Abstract The underpinning problems of deep-water facies still remain unresolved. (1) The Tb, Tc, and Td divisions of the turbidite facies model, with traction structures, are an integral part of the "Bouma Sequence" (Ta, Tb, Tc, Td, Te). However, deposits of thermohaline contour currents, wind-driven bottom currents, deep-marine tidal currents, and baroclinic currents (internal waves and tides) also develop discrete rippled units, mimicking Tc. (2) The application of "cut-out" logic of sequences, which was originally introduced for the "Bouma Sequence", with sharp basal contacts and sandy divisions containing well-developed traction structures, to muddy contorts with gradational basal contacts and an absence of well-developed traction structures is incongruent. (3) The presence of five internal divisions and hiatus in the muddy contoured facies model is in dispute. (4) Intersection of along slope contour currents with down slope sediment-gravity flows, triggering hybrid flows, also develops traction structures. (5) The comparison of genuine hybrid flows with down slope flow transformation of gravity flows is inconsistent with etymology of the term "hybrid". (6) A reexamination of the Annot Sandstone at the Peira Cava type locality in SE France fails to validate either the orthodoxy of five internal divisions of the "Bouma Sequence" or their origin by turbidity currents. For example, the "Ta" division is composed of amalgamated units with inverse grading and floating mudstone clasts, suggesting a mass-transport deposit (MTD). The "Tb" and "Tc" divisions are composed of double mud layers and sigmoidal ===cross bedding, respectively, which suggest a tidalite origin. (7) Although it was reasonable to introduce a simplistic "Bouma Sequence" in 1962, at a time of limited knowledge on deep-water processes, it is obsolete now in 2021 to apply this model to the rock record amid a wealth of new knowledge. (8) The disconnect between 12 observed, but questionable, modern turbidity currents and over 10,000 interpreted ancient turbidites defies the doctrine of uniformitarianism. This disconnect is attributed to routine application of genetic facies models, without a pragmatic interpretation of empirical data. (9) A suggested solution to these problems is to interpret traction structures in the sedimentary record pragmatically on the basis of empirical field and experimental evidence, without any built-in bias using facies models, such as the "Bouma Sequence". (10) Until reliable criteria are developed to distinguish traction structures of each type of bottom currents based on uniformitarianism, a general term "BCRS" (i.e., bottom-current reworked sands) is appropriate for deposits of all four kinds of bottom currents.
. The turbidite-contourite-tidalite-baroclinite-hybridite problem: Orthodoxy vs. empirical evidence behind the "Bouma Sequence“[J]. Journal of Palaeogeography, 2021, 10(2): 125-156.
. The turbidite-contourite-tidalite-baroclinite-hybridite problem: Orthodoxy vs. empirical evidence behind the "Bouma Sequence“[J]. Journal of Palaeogeography, 2021, 10(2): 125-156.
[1] Allen J.R.L.,1965. Late Quaternary Niger Delta, and adjacent areas: sedimentary environments and lithofacies.AAPG Bulletin 49: 547-600. [2] Allen J.R.L., 1985. Loose-boundary hydraulics and fluid mechanics: selected advances since 1961. In: Brenchley, P.J., Williams, P.J. (Eds.), Sedimentology: Recent Developments and Applied Aspects. Published for the Geological Society by Blackwell Scientific Publications, Oxford, pp. 7-28. [3] Apel J.R.,2002. Oceanic internal waves and solitons. In: Jackson, C.R., Apel, J.R. (Eds.), An Atlas of Oceanic Internal Solitary-Like Waves and Their Properties (May 2002), by Global Ocean Associates, prepared for Office of Naval Research - Code 322PO, pp. 1-40 , http://www.internalwaveatlas.com/Atlas_PDF/ IWAtlas_Pg001_Introduction.PDF (accessed 14.05.12.). [4] Apel J.R., Ostrovsky L.A., Stepanyants Y.A., Lynch J.F., 2006. Internal solitons in the ocean. Woods Hole Oceanographic Institution Technical Report WHOI-2006-04, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, 109 p. [5] Arnott R.W.C., Hand B.M., 1989. Bedforms, primary structures and grain fabric in the presence of suspended sediment rain.Journal of Sedimentary Petrology 59: 1062-1069. [6] Bagnold R.A.,1962. Auto-suspension of transported sediment.Proceedings of the Royal SocIety of London Series A 265: 315-319. [7] Banerjee I.,1989. Tidal sand sheet origin of the transgressive Basal Colorado Sandstone (Albian): a subsurface study of the Cessford Field, Southern Alberta.Bulletin of Canadian Petroleum Geology 37: 1-17. [8] Bouma A.H.,1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, p. 168. [9] Bouma A.H., DeVries M.B., Stone C.G., 1997. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma, Discussion.AAPG Bulletin 81: 470-472. [10] Brackenridge R.E., Stow D.A.V., Hernández-Molina F.J., Jones C., Mena A., Alejo I., et al., 2018. Textural characteristics and facies of sand-rich contourite depositional systems. Sedimentology 65 (7): 2223-2252. Available from: https://doi.org/10.1111/sed.12463. [11] Briggs G., Cline L.M., 1967. Paleocurrents and source areas of Late Paleozoic sediments of the Ouachita Mountains, Southeastern Oklahoma.Journal of Sedimentarey Petrology 37: 985-1000 [12] Clark J.D., Stanbrook D.A., 2001. Formation of large-scale shear structures during the deposition of high-density turbidity currents, Grès d'Annot Formation, SE France. In: McCaffrey, W.D., Kneller, B.C., Peakall, J. (Eds.), Particulate Gravity Currents, 31. IAS Special Publication, pp. 219-232. [13] Coleman Jr., J.L., 1997. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma, Discussion.AAPG Bulletin 81: 466-469. [14] Cooper C., Forristall G.Z., Joyce T.M., 1990. Velocity and hydrographic structure of two Gulf of Mexico warm- core rings.Journal of Geophysical Research 95(C2): 1663-1679. [15] D'Agostino A.E., Jordan D.W., 1997. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma: discussion.AAPG Bulletin: 473-475. [16] Damuth J.E., Fairbridge R.W., 1970. Equatorial Atlantic deepsea sands and ice age aridity in tropical South America.GSA Bulletin 81: 585-601. [17] de Castro S., Hernandez-Molina F.J., Rodriguez-Tovar F.J., Llave E., Ng Z.L., Nishida N., Mena A., et al., 2020. Contourites and bottom current reworked sands: Bed facies model and implications.Marine Geology 428: 106-267. [18] de Weger W., Javier Hernández-Molina F.J., Flecker R., Sierro F.J., Chiarella D., Krijgsman W., et al., 2020. Late Miocene contourite channel system reveals intermittent overflow behavior.Geology: v. 48(12). https://doi.org/10.1130/G47944.1. [19] Dott Jr., R.H., 1963. Dynamics of subaqueous gravity depositional processes.AAPG Bulletin 47, 104-128. [20] Dunham J., Saller A.H., 2014. Modern internal waves and internal tides along oceanic pycnoclines: challenges and implications for ancient deep-marine baroclinic sands: discussion.AAPG Bulletin 98: 851-857. [21] Dykstra M.,2012. Deep-water tidal sedimentology. In: Davis Jr., R.A., Dalrymple, R.W. (Eds.), Principles of Tidal Sedimentology. Springer, Berlin, pp. 371-396. [22] Etienne S., Mulder T., Bez M., Desaubliaux G., Kwasniewski A., Parize O., et al., 2012. Multiple scale characterization of sand-rich distal lobe deposit variability, examples from the Annot Sandstones Formation, Eocene- Oligocene, SE France. Sedimentary Geology 273-274: 1-18. [23] Fallgatter C., Kneller B., Paim P.S.G., Milana J.P., et al., 2017. Transformation, partitioning and flow- deposit interactions during the run-out of megaflows.Sedimentology 64: 359-387. [24] Faugères J.-C., Mulder T., 2011. Contour currents and contourite drifts. In: Huneke, H., Mulder, T. (Eds.), Deep- Sea Sediments, Developments in Sedimentology 63, pp. 149-214. [25] Fisher R.V.,1971. Features of coarse-grained, high-concentration fluids and their deposits.Journal of Sedimentary Petrology 41: 916-927. [26] Fonnesu, Marco, Fabrizio Felletti, Peter D. W. Haughton, Marco Patacci,William D. McCaffrey.2018. "Hybrid event bed character and distribution linked to turbidite system sub-environments: The North Apennine Gottero Sandstone (north-west Italy)." Sedimentology 65 (1): 151-190. https://doi.org/10.1111/sed.12376. [27] Fonnesu, Marco,Peter Haughton, Fabrizio Felletti, and William McCaffrey. 2015. "Short length-scale variability of hybrid event beds and its applied significance." Marine and Petroleum Geology 67: 583-603. https://doi.org/https://doi.org/10.1016/j.marpetgeo.2015.03.028. [28] Fonnesu, Marco,Marco Patacci, Peter D. W. Haughton, Fabrizio Felletti, and William D. McCaffrey. 2016. "Hybrid Event Beds Generated By Local Substrate Delamination On A Confined-Basin Floor." Journal of Sedimentary Research 86 (8): 929-943. https://doi.org/10.2110/jsr.2016.58 [29] Fonnesu M., Palermo D., Galbiati M., Marchesini M., Bonamini E., Bendias D., 2020. A new world- class deep- water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents: the giant Eocene Coral Field in northern Mozambique.Marine and Petroleum Geology111: 179-201. [30] Fuhrmann A., Kane I.A., Clare M.A., Ferguson R.A., Schomacker E., Bonamini E., Contreras F.A., et al., 2020. Hybrid turbidite-drift channel complexes: An integrated multiscale model: An integrated multiscale model. Geology 48: 562-568. Available from: https://doi.org/10.1130/G47179.1. [31] Gao Z., Eriksson K.A., 1991. Internal-tide deposits in an Ordovician submarine channel: previously unrecognized facies?Geology 19: 734-737. [32] Gao Z., Eriksson K.A., He Y., Luo S., Guo J., 1998. Deep-Water Traction Current Deposits—A Study of Internal Tides, Internal Waves, Contour Currents and Their Deposits. Science Press, Beijing and New York, Utrecht, Tokyo, 128 pp. [33] Gao Z., He Y., Li X., Duan T., 2013. Review of research in internal-wave and internal-tide deposits of China.Journal of Palaeogeography 2(1): 56-65. [34] Gao Z., He Y., Li X., Duan T., Wang Y., 2014. Reply to Shanmugam, G. “Review of research in internal-wave and internal-tide deposits of China: Discussion”Journal of Palaeogeography 3(4): 351-358. [35] Gill A.E.,1982. Atmosphere-Ocean Dynamics. International Geophysics Series, vol. 30. Academic Press, An Imprint of Elsevier, San Diego, CA, 662 p. [36] Gonthier E.G., Faugères J.-C., Stow D.A.V., 1984. Contourite facies of the Faro Drift, Gulf of Cadiz. In: Stow, D. A.V., Piper, D.J.W. (Eds.), Fine-Grained Sediments: Deep-Water Processes and Facies, 15. Geological Society of London Special Publication, pp. 275-292. [37] Hampton M.A.,1972. The role of subaqueous debris flows in generating turbidity currents.Journal of Sedimentary Petrology 42: 775-793. [38] Harms J.C., Fahnestock R.K., 1965. Stratification, bed forms, and flow phenomena (with an example from the Rio Grande). In: Middleton, G.V. (Ed.), Primary Sedimentary Structures and Their Hydrodynamic Interpretation, 12. SEPM Special Publication, pp. 84-115. [39] Hay A., Burling R.W., Murray J.W., 1982. Remote acoustic detection of a turbidity current surge.Science 217: 833-835. [40] He Y. B., Luo J. X., Li X. D., Gao Z. Z., Wen Z., 2011. Evidence of internal-wave and internal-tide deposits in the Xujiajuan Formation of the Xiangshan Group, Ningxia, China.Geo-Marine Letters 31: 509-523. [41] He Y. B., Luo J.X., Gao Z.Z., Wen Z., 2012, Reply to the discussion of He et al. 2011, Geo-Marine Letters: Evidence of internal-wave and internal-tide deposits in the Middle Ordovician Xujiajuan Formation of the Xiangshan Group, Ningxia, China.Geo-Marine Letters 32: 367-372, doi:10.1007/s00367-012-0290-2. [42] Heezen B.C., Ewing M., 1952. Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake.American Journal of Sciences 250: 849-873. [43] Heezen B.C., Menzies R.J., Schneider E.D., Ewing W.M., Granelli N.C., 1964. Congo submarine canyon.AAPG Bulletin 48: 1126-1149. [44] Hiscott R.N., Pickering K.T., Bouma A.H., Hand B.M., Kneller B.C., Postma G., Soh W., 1997. Basin- floor fans in the North Sea, sequence stratigraphic models vs. sedimentary facies, discussion.AAPG Bulletin 81: 662-665. [45] Hollister C.D.,1967. Sediment Distribution and Deep Circulation in the Western North Atlantic (Unpublished Ph.D. dissertation). Columbia University, New York, p. 467. [46] Houghton P., Davis C., McCaffrey W., Barker S., 2009. Hybrid sediment gravity flow deposits - classification, origin and significance.Marine and Petroleum Geology 26: 1900-1918. [47] Hovikoski J., Uchman A., Weibel R., Nøhr‐Hansen H., Sheldon E., Ineson J., Bjerager M.,Therkelsen J., Olivarius M., Larsen M., Alsen P. and Bojesen-Koefoed J. (2020) Upper Cretaceous bottom current deposits, north‐east Greenland. Sedimentology. doi.org/10.1111/sed.12764 [48] Hoyal D.C.H., Demko, T., Postma, G., Wellner, R.W., Pederson, K., Abreu, V., et al., 2014. Evolution, architecture and stratigraphy of Froude supercritical submarine fans. In: AAPG Annual Convention and Exhibition, 6-9 April, Datapages/Search and Discovery Article #90189. [49] Hsü K.J.,1964. Cross-laminated sequence in graded bed sequence.Journal of Sedimentary Petrology 34: 379-388. [50] Hubert J.F.,1964. Textural evidence for deposition of many western North Atlantic deep-sea sands by ocean- bottom currents rather than turbidity currents.Journal of Geology 72: 757-785. [51] Hüneke H., Hernandez-Molina F.J., Rodríguez-Tovar F.J., Llave E., Chiarella D., Mena A., et al., 2020. Diagnostic criteria using microfacies for calcareous contourites, turbidites and pelagites in the Eocene-Miocene slope succession, southern Cyprus. Sedimentology https://doi.org/10.1111/sed.12792 [52] Inglis I., Verstralen I., Mousset E., Salim A., Vially R., 1981. Etude sédimentologique des Grès d'Annot (Région de Colmars-les-Alpes et du Col de la cayolle). ENSPM, Rueil Malmaison 169. [53] Inman D.L., Nordstrom C.E., Flick R.E., 1976. Currents in submarine canyons: an air-sea-land interaction.Annual Review of Fluid Mechanics 8: 275-310. [54] Ito M.,2002. Kuroshio current-influenced sandy contourites from the Plio-Pleistocene Kazusa forearc basin, Boso Peninsula, Japan. In: Stow, D.A.V., Pudsey, C.J., Howe, J.A., Faugères, J.-C., Viana, A.R. (Eds.), Deep-Water Contourite Systems: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics, 22. Geological Society Memoirs, London, pp. 421-432. [55] Iverson R.M.,1997. The physics of debris flows.Reviews of Geophysics 35: 245-296. [56] Jackson B.A.,2004. Seismic evidence for gas hydrates in the north Makassar Basin, Indonesia. Petroleum Geoscience 10: 227-238. Available from: https://doi.org/10.1144/1354-079303-601. [57] Keller G.H., Shepard F.P., 1978. Currents and sedimentary processes in submarine canyons off the northeast United States. In: Stanley, D.J., Kelling, G.K. (Eds.), Sedimentation in Submarine Canyons, Fans, and Trenches. Dowden, Hutchinson & Ross, Inc, Stroudsburg, PA, pp. 15-32. [58] Kenyon N.H., Akhmetzhanov A.M., Twichell D.C., 2002. Sand wave fields beneath the Loop Current, Gulf of Mexico: reworking of fan sands.Marine Geology 192: 297-307. [59] Klein G.D.,1966. Dispersal and petrology of sandstones of Stanley-Jackfork boundary, Ouachita foldbelt, Arkansas and Oklahoma.AAPG Bulletin 50: 308-326. [60] Klein G.D.,1970. Depositional and dispersal dynamics of intertidal sand bars.Journal of Sedimentary Petrology 40: 1095-1127. [61] Klein G.D.,1971. A sedimentary model for determining paleotidal range.GSABulletin 82: 2585-2592. [62] Klein G.D.,1975. Resedimented pelagic carbonate and volcaniclastic sediments and sedimentary structures in Leg 30 DSDP cores from the western equatorial Pacific.Geology 3: 39-42. [63] Kostic S., Parker G., 2007. Conditions under which a supercritical turbidity current traverses an abrupt transition to vanishing bed slope without a hydraulic jump.Journal of Fluid Mechanics 586: 119-145. [64] Kuenen, Ph. H., 1966. Experimental turbidite lamination in a circular flume.Journal of Geology 74:523-545. [65] Lanteaume, M. Beaudoin B., Campredon R., 1967. Figures sedimentaires du flysch ‘gres d’ Annot’ dusynclinal de Peira-Cava. Centre National de la Recherche Scientifique, Paris, p. 97. [66] Leclair S., Arnott R.W.C., 2005. Parallel lamination formed by high-density turbidity currents.Journal of Sedimentary Research 75: 1-5. [67] Lonsdale P., Nornaark W.R., Newman W.A., 1972. Sedimentation and erosion on Horizon Guyot.GSA Bulletin 83: 289-316. [68] Lovell J.P.B., Stow D.A.V., 1981. Identification of ancient sandy contourites.Geology 9: 347-349. [69] Lowe D.R.,1976. Grain flow and grain flow deposits.Journal of Sedimentary Petrology 46: 188-199. [70] Lowe D.R.,1982. Sediment gravity flows: II. Depositional models with special reference to the deposits of high- density turbidity currents.Journal of Sedimentary Petrology 52: 279-297. [71] Lowe D.R.,1997. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma, Discussion.AAPG Bulletin 81: 460-465. [72] Lowe D.R., Guy M., 2000. Slurry-flow deposits in the Britannia formation (Lower Cretaceous), North Sea: a new perspective on the turbidity current and debris flow problem.Sedimentology 47: 31-70. [73] Maier K.L., Gales J.A., Paull C.K., Rosenberger K., Talling P.J., Simmons S.M., Gwiazda R.,McGann, M., Cartigny, M.J.B., Lundsten, E., Anderson, K., Clare, M.A., Xu, J., Parsons, D., Barry, J.P., Wolfson-Schwehr, M., Nieminski, N.M., Sumner, E.J., et al., 2019. Linking Direct Measurements of Turbidity Currents to Submarine Canyon-Floor Deposits. FrontIers of Earth Science 7: 144. Available from: https://doi.org/10.3389/feart.2019.00144. [74] Marr J.G.,P.A. Harff,G. Shanmugam, and G. Parker.2001. Experiments on subaqueous sandy gravity flows, the role of clay and water content in flow dynamics and depositional structures.GSA Bulletin 113: 1377-1386. [75] Martin-Chivelet, J., Fregenal-MartiÄnez, M.A., Chacón, B., 2008. Traction structures in contourites. In: Rebesco, M., Camerlenghi, A. (Eds.), Contourites. Developments in Sedimentology, 60. pp. 159-182. [76] Menard H.W.,1952. Deep ripple marks in the sea.Journal of Sedimentary Petrology 22: 3-9. [77] Middleton G.V.,1967. Experiments on density and turbidity currents: III. Deposition of sediment. Canadian Journal of Earth Sciences 4: 475-505. [78] Middleton G.V.,1973. Johannes Walther's Law of the correlation of fades.GSA Bulletin 84: 979-988. [79] Middleton G.V.,1993. Sediment deposition from turbidity currents.Annual Reviewof Earth Planetary Sciences 21: 89-114. [80] Middleton G.V., Hampton M.A., 1973. Sediment gravity flows: mechanics of flow and deposition. In: Middleton, G.V., Bouma, A.H. (Eds.), Turbidites and Deep-Water Sedimentation. SEPM Pacific Section Short Course, Anaheim, CA, pp. 1-38. [81] Mullins H.T., Gardulski A.F., Wise Jr., S.W., Applegate J., 1987. Implications for seismic stratigraphic succession and Loop Current/Gulf Stream circulation.GSA Bulletin 98: 702-713. [82] Mutti E.,2009. The future of field-based stratigraphic and sedimentologic studies from a personal perspective.Journal of Mediterranean Earth Sciences 1: 89-90. [83] Mutti E., Ricci Lucchi F., 1972. Turbidites of the northern Apennines: introduction to facies analysis (English translation by Nilsen, T.H., 1978).International Geology Review 20: 125-166. [84] Mutti E., Carminatti M., 20112011. Deep-water sands in the Brazilian offshore basins. AAPG Search and Discovery Article 30219., http://www.searchanddiscovery.com/documents/2012/30219mutti/ndx_mutti.pdf. (accessed 29.10.15. [85] Mutti E., Tinterri R., Remacha E., Mavilla N., Angella S., Fava L., 1999. An Introduction to the Analysis of Ancient Turbidite Basins from an Outcrop Perspective. American Association of Petroleum Geologists Continuing Education Course, Tulsa, OK, Note Series No. 39, 61 p. [86] Norem H., Locat J., Schieldrop B., 1990. An approach to the physics and the modeling of submarine flowslides.Marine Geosciences & Geotechnology 9: 93-111. [87] Normark W.R.,1989. Observed parameters for turbidity-current flow in channels, Reserve Fan, Lake Superior.Journal of Sedimentary Petrology 59: 423-431. [88] Nowlin Jr., W.D., Hubert, J.M., 1972. Contrasting summer circulation patterns for the eastern Gulf. In: Capurro, L. R.A., Reid, J.L. (Eds.), Contributions on the Physical Oceanography of the Gulf of Mexico. Texas A&M University Oceanographic Studies 2. Gulf Publishing Co, Houston, TX, pp. 119-137. [89] Parsons J.D., Schweller W.J., Stelting C.W., Southard J.B., Lyons W.J., Grotzinger J.P., 2003. A preliminary experimental study of turbidite fan deposits—reply.Journal of Sedimentary Research 73: 839-841. [90] Pequegnat W.E.,1972. A deep bottom-current on the Mississippi Cone. In: Capurro, L.R.A., Reid, J.L. (Eds.), Contribution on the Physical Oceanography of the Gulf of Mexico. Texas A&M University Oceanographic Studies, 2. Gulf Publishing, Houston, TX, pp. 65-87. [91] Pickering K.T., Hilton V., 1998. Turbidite Systems of Southeast France. Vallis Press, London, p. 229. [92] Pierson T.C., Costa J.E., 1987. Arheologic classification of subaerial sediment-water flows. In: Costa, J.E., Wieczorek, G.F. (Eds.), Debris Flows/Avalanches: Process, Recognition, and Mitigation, VII. Geological Society of America Reviews in Engineering Geology, pp. 1-12. [93] Pomar L., Morsilli M., Hallock P., Bádenas B., 2012. Internal waves, an under-explored source of turbulence events in the sedimentary record.Earth-Science Reviews 111: 56-81. [94] Pomar L.; Morsilli, Michele; Hallock, Pamela; Bádenas, B.; andBourgault D.,2013. "Reply to Shanmugam, G., Comment on "Internal Waves, an Underexplored Source of Turbulence Events in the Sedimentary Record" by Pomar Et Al. [Earth-Science Reviews, 111 (2012), 56-81], Earth- Science Reviews 116: 206=210. [95] Postma G.,1986. Classification of sediment gravity-flow deposits based on flow conditions during sedimentation.Geology 14:, 291-294 [96] Postma G., Cartigny M.J.B., 2014. Supercritical and subcritical turbidity currents and their deposits - a synthesis.Geology 42: 987-990. [97] Postma G., Nemec W., Kleinspehn K.L., 1988. Large floating clasts in turbidites: a mechanism for their emplacement.Sedimentary Geology 58: 47-61. [98] Racki G.2003. "HOT" articles in modern sedimentary research. The updated list. IAS (International Association of Sedimentologists) Newsletter, 187, August, 3-5. [99] Rebesco M., Hernández-Molina F.J., Van Rooij D., Wåhlin A., 2014. Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations.Marine Geology 352: 111-154. [100] Rodrigues S., Hernandez-Molina F. J., Kirby A.2021. A Late Cretaceous mixed (turbidite- contourite) system along the Argentine Margin: Paleoceanographic and conceptual implications.Marine and Petroleum Geology 123(2021): 104768. [101] Sanders J.E.,1965. Primary sedimentary structures formed by turbidity currents and related resedimentation mechanisms. In: Middleton, G.V. (Ed.), Primary Sedimentary Structures and Their Hydrodynamic Interpretation, 12. SEPM Special Publication, pp. 192-219. [102] Shanmugam G.,1996. High-density turbidity currents: are they sandy debris flows?Journal of Sedimentary Research 66: 2-10. [103] Shanmugam G.,1997. The Bouma Sequence and the turbidite mind set.Earth-Science Reviews 42: 201-229. [104] Shanmugam G.,2000a. 50 years of the turbidite paradigm (1950s-1990s): deep-water processes and facies models--a critical perspective.Marine and Petroleum Geology 17: 285-342. [105] Shanmugam G.,2000b. John E. Sanders and the turbidite controversy. In: Friedman, G.M. (Ed.), Conference on the History of Geologic Pioneers. Rensselaer Center of Applied Geology, Troy, NY, pp. 19-20. [106] Shanmugam G.,2002. Ten turbidite myths.Earth-Science Reviews 58: 311-341. [107] Shanmugam G.,2003. Deep-marine tidal bottom currents and their reworked sands in modern and ancient submarine canyons.Marine and Petroleum Geology 20: 471-491. [108] Shanmugam G.,2006. Deep-Water Processes and Facies Models: Implications for Sandstone Petroleum Reservoirs. Elsevier, Amsterdam, p. 476. [109] Shanmugam G.,2007. The obsolescence of deep-water sequence stratigraphy in petroleum geology.Indian Journal of Petroleum Geology 16(1): 1-45. [110] Shanmugam G.,2008. Deep-water bottom currents and their deposits. In: Rebesco, M., Camerlenghi, A. (Eds.), Contourites, Developments in Sedimentology 60. Elsevier, Amsterdam, pp. 59-81. Chapter 5 [111] Shanmugam G.,2012a. New Perspectives on Deep-Water Sandstones: Origin, Recognition, Initiation, and Reservoir Quality, 9. Elsevier, Handbook of Petroleum Exploration and Production, Amsterdam, p. 524. [112] Shanmugam G.,2012b. Discussion of He et al., 2011 (Geo-Marine Letters) Evidence of internal-wave and internal-tide deposits in the Middle Ordovician Xujiajuan Formation of the Xiangshan Group, Ningxia, China.Geo- Marine Letters 32: 359-366. [113] Shanmugam G.,2013a. Modern internal waves and internal tides along oceanic pycnoclines: challenges and implications for ancient deep-marine baroclinic sands.AAPG Bulletin 97: 767-811. [114] Shanmugam G.,2013b. Comment on “Internal waves, an underexplored source of turbulence events in the sedimentary record” by L. Pomar, M. Morsilli, P. Hallock, and B. Bádenas [Earth-Science Reviews, 111 (2012), 56- 81].Earth-Science Reviews 116: 195-205. [115] Shanmugam G.,2014a. Modern internal waves and internal tides along oceanic pycnoclines: challenges and implications for ancient deep-marine baroclinic sands: reply.AAPG Bulletin 98: 858-879. [116] Shanmugam G.,2014b. Review of research in internal-wave and internal-tide deposits of China, discussion.Journal of Palaeogeography 3(4): 332-350. [117] Shanmugam G.,2016a. Submarine fans: a critical retrospective (1950-2015).Journal of Palaeogeography 5(2): 110-184. [118] Shanmugam G.,2016b. The contourite problem. In: Mazumder, R. (Ed.), Sediment Provenance. Elsevier, pp. 183-254. Chapter 9. [119] Shanmugam G.,2017. Contourites: physical oceanography, process sedimentology, and petroleum geology.Petroleum Exploration and Development 44(2): 183-216. [120] Shanmugam G.,2018a. Preface. In: Special Issue dedicated to George Devries Klein by the Journal of the Indian Association of Sedimentologists (JIAS). Journal of Indian Association of SedimentolOgists 35 (2): 1-5. [121] Shanmugam G.,2018b. The hyperpycnite problem.Journal of Palaeogeography 7(3): 197-238. [122] Shanmugam G.,2019. Reply to discussions by Zavala (2019) and by Van Loon, Hüeneke, and Mulder (2019) on Shanmugam, G. (2018, Journal of Palaeogeography, 7 (3): 197-238): the hyperpycnite problem.Journal of Palaeogeography 8(4):408-421. [123] Shanmugam G.2020. Gravity flows: Types, definitions, origins, identification markers, and problems.Journal Indian Association of Sedimentologists 37(2): 61-90. [124] Shanmugam G.2021a. Mass transport, gravity flows, and bottom currents: Downslope and alongslope processes and deposits. Elsevier, 608 p. [125] Shanmugam G.2021b. Deep-water processes and deposits. In: David Alderton and Scott A. Elias (Editors-in-Chief), Encyclopedia of Geology, Second Edition, Elsevier, pp. 965-1009. [126] Shanmugam G., Moiola R.J., 1982. Eustatic control of turbidites and winnowed turbidites.Geology 10: 231-235. [127] Shanmugam G., Moiola R.J., 1988. Submarine fans: characteristics, models, classification, and reservoir potential.Earth-Science Reviews 24: 383-428. [128] Shanmugam G., Moiola R.J., 1995. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma.AAPG Bulletin 79: 672-695. [129] Shanmugam G., Moiola R.J., 1997. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma: reply.AAPG Bulletin 81: 476-491. [130] Shanmugam G., Spalding T.D., Rofheart D.H., 1993. Process sedimentology and reservoir quality of deep- marine bottom-current reworked sands (sandy contourites): an example from the Gulf of Mexico.AAPG Bulletin 77: 1241-1259. [131] Shanmugam G., Bloch R.B., Mitchell S.M., Beamish G.W.J., Hodgkinson R.J., Damuth J.E., Straume T., Syvertsen S.E., Shields K.E., 1995. Basin-floor fans in the North Sea, sequence stratigraphic models vs. sedimentary facies.AAPG Bulletin 79: 477-512. [132] Shanmugam G., Bloch R.B., Damuth J.E., Hodgkinson R.J., 1997. Basin-floor fans in the North Sea, sequence stratigraphic models vs. sedimentary facies, reply. AAPG Bulletin 81: 666-672. [133] Shanmugam G., Poffenberger M., Toro Alava J., 2000. Tide-dominated estuarine facies in the Hollin and Napo (‘T’ and ‘U’) formations (Cretaceous), Sacha Field, Oriente Basin, Ecuador.AAPG Bulletin 84: 652-682. [134] Shanmugam G., Shrivastava S.K., Das B., 2009. Sandy debrites and tidalites of Pliocene reservoir sands in upper-slope canyon environments, Offshore Krishna-Godavari Basin (India): implications.Journal of Sedimentary Research 79: 736-756. [135] Shepard F.P., Marshall N.F., McLoughlin P.A., Sullivan G.G., 1979. Currents in submarine canyons and other sea valleys.AAPG Studies in Geology 8: 173. [136] Slatt R.M., Weimer P., Stone C.G., 1997. Reinterpretation of depositional processes in a classic flysch sequence (Pennsylvanian Jackfork Group), Ouachita Mountains, Arkansas and Oklahoma, discussion.AAPG Bulletin 81: 449-459. [137] Stanley D.J.,1963. Vertical petrographic variability in Annot Sandstone turbidites.Journal of Sedimentary Petrology 33: 783-788. [138] Stanley D.J.,1975. Submarine canyon and slope sedimentation (Gres D'Annot) in the French Maritime Alps. In: IXth Congress International de Sedimentologie, Nice, Field Guide, p. 129. [139] Stauffer P.H.,1967. Grain flow deposits and their implications, Santa Ynez Mountains, California.Journal of Sedimentary Petrology 37: 487-508. [140] Stow, D and Smillie, Z., 2020. Distinguishing between deep-water sediment facies: Turbidites, contourites and hemipelagites. Geosciences 10: 68. https://doi.org/10.3390/geosciences10020068. [141] Stow D.A.V., Faugères, J.-C., 2008. Contourite facies and the facies model. In: Rebesco, M., Camerlenghi, A. (Eds.), Contourites. Elsevier, Amsterdam, pp. 223-256. [142] Talling P.J.,2013. Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models.Geosphere 9(3): 460-488. [143] Vail P.R., Audemard F., Bowman S.A., Eisner P.N., Perez-Cruz, C., 1991. The stratigraphic signatures of tectonics, eustacy and sedimentology - an overview. In: Einsele, G., Ricken, W., Seilacher, A. (Eds.), Cycles and Events in Stratigraphy. Springer-Verlag, Berlin, pp. 618-659. [144] Visser M.J.,1980. Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: a preliminary note.Geology 8: 543-546. [145] Walker R.G.,1965. The origin and significance of the internal sedimentary structures of turbidites.Proceedings of the Yorkshire Geological Society 35: 1-32. [146] Walker R.G.,1992. Facies, facies models, and modern stratigraphic concepts. In: Walker, R.G., James, N.P. (Eds.), Facies Models: Response to Sea Level Change, GEOtext 1. Geological Association of Canada, pp. 1-14. [147] Wunsch C.,2002. What is the thermohaline circulation? Science 298 (5596), 1179-1181. Available from: https:// doi.org/10.1126/science.1079329. PMID 12424356. [148] Wunsch C., Gill A.E., 1976. Observations of equatorially trapped waves in Pacific sea level variations.Deep-Sea Research Oceanographic Abstracts 23(5): 371-390. [149] Xu J.P., Noble M.A., Rosenfeld L.K., 2004. In-situ measurements of velocity structure within turbidity currents. Geophysical Research Letters 31: L09311. https://doi.org/10.1029/2004GL019718, 2004. [150] Yang T.,Y.C. Cao,H. Friis,K. Liu, and Y. Wang.2018. "Origin and evolution processes of hybrid event beds in the Lower Cretaceous of the Lingshan Island, Eastern China."Australian Journal of Earth Sciences 65(4): 517-534. [151] Zavala C.2020. Hyperpycnal (over density) flows and deposits. Journal of Palaeogeography 9: 17. https://doi.org/10.1186/s42501-020-00065-x