[1] Aberhan M.,2001. Bivalve palaeobiogeography and the Hispanic Corridor: Time of opening and effectiveness of a proto-Atlantic seaway. Palaeogeography, Palaeoclimatology, Palaeoecology 165(3-4), 375-394. https://doi.org/10.1016/S0031-0182(00)00172-3.
[2] Alberti M., Leshno Y., Fürsich F.T., Edelman-Furstenberg Y., Andersen N., Garbe-Schönberg D., 2020. Stress in the tropics? Impact of a latitudinal seawater δ18O gradient on Middle Jurassic temperature reconstructions at low latitudes. Geology 48(12), 1210-1215. https://doi.org/10.1130/G47824.1.
[3] Alvin K.L.,1982. Cheirolepidiaceae: Biology, structure and paleoecology.Review of Palaeobotany and Palynology 37(1), 71-98.
[4] Arens N.C., Jahren A.H., Amundson R., 2000. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology 26(1), 137-164. https://doi.org/10.1666/0094-8373(2000)026<0137:CCPFRT>2.0.CO;2.
[5] Ashley G.M.,2020. Paleo-Critical Zones, windows into the changing life and landscapes during the Quaternary Period. Quaternary Research 96, 53-65. https://doi.org/10.1017/qua.2020.49.
[6] Bartolini A., Larson R.L., 2001. Pacific microplate and the Pangea supercontinent in the Early to Middle Jurassic. Geology 29(8), 735-738. https://doi.org/10.1130/0091-7613(2001)029<0735:PMATPS>2.0.CO;2.
[7] Berner R.A.,1994. GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time. American Journal of Science 294(1), 56-91. https://doi.org/10.2475/ajs.294.1.56.
[8] Berner, R.A., 2008. Addendum to “Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model” (R. A. Berner, 2006, V. 306, p. 295–302). American Journal of Science 308(1), 100–103. https://doi.org/10.2475/01.2008.04.
[9] Bodin S., Hönig M.R., Krencker F., Danisch J., Kabiri L.,2017. Neritic carbonate crisis during the early Bajocian: Divergent responses to a global environmental perturbation. Palaeogeography, Palaeoclimatology, Palaeoecology 468, 184-199. https://doi.org/10.1016/j.palaeo.2016.12.017.
[10] Bodin S., Mau M., Sadki D., Danisch J., Nutz A., Krencker F., Kabiri L.,2020. Transient and secular changes in global carbon cycling during the early Bajocian event: Evidence for Jurassic cool climate episodes. Global and Planetary Change 194, 103287. https://doi.org/10.1016/j.gloplacha.2020.103287.
[11] Boucot A.J., Chen X., Scotese C.R., Morley R.J., 2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. Tulsa: SEPM (Society for Sedimentary Geology).
[12] Breecker D.O., Bergel S., Nadel M., Tremblay M.M., Osuna-Orozco R., Larson T.E., Sharp Z.D., 2015. Minor stable carbon isotope fractionation between respired carbon dioxide and bulk soil organic matter during laboratory incubation of topsoil. Biogeochemistry 123(1), 83-98. https://doi.org/10.1007/s10533-014-0054-3.
[13] Breecker D.O., Retallack G.J.,2014. Refining the pedogenic carbonate atmospheric CO2 proxy and application to Miocene CO2. Palaeogeography, Palaeoclimatology, Palaeoecology 406, 1-8. https://doi.org/10.1016/j.palaeo.2014.04.012.
[14] Bureau of Geology and Mineral Resources of Sichuan Province (BGMRSP), 1991. Regional Geology of Sichuan Province. Beijing: Geological Publishing House (in Chinese).
[15] Canti M.G., Brochier J.E., 2017. Faecal spherulites. In: Nicosia, C., Stoops, G. (eds.), Archaeological Soil and Sediment Micromorphology, pp. 51-54. Chichester: John Wiley & Sons Ltd.
[16] Cerling T.E.,1991. Carbon dioxide in the atmosphere: Evidence from Cenozoic and Mesozoic paleosols.American Journal of Science 291(4), 377-400.
[17] Chen P.J., Li J.J., Matsukawa M., Zhang H.C., Wang Q.F., Lockley M.G.,2006. Geological ages of dinosaur-track-bearing formations in China. Cretaceous Research 27(1), 22-32. https://doi.org/10.1016/j.cretres.2005.10.008.
[18] Compiling Group of Continental Mesozoic Stratigraphy and Palaeontology in Sichuan Basin of China (CGCMSPSBC), 1982. Continental Mesozoic Stratigraphy and Palaeontology in Sichuan Basin of China. Chengdu: People's Publishing House of Sichuan (in Chinese).
[19] Dal' Bó, P.F.F., Basilici, G., Angelica, R.S., Ladeira, F.S.B., 2009. Paleoclimatic interpretations from pedogenic calcretes in a Maastrichtian semi-arid eolian sand-sheet palaeoenvironment: Marília Formation (Bauru Basin, southeastern Brazil). Cretaceous Research 30(3), 659-675. https://doi.org/10.1016/j.cretres.2008.12.006.
[20] Delgado L., Batezelli A., Ladeira F.S.B., 2021. Paleoenvironmental and paleoclimatic reconstruction of Lower to Upper Cretaceous sequences of the Bauru Basin based on paleosol geochemistry and mineralogical analyses. Palaeogeography, Palaeoclimatology, Palaeoecology 569, 110328. https://doi.org/10.1016/j.palaeo.2021.110328.
[21] Dera G., Brigaud B., Monna F., Laffont R., Pucéat E., Deconinck J., Pellenard P., Joachimski M.M., Durlet C., 2011. Climatic ups and downs in a disturbed Jurassic world.Geology 39(3), 215-218.
[22] Dera G., Prunier J., Smith P.L., Haggart J.W., Popov E., Guzhov A., Rogov M., Delsate D., Thies D., Cuny G., Pucéat E., Charbonnier G., Bayon G.,2015. Nd isotope constraints on ocean circulation, paleoclimate, and continental drainage during the Jurassic breakup of Pangea. Gondwana Research 27(4), 1599-1615. https://doi.org/10.1016/j.gr.2014.02.006.
[23] Donnadieu Y., Goddéris Y., Pierrehumbert R., Dromart G., Fluteau F., Jacob R., 2006. A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup. Geochemistry, Geophysics, Geosystems 7(11), Q11019. https://doi.org/10.1029/2006GC001278.
[24] Driese S.G., Medaris L.G., Kirsimäe K., Somelar P., Stinchcomb G.E.,2018. Oxisolic processes and geochemical constraints on duration of weathering for Neoproterozoic Baltic paleosol. Precambrian Research 310, 165-178. https://doi.org/10.1016/j.precamres.2018.02.020.
[25] Dromart G., Garcia J.P., Picard S., Atrops F., Lécuyer C., Sheppard S.M.F., 2003. Ice age at the Middle-Late Jurassic transition? Earth and Planetary Science Letters 213(3-4), 205-220. https://doi.org/10.1016/S0012-821X(03)00287-5.
[26] Ekart D.D., Cerling T.E., Montanez I.P., Tabor N.J., 1999. A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide. American Journal of Science 299(10), 805-827. https://doi.org/10.2475/ajs.299.10.805.
[27] Foster G.L., Royer D.L., Lunt D.J., 2017. Future climate forcing potentially without precedent in the last 420 million years. Nature Communications 8(1), 14845. https://doi.org/10.1038/ncomms14845.
[28] Franks P.J., Royer D.L., Beerling D.J., Van de Water P.K., Cantrill D.J., Barbour M.M., Berry J.A., 2014. New constraints on atmospheric CO2 concentration for the Phanerozoic. Geophysical Research Letters 41(13), 4685-4694. https://doi.org/10.1002/2014GL060457.
[29] Gallagher T.M., Sheldon N.D., 2013. A new paleothermometer for forest paleosols and its implications for Cenozoic climate. Geology 41(6), 647-650. https://doi.org/10.1130/G34074.1.
[30] Gao Y., Ibarra D.E.,Caves Rugenstein, J.K., Chen, J.Q., Kukla, T., Methner, K., Gao, Y.F., Huang, H., Lin, Z.P., Zhang, L.M., Xi, D.P., Wu, H.C., Carroll, A.R., Graham, S.A., Chamberlain, C.P., Wang, C.S., 2021. Terrestrial climate in mid-latitude East Asia from the latest Cretaceous to the earliest Paleogene: A multiproxy record from the Songliao Basin in northeastern China. Earth-Science Reviews 216, 103572. https://doi.org/10.1016/j.earscirev.2021.103572.
[31] Gao Y., Ibarra D.E., Wang C.S., Caves J.K., Chamberlain C.P., Graham S.A., Wu H.C., 2015. Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous. Geology 43(4), 287-290. https://doi.org/10.1130/G36427.1.
[32] Gile L.H., Peterson F.F., Grossman R.B., 1966. Morphological and genetic sequences of carbonate accumulation in desert soils.Soil Science 101(5), 347-360.
[33] Gu X.D., Liu X.H., 1997. Stratigraphy in the Sichuan Basin. Wuhan: China University of Geosciences Press (in Chinese).
[34] Gulbranson E.L., Montanez I.P., Tabor N.J., 2011. A proxy for humidity and floral province from paleosols. The Journal of Geology 119(6), 559-573. https://doi.org/10.1086/661975.
[35] Guo X.L., Retallack G.J., Lü B., He L.S., Wang R.H., Song H.,2019. Paleosols in Devonian red-beds from northwest China and their paleoclimatic characteristics. Sedimentary Geology 379, 16-24. https://doi.org/10.1016/j.sedgeo.2018.11.001.
[36] Hallam A.,1993. Jurassic climates as inferred from the sedimentary and fossil record.Philosophical Transactions of the Royal Society B Biological Sciences 341: 287-296.
[37] Haq B.U.,2018. Jurassic sea-level variations: A reappraisal. GSA Today 28(1), 4-10. https://doi.org/10.1130/GSATG359A.1.
[38] Holdridge L.R.,1947. Determination of world plant formations from simple climatic data. Science 105(2727), 367-368. https://doi.org/10.1126/science.105.2727.367.
[39] Holz M.,2015. Mesozoic paleogeography and paleoclimates - A discussion of the diverse greenhouse and hothouse conditions of an alien world. Journal of South American Earth Sciences 61, 91-107. https://doi.org/10.1016/j.jsames.2015.01.001.
[40] Huang C.M., Retallack G.J., Wang C.S.,2012. Early Cretaceous atmospheric pCO2 levels recorded from pedogenic carbonates in China. Cretaceous Research 33(1), 42-49. https://doi.org/10.1016/j.cretres.2011.08.001.
[41] Huang C.M., Retallack G.J., Wang C.S., Huang Q.H.,2013. Paleoatmospheric pCO2 fluctuations across the Cretaceous-Tertiary boundary recorded from paleosol carbonates in NE China. Palaeogeography, Palaeoclimatology, Palaeoecology 385, 95-105. https://doi.org/10.1016/j.palaeo.2013.01.005.
[42] Hyland E.G., Sheldon N.D., 2016. Examining the spatial consistency of palaeosol proxies: Implications for palaeoclimatic and palaeoenvironmental reconstructions in terrestrial sedimentary basins. Sedimentology 63(4), 959-971. https://doi.org/10.1111/sed.12245.
[43] Jenkyns H.C., Jones C.E., Gröcke D.R., Hesselbo S.P., Parkinson D.N., 2002. Chemostratigraphy of the Jurassic System: Applications, limitations and implications for palaeoceanography. Journal of the Geological Society 159(4), 351-378. https://doi.org/10.1144/0016-764901-130.
[44] Koch P.L.,1998. Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences 26, 573-613. https://doi.org/10.1146/annurev.earth.26.1.573.
[45] Kooistra M.J., Pulleman M.M., 2010. Features related to faunal activity. In: Stoops, G., Marcelino, V., Marcelino, V. (eds.), Interpretation of Micromorphological Features of Soils and Regoliths, pp. 397-418. Amsterdam: Elsevier.
[46] Köppen W.,1923. Die Klimate der Erde: Grundriss der Klimakunde. Berlin: Walter de Gruyter and Company.
[47] Korte C., Hesselbo S.P., Ullmann C.V., Dietl G., Ruhl M., Schweigert G., Thibault N., 2015. Jurassic climate mode governed by ocean gateway. Nature Communications 6(1), 10015. https://doi.org/10.1038/ncomms10015.
[48] Krencker F., Lindström S., Bodin S., 2019. A major sea-level drop briefly precedes the Toarcian oceanic anoxic event: Implication for Early Jurassic climate and carbon cycle. Scientific Reports 9(1), 12518. https://doi.org/10.1038/s41598-019-48956-x.
[49] Labails C., Olivet J.L., Aslanian D., Roest W.R.,2010. An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters 297(3-4), 355-368. https://doi.org/10.1016/j.epsl.2010.06.024.
[50] Landwehrs J., Feulner G., Petri S., Sames B., Wagreich M., 2021. Investigating Mesozoic climate trends and sensitivities with a large ensemble of climate model simulations. Paleoceanography and Paleoclimatology 36(6), e2020PA004134. https://doi.org/10.1029/2020PA004134.
[51] Li J., Han Z., Wen X.Y., Retallack G.J., Huang C.M., 2020a. Sea-level fluctuations in the late Middle Permian estimated from palaeosols of the Sichuan Basin, SW China. Geological Magazine 157(8), 1333-1348. https://doi.org/10.1017/S0016756819001481.
[52] Li J., Wen X.Y., Huang C.M.,2016. Lower Cretaceous paleosols and paleoclimate in Sichuan Basin, China. Cretaceous Research 62, 154-171. https://doi.org/10.1016/j.cretres.2015.10.002.
[53] Li J., Wen X.Y., Huang C.M., 2020b. Lower and Upper Cretaceous paleosols in the western Sichuan Basin, China: Implications for regional paleoclimate. Geological Journal 55(1), 390-408. https://doi.org/10.1002/gj.3423.
[54] Li J.H., Jiang H.F., 2013. World Atlas of Plate Tectonic Reconstruction, Lithofacies Paleogeography and Paleoenvironment. Beijing: Geological Publishing House (in Chinese).
[55] Li K., Liu J., Yang C.Y., Hu F., 2011. Dinosaur assemblages from the Middle Jurassic Shaximiao Formation and Chuanjie Formation in the Sichuan-Yunnan Basin, China.Volumina Jurassica 9, 21-42.
[56] Li L.Q., Wang Y.D., Kürschner W.M., Ruhl M., Vajda V.,2020d. Palaeovegetation and palaeoclimate changes across the Triassic-Jurassic transition in the Sichuan Basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology 556, 109891. https://doi.org/10.1016/j.palaeo.2020.109891.
[57] Li N., Dai H., Tan C., Hu X.F., Wei Z.Y., Lin Y., Wei G.B., Li D.L., Meng L., Hao B.Q., You H.L., Peng G.Z.,2021. A neornithischian dinosaur from the Middle Jurassic Xintiangou Formation of Yunyang, Chongqing, China: The earliest record in Asia. Historical Biology 33(7), 1089-1102. https://doi.org/10.1080/08912963.2019.1679129.
[58] Li S.L., Yu X.H., Tan C.P., Steel R.,2014. Jurassic sedimentary evolution of southern Junggar Basin: Implication for palaeoclimate changes in northern Xinjiang Uygur Autonomous Region, China. Journal of Palaeogeography 3(2), 145-161. https://doi.org/10.3724/SP.J.1261.2014.00049.
[59] Li X.H., Wang J.Y., Rasbury T., Zhou M., Wei Z., Zhang C.K.,2020c. Early Jurassic climate and atmospheric CO2 concentration in the Sichuan paleobasin, southwestern China. Climate of the Past 16(6), 2055-2074. https://doi.org/10.5194/cp-16-2055-2020.
[60] Li X.P., Ma J.Y., Zhu B., Li R.T.,2019. Sedimentary geochemistry and its significances of the Middle Jurassic Shaximiao Formation on the southwestern margin of the Sichuan Basin. Acta Geologica Sichuan 39(3), 355-360+378. https://doi.org/10.3969/j.issn.1006-0995.2019.03.001 (in Chinese with English abstract).
[61] Li Z.X.,1998. Tectonic history of the major East Asian lithospheric blocks since the Mid-Proterozoic: A synthesis. In: Flower, M.F., Chung, S.L., Lo, C.H., Lee, T.Y. (eds.), Mantle Dynamics and Plate Interactions in East Asia, pp. 221-243. Washington: American Geophysical Union.
[62] Lizzoli S., Raigemborn M.S., Varela A.N.,2021. Controls of pedogenesis in a fluvial-eolian succession of Cenomanian age in northern Patagonia. Palaeogeography, Palaeoclimatology, Palaeoecology 577, 110549. https://doi.org/10.1016/j.palaeo.2021.110549.
[63] Lucas S.G.,2001. Chinese Fossil Vertebrates. New York: Columbia University Press.
[64] Machette M.N.,1985. Calcic soils of the southwestern United States. In: Weide, D.L. (ed.), Soils and Quaternary Geology of the Southwestern United States, pp. 1-21. Florence: GSA Special Papers, vol. 203.
[65] Mack G.H., James C.W., Curtis Monger H., 1993. Classification of paleosols.GSA Bulletin 105, 129-136.
[66] Martini M.,Ortega-Gutiérrez, F., 2018. Tectono-stratigraphic evolution of eastern Mexico during the break-up of Pangea: A review. Earth-Science Reviews 183, 38-55. https://doi.org/10.1016/j.earscirev.2016.06.013.
[67] Maynard J.B.,1992. Chemistry of modern soils as a guide to interpreting Precambrian paleosols.The Journal of Geology 100(3), 279-289.
[68] Meng Q.R., Wang E., Hu J.M., 2005. Mesozoic sedimentary evolution of the northwest Sichuan basin: Implication for continued clockwise rotation of the South China block. GSA Bulletin 117(3-4), 396-410. https://doi.org/10.1130/B25407.1.
[69] Müller R.D., Sdrolias M., Gaina C., Steinberger B., Heine C., 2008. Long-term sea-level fluctuations driven by ocean basin dynamics.Science 319(5868), 1357-1362.
[70] Munsell Color Co., 2000. Munsell Soil Color Charts. Baltimore: Munsell Color Company.
[71] National Research Council of the National Academies (NRC), 2011. Understanding Earth's Deep Past: Lessons for Our Climate Future. Washington: The National Academies Press.
[72] Nordt L.C., Hallmark C.T., Driese S.G., Dworkin S.I., Atchley S.C.,2012. Biogeochemical characterization of a lithified paleosol: Implications for the interpretation of ancient Critical Zones. Geochimica et Cosmochimica Acta 87, 267-282. https://doi.org/10.1016/j.gca.2012.03.019.
[73] Pan Y.Y., Huang C.M., 2014. Quantitative reconstruction of Early Cretaceous paleoclimate using paleosol carbonates in China. Carbonates and Evaporites 29(3), 327-335. https://doi.org/10.1007/s13146-013-0184-z.
[74] Park J., Royer D.L.,2011. Geologic constraints on the glacial amplification of Phanerozoic climate sensitivity. American Journal of Science 311(1), 1-26. https://doi.org/10.2475/01.2011.01.
[75] Parrish J.T.,1993. Climate of the supercontinent Pangea.The Journal of Geology 101(2), 215-233.
[76] Peng G.Z., Ye Y., Gao Y.H., Jiang S., Shu C.K., 2005. Jurassic Dinosaur Faunas in Zigong. Chengdu: People's Publishing House of Sichuan Province (in Chinese with English summary).
[77] Price G.D.,1999. The evidence and implications of polar ice during the Mesozoic. Earth-Science Reviews 48(3), 183-210. https://doi.org/10.1016/S0012-8252(99)00048-3.
[78] Qian L.J., Chen H.D., Lin L.B., Xu S.L., Ou L.H., 2012. Geochemical characteristics and environmental implications of Middle Jurassic Shaximiao Formation, western margin of Sichuan Basin.Acta Sedimentologica Sinica 30(6), 1061-1071 (in Chinese with English abstract).
[79] Quade J., Garzione C., Eiler J.,2007. Paleoelevation reconstruction using pedogenic carbonates. Reviews in Mineralogy and Geochemistry 66(1), 53-87. https://doi.org/10.2138/rmg.2007.66.3.
[80] Retallack G.J.,2001. Soils of the Past: An Introduction to Paleopedology. Second Edition. Oxford: Blackwell.
[81] Retallack G.J.,2005. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology 33(4), 333-336. https://doi.org/10.1130/G21263.1.
[82] Retallack G.J.,2009a. Greenhouse crises of the past 300 million years. GSA Bulletin 121(9-10), 1441-1455. https://doi.org/10.1130/B26341.1.
[83] Retallack G.J.,2009b. Refining a pedogenic-carbonate CO2 paleobarometer to quantify a middle Miocene greenhouse spike. Palaeogeography, Palaeoclimatology, Palaeoecology 281(1-2), 57-65. https://doi.org/10.1016/j.palaeo.2009.07.011.
[84] Retallack G.J., Conde G.D.,2020. Deep time perspective on rising atmospheric CO2. Global and Planetary Change 189, 103177. https://doi.org/10.1016/j.gloplacha.2020.103177.
[85] Retallack G.J., Huang C.M.,2011. Ecology and evolution of Devonian trees in New York, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 299(1-2), 110-128. https://doi.org/10.1016/j.palaeo.2010.10.040.
[86] Retallack G.J., James W.C., Mack G.H., Monger H.C., 1993. Classification of paleosols: Discussion and reply. GSA Bulletin 105(12), 1635-1637. https://doi.org/10.1130/0016-7606(1993)105<1635:COPDAR>2.3.CO;2.
[87] Richey J.D., Montañez I.P., Goddéris Y., Looy C.V., Griffis N.P.,DiMichele, W.A., 2020. Influence of temporally varying weatherability on CO2-climate coupling and ecosystem change in the Late Paleozoic. Climate of the Past 16(5), 1759-1775. https://doi.org/10.5194/cp-16-1759-2020.
[88] Romanek C.S., Grossman E.L., Morse J.W., 1992. Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate. Geochimica et Cosmochimica Acta 56(1), 419-430. https://doi.org/10.1016/0016-7037(92)90142-6.
[89] Royer D.L.,2006. CO2-forced climate thresholds during the Phanerozoic. Geochimica et Cosmochimica Acta 70(23), 5665-5675. https://doi.org/10.1016/j.gca.2005.11.031.
[90] Royer D.L., Donnadieu Y., Park J., Kowalczyk J., Goddéris Y.,2014. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. American Journal of Science 314(9), 1259-1283. https://doi.org/10.2475/09.2014.01.
[91] Ruxton B.P.,1968. Measures of degree of chemical weathering of rocks.The Journal of Geology 76(5), 518-527.
[92] Schoeneberger P.J., Wysocki D.A., Benham E.C., Broderson W.D., 2012. Field book for describing and sampling soils, 3rd Edition. In: Wysocki, D.A., Schoeneberger, P.J., Benham, E.C. (eds.), Profile/Pedon Description, pp. 1-70. Utah: Natural Resources Conservation Service, National Soil Survey Center.
[93] Schubert B.A., Jahren A.H., 2015. Global increase in plant carbon isotope fractionation following the Last Glacial Maximum caused by increase in atmospheric pCO2. Geology 43(5), 435-438. https://doi.org/10.1130/G36467.1.
[94] Scotese C.R.,2014. Atlas of Jurassic Paleogeographic Maps, PALEOMAP Atlas for ArcGIS, volume 4, The Jurassic and Triassic, Maps 32-42, Mollweide Projection, PALEOMAP Project, Evanston, IL.Technical Report.
[95] Scotese C.R., Song H.J., Mills B.J.W., van der Meer, D.G., 2021. Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years. Earth-Science Reviews 215, 103503. https://doi.org/10.1016/j.earscirev.2021.103503.
[96] Sellwood B.W., Valdes P.J.,2006. Mesozoic climates: General circulation models and the rock record. Sedimentary Geology 190, 269-287. https://doi.org/10.1016/j.sedgeo.2006.05.013.
[97] Sellwood B.W., Valdes P.J., 2008. Jurassic climates. Proceedings of the Geologists' Association 119(1), 5-17. https://doi.org/10.1016/S0016-7878(59)80068-7.
[98] Sellwood B.W., Valdes P.J., Price G.D., 2000. Geological evaluation of multiple general circulation model simulations of Late Jurassic palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 156(1-2), 147-160. https://doi.org/10.1016/S0031-0182(99)00138-8.
[99] Sheldon N.D., Mitchell R.L., Dzombak R.M., 2021. Reconstructing Precambrian pCO2 and pO2 Using Paleosols. Cambridge: Cambridge University Press.
[100] Sheldon N.D., Retallack G.J., 2001. Equation for compaction of paleosols due to burial.Geology 29(3): 247-250.
[101] Sheldon N.D., Retallack G.J., Tanaka S., 2002. Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. The Journal of Geology 110(6), 687-696. https://doi.org/10.1086/342865.
[102] Sheldon N.D., Tabor N.J.,2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews 95(1-2), 1-52. https://doi.org/10.1016/j.earscirev.2009.03.004.
[103] Singsoupho S., Bhongsuwan T., Elming S.Å.,2014. Tectonic evaluation of the Indochina Block during Jurassic-Cretaceous from palaeomagnetic results of Mesozoic redbeds in central and southern Lao PDR. Journal of Asian Earth Sciences 92, 18-35. https://doi.org/10.1016/j.jseaes.2014.06.001.
[104] Soil Survey Staff, 2015. Illustrated Guide to Soil Taxonomy. Nebraska: USDA-Natural Resources Conservation Service.
[105] Srivastava P., Bhattacharyya T., Pal D.K., 2002. Significance of the formation of calcium carbonate minerals in the pedogenesis and management of cracking clay soils (Vertisols) of India.Clays and Clay Minerals 50(1), 111-126.
[106] Steinthorsdottir M., Wohlfarth B., Kylander M.E., Blaauw M., Reimer P.J.,2013. Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions. Quaternary Science Reviews 68, 43-58. https://doi.org/10.1016/j.quascirev.2013.02.003.
[107] Stoops G.,2020. Guidelines for Analysis and Description of Soil and Regolith Thin Sections, Second Edition. Madison: Soil Science Society of America.
[108] Sun B.N., Xie S.P., Yan D.F., Cong P.Y.,2008. Fossil plant evidence for Early and Middle Jurassic paleoenvironmental changes in Lanzhou area, Northwest China. Palaeoworld 17(3-4), 215-221. https://doi.org/10.1016/j.palwor.2008.09.002.
[109] Sun C.L., Tan X., Dilcher D.L., Wang H.S., Na Y.L., Li T., Li Y.F.,2018. Middle Jurassic Ginkgo leaves from the Daohugou area, Inner Mongolia, China and their implication for palaeo-CO2 reconstruction. Palaeoworld 27(4), 467-481. https://doi.org/10.1016/j.palwor.2018.09.005.
[110] Tabor N.J., Myers T.S., 2015. Paleosols as indicators of paleoenvironment and paleoclimate. Annual Review of Earth and Planetary Sciences 43(1), 333-361. https://doi.org/10.1146/annurev-earth-060614-105355.
[111] Tabor N.J., Myers T.S., Michel L.A., 2017. Sedimentologist’s guide for recognition, description, and classification of paleosols. In: Zeigler, K.E., Parker, W.G. (eds.), Terrestrial Depositional Systems: Deciphering Complexities Through Multiple Stratigraphic Methods, pp. 165-208. Amsterdam: Elsevier.
[112] Tan C., Dai H., He J.J., Zhang F., Hu X.F., Yu H.D., Li N., Wei G.B., Peng G.Z., Ye Y., Zhang Q.N., Ren X.X., You H.L., 2019. Discovery of Omeisaurus (Dinosauria: Sauropoda) in the Middle Jurassic Shaximiao Formation of Yunyang, Chongqing, China. Vertebrata Palasiatica 57(2), 105-116. https://doi.org/10.19615/j.cnki.1000-3118.181115.
[113] Tanner L.H., Lucas S.G.,2017. Paleosols of the Upper Paleozoic Sangre de Cristo Formation, north-central New Mexico: Record of Early Permian palaeoclimate in tropical Pangaea. Journal of Palaeogeography 6(2), 144-161. https://doi.org/10.1016/j.jop.2017.02.001.
[114] Thornburg J.D., Miller K.G., Browning J.V., Wright J.D.,2019. Mid-Cretaceous paleopedology and landscape reconstruction of the Mid-Atlantic U.S. coastal plain. Journal of Sedimentary Research 89(4), 253-272. https://doi.org/10.2110/jsr.2019.12.
[115] Tierney J.E., Poulsen C.J., Montañez I.P., Bhattacharya T., Feng R., Ford H.L., Hönisch B., Inglis G.N., Petersen S.V., Sagoo N., Tabor C.R., Thirumalai K., Zhu J., Burls N.J., Foster G.L., Goddéris Y., Huber B.T., Ivany L.C., Kirtland T.S., Lunt D.J., McElwain J.C., Mills B.J.W., Otto-Bliesner B.L., Ridgwell A., Zhang Y.G., 2020. Past climates inform our future. Science 370(6517), eaay3701. https://doi.org/10.1126/science.aay3701.
[116] Wang H.M., Liu Y.Y., Wang Z.Y.,2001. Molecular fossils as indicators for paleoenvironment and paleoclimate from red clastic rocks of Middle Jurassic-Early Cretaceous in Jianmenguan, Sichuan Basin of China. Earth Science 26(3), 229-234. https://doi.org/10.3321/j.issn:1000-2383.2001.03.002 (in Chinese with English abstract).
[117] Wang J., Ye Y., Pei R., Tian Y.M., Feng C.Q., Zheng D.R., Chang S.C., 2018. Age of Jurassic basal sauropods in Sichuan, China: A reappraisal of basal sauropod evolution. GSA Bulletin 130(9-10), 1493-1500. https://doi.org/10.1130/B31910.1.
[118] Wang P.X., Wang B., Cheng H., Fasullo J., Guo Z.T., Kiefer T., Liu Z.Y.,2014. The global monsoon across timescales: Coherent variability of regional monsoons. Climate of the Past 10(6), 2007-2052. https://doi.org/10.5194/cp-10-2007-2014.
[119] Wang Q.W., Kan Z.Z., Liu X.H., Liang B., Zhu B.,2008. The Mesozoic sporopollen assemblage in the Sichuan Basin and its significance to paleovegetation and paleoclimate. Acta Geologica Sichuan 28(2), 89-95. https://doi.org/10.3969/j.issn.1006-0995.2008.02.004 (in Chinese with English abstract).
[120] Wang Y.B., Xu H.J.,2001. Relations between evolution of sedimentary cycles and tectonic uplift around Sichuan Basin from Jurassic to Early Cretaceous. Earth Science 26(3), 241-246. https://doi.org/10.3321/j.issn:1000-2383.2001.03.004 (in Chinese with English abstract).
[121] Wang Y.D., Fu B.H., Xie X.P., Huang Q.S., Li K., Li G., Liu Z.S., Yu J.X., Pan Y.H., Tian N., Jiang Z.K., 2010. Contributions to the 8th International Congress on the Jurassic System — The Terrestrial Triassic and Jurassic Systems in the Sichuan Basin, China. Hefei: University of Sciences and Technology of China Press (in Chinese and English).
[122] Wang Y.D., Mosbrugger V., Zhang H.,2005. Early to Middle Jurassic vegetation and climatic events in the Qaidam Basin, Northwest China. Palaeogeography, Palaeoclimatology, Palaeoecology 224(1-3), 200-216. https://doi.org/10.1016/j.palaeo.2005.03.035.
[123] Wiggan N.J., Riding J.B., Fensome R.A., Mattioli E.,2018. The Bajocian (Middle Jurassic): A key interval in the Early Mesozoic phytoplankton radiation. Earth-Science Reviews 180, 126-146. https://doi.org/10.1016/j.earscirev.2018.03.009.
[124] Wu J.Y., Ding S.T., Li Q.J., Sun B.N., Wang Y.D., 2016. Reconstructing paleoatmospheric CO2 levels based on fossil Ginkgoites from the Upper Triassic and Middle Jurassic in Northwest China. Paläontologische Zeitschrift 90(2), 377-387. https://doi.org/10.1007/s12542-016-0300-1.
[125] Xu X., Upchurch P., Mannion P.D., Barrett P.M., Regalado-Fernandez O.R., Mo J.Y., Ma J.F., Liu H.A., 2018. A new Middle Jurassic diplodocoid suggests an earlier dispersal and diversification of sauropod dinosaurs. Nature Communications 9(1), 2700. https://doi.org/10.1038/s41467-018-05128-1.
[126] Xu Y., Uhl D., Zhang N., Zhao C.L., Qin S.J., Liang H.D., Sun Y.Z.,2020. Evidence of widespread wildfires in coal seams from the Middle Jurassic of Northwest China and its impact on paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 559, 109819. https://doi.org/10.1016/j.palaeo.2020.109819.
[127] Yan D.F., Sun B.N., Xie S.P., Li X.C., Wen W.W., 2009. Response to paleoatmospheric CO2 concentration of Solenites vimineus (Phillips) Harris (Ginkgophyta) from the Middle Jurassic of the Yaojie Basin, Gansu Province, China. Science in China Series D: Earth Sciences 52(12), 2029-2039. https://doi.org/10.1007/s11430-009-0181-1.
[128] Yan, D.F., Sun, B.N., Xie, S.P., Li, X.C., Wen, W.W., 2009. Response to paleoatmospheric CO2 concentration of Solenites vimineus (Phillips) Harris (Ginkgophyta) from the Middle Jurassic of the Yaojie Basin, Gansu Province, China. Science in China Series D: Earth Sciences 52(12), 2029–2039. https://doi.org/10.1007/s11430-009-0181-1.
[129] Zhang, H.L., Yang, W.G., Zhou, Y.X., Li, D.L., Dai, H., Tan, C., Yu, H.D., 2020b. Geochemical characteristics and geological significance of the dinosaur fossils burial clastic rocks in the member 1 of Shaximiao Formation in the Yunyang area, Chongqing. Journal of Mineralogy and Petrology 40(2), 26–35 (in Chinese with English abstract).
[130] Zhang, L., Bao, Z.D., Zhang, C.M., Dou, L.X., Fu, P., Zhao, J.H., Wang, W.X., Ji, Y., 2020a. Paleosols in an outcrop of red beds from the Upper Cretaceous Yaojia Formation, southern Songliao Basin, Jilin Province, NE China. Journal of Palaeogeography 9(3), 353–362. https://doi.org/10.1186/s42501-020-00069-7.
[131] Zhang, L.M., Wang, C.S., Li, X.H., Cao, K., Song, Y., Hu, B., Lu, D.W., Wang, Q., Du, X.J., Cao, S., 2016. A new paleoclimate classification for deep time. Palaeogeography, Palaeoclimatology, Palaeoecology 443, 98–106. https://doi.org/10.1016/j.palaeo.2015.11.041. |