations, process, and products. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1): 87-100.
Walter, M. R., Heys, G. R., 1985. Links between the rise of the metazoa and the decline of stromatolites. Precambrian Research, 29(1-3): 149-174.
Wang Hongzhen, Shi Xiaoying, Wang Xunlian, Yin Hongfu, Qiao Xiufu, Liu Benpei, Li Sitian, Chen Jianqiang, 2000. Research on the sequence stratigraphy of China. Guangzhou: Guangdong Science and Technology Press, 1-457 (in Chinese).
Whalen, M. T., Day, J., Eberli, G. P., Homewood, P. W., 2002. Microbial carbonates as indicators of environmental change and biotic crisis in carbonate systems: Examples from the Late Devonian, Alberta Basin, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 181: 127-151.
Woods, A. D., Bottjer, D. J., Mutti, M., Morrison, J., 1999. Lower Triassic large sea-floor carbonate cements: Their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction. Geology, 27(7): 645-648.
2.3.CO;2 target="_blank">
Yang Hao, Chen Zhongqiang, Wang Yongbiao, Tong Jinnan, Song Haijun, Chen Jing, 2011. Composition and structure of microbialite ecosystems following the end-Permian mass extinction in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 308: 111-128.
Zhou Hongrui, Mei Mingxiang, Du Benming, Luo Zhiqing, L�� Miao, 2006. Study on the sedimentary features of high frequency Cyclothems of the Wumishan Formation at Jixian, Tianjin. Geoscience, 20(2): 209-215 (in Chinese with English abstract).