[1] Aggarwal N., Agrawal S., Thakur B.2019. Palynofloral, palynofacies and carbon isotope of Permian coal deposits from the Godavari Valley Coalfield, South India: Insights into the age, palaeovegetation and palaeoclimate. International Journal of Coal Geology 214: 103285. https://doi.org/10.1016/j.coal.2019.103285.
[2] Aggarwal N., Carvalho M., Jha N., Thakur B.2017. Palynology and palynofacies of the Permian strata in the Kothagudem sub basin, Andhra Pradesh, southern India.Journal of the Palaeontological Society of India 62(2): 175-186.
[3] Aggarwal, N., Jha, N.2013. Permian palynostratigraphy and palaeoclimate of Lingala-Koyagudem coalbelt, Godavari Graben, Andhra Pradesh, India. Journal of Asian Earth Sciences 64: 38-57. https://doi.org/10.1016/j.jseaes.2012.11.041.
[4] Aggarwal N., Jha N., Joshi H., Mishra S.2015. Dispersed organic matter studies in Permian succession from Mamakannu block of Godavari Graben, South India.Indian Geological Congress 7(2): 5-15.
[5] Aggarwal N., Jha N., Singh A.2012. Palynology, palynofacies and palaeoenvironmental interpretations of sedimentary sequence in core MLG-23 from Gundala area, Godavari Graben, India.Indian Geological Congress 4(2): 19-35.
[6] Agrawal S., Srivastava P., Sonam, Meena N.K., Rai S.K., Bhushan R., Misra D.K., Gupta A.K.2015. Stable (δ13C and δ15N) isotopes and magnetic susceptibility record of late Holocene climate change from a lake profile of the northeast Himalaya. Journal of the Geological Society of India 86(6): 696-705. https://doi.org/10.1007/s12594-015-0362-9.
[7] Batten D.J.1996. Palynofacies and palaeoenvironmental interpretation. In: McGregor, D.C. (ed.), Palynology: Principles and Applications. American Association of Stratigraphic Palynologists Foundation, pp. 1011-1064.
[8] Bechtel A., Jia J.L., Strobl S.A.I., Sachsenhofer, R.F., Liu, Z.J., Gratzer, R., Püttmann, W. 2012. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): Implications from geochemical analysis. Organic Geochemistry 46: 76-95. https://doi.org/10.1016/j.orggeochem.2012.02.003.
[9] Beri Á., Gutiérrez P., Balarino L.2011. Palynostratigraphy of the Late Palaeozoic of Uruguay, Paraná Basin. Review of Palaeobotany and Palynology 167(1): 16-29. https://doi.org/10.1016/j.revpalbo.2011.05.004.
[10] Bertrand P., Lallier-Verges E., Boussafir M.1994. Enhancement of accumulation and anoxic degradation of organic matter controlled by cyclic productivity: A model. Organic Geochemistry 22(3): 511-520. https://doi.org/10.1016/0146-6380(94)90123-6.
[11] Bourbonniere, R.A., Meyers, P.A.1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnology and Oceanography 41(2): 352-359. https://doi.org/10.4319/lo.1996.41.2.0352.
[12] Cao L., Bala G., Caldeira K., Nemani R., Ban-Weiss G.2010. Importance of carbon dioxide physiological forcing to future climate change. Proceedings of the National Academy of Sciences 107(21): 9513-9518. https://doi.org/10.1073/pnas.0913000107.
[13] Chakraborty, C., Ghosh, S.K.2008. Pattern of sedimentation during the Late Paleozoic, Gondwanaland glaciation: An example from the Talchir Formation, Satpura Gondwana basin, central India. Journal of Earth System Science 117(4): 499-519. https://doi.org/10.1007/s12040-008-0049-3.
[14] Cincotta A., Yans J., Godefroit P., Garcia G., Dejax J., Benammi M., Amico S., Valentin X.2015. Integrated paleoenvironmental reconstruction and taphonomy of a unique Upper Cretaceous vertebrate-bearing locality (Velaux, southeastern France). PLoS ONE 10(8): e134231. https://doi.org/10.1371/journal.pone.0134231.
[15] Cranwell P.A.1977. Organic geochemistry of Cam Loch (Sutherland) sediments. Chemical Geology 20: 205-221. https://doi.org/10.1016/0009-2541(77)90044-4.
[16] Das D.P., Chakraborty D.K., Sarkar K.2003. Significance of the regional lineament tectonics in the evolution of the Pranhita-Godavari sedimentary basin interpreted from the satellite data. Journal of Asian Earth Sciences 21(6): 553-556. https://doi.org/10.1016/S1367-9120(02)00025-1.
[17] de Wit M.J., Ghosh J.G., de Villiers S., Rakotosolofo N., Alexander J., Tripathi A., Looy C.2002. Multiple organic carbon isotope reversals across the Permo-Triassic boundary of terrestrial Gondwana sequences: Clues to extinction patterns and delayed ecosystem recovery. The Journal of Geology 110(2): 227-246. https://doi.org/10.1086/338411.
[18] Diefendorf A.F., Mueller K.E., Wing S.L., Koch P.L., Freeman K.H.2010. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences 107(13): 5738-5743. https://doi.org/10.1073/pnas.0910513107.
[19] Diéguez, C., Barrón, E.2005. Late Permian flora and vegetation changes near the Permian-Triassic boundary in the Landete section of the Alcotas Formation (SE Iberian Ranges, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 229(1-2): 54-68. https://doi.org/10.1016/j.palaeo.2005.06.030.
[20] Eglinton, G., Hamilton, R.J.1967. Leaf epicuticular waxes. Science 156(3780): 1322-1335. https://doi.org/10.1126/science.156.3780.1322.
[21] Ercegovac M., Jeremic M., Djajic S.1997. Miocene sedimentary organic facies and palynofacies in Drmno depression (Serbia).Annales Géologiques de la Péninsule Balkanique 61: 143-165.
[22] Ercegovac M., Obradović J., Vitorović D.1992. Characteristics of organic facies and deposition environment in Mesozoic and Tertiary formations of the Montenegrin littoral (Yugoslavia).Annales Géologiques de la Péninsule Balkanique 52(2): 1-15.
[23] Falcon R.M.S.1975. Palynostratigraphy of the lower Karroo sequence in the central Sebungwe District, Mid Zambezi Basin, Rhodesia.Palaeontographica Africana 18: 1-29.
[24] Falcon R.M.S.1989. Macro- and micro-factors affecting coal-seam quality and distribution in southern Africa with particular reference to the No. 2 seam, Witbank coalfield, South Africa.International Journal of Coal Geology 12: 681-731.
[25] Ficken K.J., Li B., Swain D.L., Eglinton G.2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry 31(7): 745-749. https://doi.org/10.1016/S0146-6380(00)00081-4.
[26] Ficken K.J., Wooller M.J., Swain D.L., Street-Perrott F.A., Eglinton G.2002. Reconstruction of a subalpine grass-dominated ecosystem, Lake Rutundu, Mount Kenya: A novel multi-proxy approach. Palaeogeography, Palaeoclimatology, Palaeoecology 177(1-2): 137-149. https://doi.org/10.1016/S0031-0182(01)00356-X.
[27] Freudenthal T., Wagner T., Wenzhöfer F., Zabel M., Wefer G.2001. Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: Evidence from stable nitrogen and carbon isotopes. Geochimica et Cosmochimica Acta 65(11): 1795-1808. https://doi.org/10.1016/S0016-7037(01)00554-3.
[28] Ghosh S.C., Nandi A., Ahmed G.1994. Study of Permo-Triassic boundary in Gondwana sequence of Raniganj Basin, India. Ninth International Gondwana Symposium, Hyderabad. Geological Survey of India. Oxford and IBH Publishing Co., New Delhi-Calcutta, pp. 179-193.
[29] Gorjan P., Kaiho K., Chen Z.Q.2008. A carbon-isotopic study of an end-Permian mass-extinction horizon, Bulla, northern Italy: A negative δ13C shift prior to the marine extinction. Terra Nova 20(4): 253-258. https://doi.org/10.1111/j.1365-3121.2008.00813.x.
[30] Götz, A.E., Ruckwied, K.2014. Palynological records of the Early Permian postglacial climate amelioration (Karoo Basin, South Africa). Palaeobiodiversity and Palaeoenvironments 94(2): 229-235. https://doi.org/10.1007/s12549-013-0134-8.
[31] Grasby, S.E., Beauchamp, B.2008. Intrabasin variability of the carbon-isotope record across the Permian-Triassic transition, Sverdrup Basin, Arctic Canada. Chemical Geology 253(3-4): 141-150. https://doi.org/10.1016/j.chemgeo.2008.05.005.
[32] Hermann E., Hochuli P.A., Bucher H., Brühwiler T., Hautmann M., Ware D., Roohi G.2011. Terrestrial ecosystems on North Gondwana following the end-Permian mass extinction. Gondwana Research 20(2-3): 630-637. https://doi.org/10.1016/j.gr.2011.01.008.
[33] Izart A., Palhol F., Gleixner G., Elie M., Blaise T.,Suarez-Ruiz, I., Sachsenhofer, R.F., Privalov, V.A., Panova, E.A. 2012. Palaeoclimate reconstruction from biomarker geochemistry and stable isotopes of n-alkanes from Carboniferous and Early Permian humic coals and limnic sediments in western and eastern Europe. Organic Geochemistry 43: 125-149. https://doi.org/10.1016/j.orggeochem.2011.10.004.
[34] Jasper A., Menegat R.,Guerra-Sommer, M., Cazzulo-Klepzig, M., de Souza, P.A. 2006. Depositional cyclicity and paleoecological variability in an outcrop of Rio Bonito Formation, Early Permian, Paraná Basin, Rio Grande do Sul, Brazil. Journal of South American Earth Sciences 21(3): 276-293. https://doi.org/10.1016/j.jsames.2006.05.002.
[35] Jensen E.S.1991. Evaluation of automated analysis of 15N and total N in plant material and soil. Plant and Soil 133(1): 83-92. https://doi.org/10.1007/BF00011902.
[36] Jha, N., Aggarwal, N.2012. Permian-Triassic palynostratigraphy in Mailaram area, Godavari Graben, Andhra Pradesh, India. Journal of Earth System Science 121(5): 1257-1285. https://doi.org/10.1007/s12040-012-0224-4.
[37] Jha, N., Aggarwal, N.2015. Peat-forming environment of coal-bearing Permian sediments in Kachinapalli area of Godavari Graben, India.Revista Brasileira de Paleontologia 18(2): 239-250.
[38] Jha N.,Pauline Sabina, K., Aggarwal, N., Mahesh, S. 2014. Late Permian palynology and depositional environment of Chintalapudi sub basin, Pranhita-Godavari basin, Andhra Pradesh, India. Journal of Asian Earth Sciences 79(Part A): 382-399. https://doi.org/10.1016/j.jseaes.2013.10.010.
[39] Killops, S., Killops, V.2005. An Introduction to Organic Geochemistry, second ed. Blackwell Scientific, 393 p.
[40] Killops S., Walker P., Wavrek D.2001. Maturity‐related variations in the bitumen compositions of coals from Tara‐1 and Toko‐1 wells. New Zealand Journal of Geology and Geophysics 44(1): 157-169. https://doi.org/10.1080/00288306.2001.9514932.
[41] Knoll, A.H., Niklas, K.J.1987. Adaptation, plant evolution, and the fossil record. Review of Palaeobotany and Palynology 50(1): 127-149. https://doi.org/10.1016/0034-6667(87)90043-1.
[42] Kohn M.J.2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences 107(46): 19691-19695. https://doi.org/10.1073/pnas.1004933107.
[43] Lehmann M.F., Reichert P., Bernasconi S.M., Barbieri A., McKenzie J.A.2003. Modelling nitrogen and oxygen isotope fractionation during denitrification in a lacustrine redox-transition zone. Geochimica et Cosmochimica Acta 67(14): 2529-2542. https://doi.org/10.1016/S0016-7037(03)00085-1.
[44] Littke, R., Leythaeuser, D.1993. Migration of oil and gas in coals. In: Law, B.E., Rice, D.D. (eds.), Hydrocarbons from Coal. AAPG Studies in Geology 38: 219-236.
[45] Lorente M.A., van Bergen, P.F. 1991. Summary of organic matter classifications. In: Lorente, M.A., Ran, E.T.H. (eds.), Open Workshop on Organic Matter Classification. Hugo de Vries Laboratory, University of Amsterdam, Amsterdam, pp. 43-59.
[46] Maejima W., Nakajo T., Das R.1999. Turbidite sedimentation in the Late Palaeozoic Talchir Gondwana basin, Orissa.Journal of Geosciences 42(7): 103-114.
[47] Martín-Closas,C., Permanyer, A., Vila, M.J. 2005. Palynofacies distribution in a lacustrine basin. Geobios 38(2): 197-210. https://doi.org/10.1016/j.geobios.2003.09.007.
[48] Masran, Th.C., Pocock, S.A.J. 1981. The classification of plant-derived particulate organic matter in sedimentary rocks. In: Brooks, J. (ed.), Organic Maturation Studies and Fossil Fuel Exploration. London: Academic Press, pp. 145-176.
[49] Mathews, R.P., Pillai, S.S.K., Manoj, M.C., Agrawa,l S. 2020a. Palaeoenvironmental reconstruction and evidence of marine influence in Permian coal-bearing sequence from Lalmatia Coal mine (Rajmahal Basin), Jharkhand, India: a multi-proxy approach. International Journal of Coal Geology 224:103485. https://doi.org/doi:10.1016/j. coal.2020.103485.
[50] Mathews R.P., Singh B.D., Singh V.P., Singh A., Singh H., Shivanna M., Dutta S., Mendhe V.A., Chetia R.2020b. Organo-petrographic and geochemical characteristics of Gurha lignite deposits, Rajasthan, India: Insights into the palaeovegetation, palaeoenvironment and hydrocarbon source rock potential. Geoscience Frontiers 11(3): 965-988. https://doi.org/10.1016/j.gsf.2019.10.002.
[51] MECL.2002. Geological Report on Regional Exploration for Coal in Mamakannu Block, Godavari Valley Coalfield, Lingala Koyagudem Coalbelt. Khammam District, Andhra Pradesh, India.
[52] Medlicott, H.B., Blandford, W.T.1879. A Manual of the Geology of India, Part 2. Calcutta: Geological Survey of India (in Fox), 1928, 149.
[53] Moldowan J.M., Seifert W.K., Gallegos E.J.1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin 69(8): 1255-1268. https://doi.org/10.1306/AD462BC8-16F7-11D7-8645000102C1865D.
[54] Mukhopadhyay G., Mukhopadhyay S.K., Roychowdhury M., Parui P.K.2010. Stratigraphic correlation between different Gondwana Basins of India. Journal of the Geological Society of India 76(3): 251-266. https://doi.org/10.1007/s12594-010-0097-6.
[55] Murthy S., Mahesh S., Roy J.S.2016. Palyno-petrographical facet and depositional account of Gondwana sediments from East Bokaro coalfield, Jharkhand. Journal of the Geological Society of India 88(5): 549-558. https://doi.org/10.1007/s12594-016-0520-8.
[56] Noble R.A., Alexander R., Kagi R.I., Knox J.1985. Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments and crude oils. Geochimica et Cosmochimica Acta 49(10): 2141-2147. https://doi.org/10.1016/0016-7037(85)90072-9.
[57] Oboh-Ikuenobe, F.E., de Villiers, S.E.2003. Dispersed organic matter in samples from the western continental shelf of Southern Africa: Palynofacies assemblages and depositional environments of Late Cretaceous and younger sediments. Palaeogeography, Palaeoclimatology, Palaeoecology 201(1-2): 67-88. https://doi.org/10.1016/S0031-0182(03)00510-8.
[58] Oboh-Ikuenobe, F.E., Yepes, O.1997. Palynofacies analysis of sediments from the Côte d'Ivoire-Ghana transform margin: Preliminary correlation with some regional events in the Equatorial Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 129(3-4): 291-314. https://doi.org/10.1016/S0031-0182(96)00125-3.
[59] Otto, A., Wilde, V.2001. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers — A review. The Botanical Review 67(2): 141-238. https://doi.org/10.1007/BF02858076.
[60] Ourisson G., Albrecht P., Rohmer M.1979. The hopanoids: Palaeochemistry and biochemistry of a group of natural products. Pure and Applied Chemistry 51(4): 709-729. https://doi.org/10.1351/pac197951040709.
[61] Pacton M., Gorin G.E., Vasconcelos C.2011. Amorphous organic matter — Experimental data on formation and the role of microbes. Review of Palaeobotany and Palynology 166(3): 253-267. https://doi.org/10.1016/j.revpalbo.2011.05.011.
[62] Patel R., Goswami S., Sahoo M., Pillai S. S. K., Aggarwal N., Mathews, R. P. Singh, K. J.2021. Biodiversity of a Permian temperate forest: A case study from Ustali area, Ib River Basin, Odisha, India. Geological Journal 56(2): 903-933. https://doi: 10.1002/gj.3936.
[63] Peters D.A., Agama C.I., Asiedu D.K., Apesegah E.2013. Palynology, palynofacies and palaeoenvironments of sedimentary organic matter from Bonyere-1 Well, Tano Basin, western Ghana.International Letters of Natural Sciences 5: 27-45.
[64] Peters, K.E., Moldowan, J.M.1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. New Jersey: Prentice Hall, 363 p.
[65] Peters K.E., Walters C.C., Moldowan J.M.2005. The Biomarker Guide. New York: Cambridge University, 1132 p.
[66] Pieñkowski, G., Waksmundzka, M.2009. Palynofacies in Lower Jurassic epicontinental deposits of Poland: Tool to interpret sedimentary environments. Episodes 32(1): 21-32. https://doi.org/10.18814/epiiugs/2009/v32i1/004.
[67] Pocock S.A.J., Vasanthy G., Venkatachala B.S.1987. Introduction to the study of particulate organic materials and ecological perspectives. Journal of Palynology 23-24: 167-188.
[68] Powell A.J., Dodge J.D., Lewis J.1990. Late Neogene to Pleistocene palynological facies of the Peruvian continental margin upwelling, Leg 112.Proceedings of the Ocean Drilling Program, Scientific Results 112: 297-321.
[69] Prasad V., Singh I.B., Bajpai S., Garg R., Thakur B., Singh A., Saravanan N., Kapur V.V.2013. Palynofacies and sedimentology-based high-resolution sequence stratigraphy of the lignite-bearing muddy coastal deposits (early Eocene) in the Vastan Lignite Mine, Gulf of Cambay, India. Facies 59(4): 737-761. https://doi.org/10.1007/s10347-012-0355-8.
[70] Quadros L.P., Marques-Toigo M., Cazzulo Klepzig M.1996. Catálogo de esporas e pólenfósseis do Paleozoico.Boletim de Geociências da Petrobrás 9: 1-151.
[71] Radke M., Willsch H., Welte D.H.1980. Preparative hydrocarbon group type determination by automated medium pressure liquid chromatography. Analytical Chemistry 52(3): 406-411. https://doi.org/10.1021/ac50053a009.
[72] Ramanamurty, B.V., Rao, M.C.1996. A new lithostratigraphy classification of Permian (Lower Gondwana) succession of Pranhita-Godavari as in with special reference to Ramagundam Coalbelt, Andhra Pradesh, India. In: Proceedings of 9th International Gondwana Symposium, Hyderabad, India, pp. 67-78.
[73] Rao Raja, C.S.1982. Coalfield of India, 2. Coal resources of Tamil Nadu, Andhra Pradesh, Orissa and Maharashtra.Bulletin of the Geological Survey of India, Series A 45: 9-40.
[74] Richoz S., Krystyn L., Baud A., Brandner R., Horacek M.,Mohtat-Aghai, P. 2010. Permian-Triassic boundary interval in the Middle East (Iran and N. Oman): Progressive environmental change from detailed carbonate carbon isotope marine curve and sedimentary evolution. Journal of Asian Earth Sciences 39(4): 236-253. https://doi.org/10.1016/j.jseaes.2009.12.014.
[75] Rohmer M., Bisseret P., Neunlist S.1992. The hopanoids, prokaryotic triterpenoids and precursors of ubiquitous molecular fossils. In: Moldowan, J.M., Albrecht, P., Philp, R.P. (eds.), Biological Markers in Sediments and Petroleum. New Jersey: Prentice Hall, Englewood Cliffs, pp. 1-17.
[76] Roushdy M.I.,M.M. El Nady,Y.M. Mostafa,N.S. El Gendy, and H.R. Ali.2010. Biomarkers characteristics of crude oils from some oilfields in the Gulf of Suez, Egypt. Journal of American Science 6(11): 911-925.
[77] Rousseau D.D., Schevin P., Duzer D., Cambon G., Ferrier J., Jolly D., Poulsen U.2006. New evidence of long distance pollen transport to southern Greenland in late spring. Review of Palaeobotany and Palynology 141(3): 277-286. https://doi.org/10.1016/j.revpalbo.2006.05.001.
[78] Ruckwied K., Götz A.E., Jones P.2014. Palynological records of the Permian Ecca Group (South Africa): Utilizing climatic icehouse-greenhouse signals for cross basin correlations. Palaeogeography, Palaeoclimatology, Palaeoecology 413: 167-172. https://doi.org/10.1016/j.palaeo.2014.05.003.
[79] Sarkar A., Yoshioka H., Ebihara M., Naraoka H.2003. Geochemical and organic carbon isotope studies across the continental Permo-Triassic boundary of Raniganj Basin, eastern India. Palaeogeography, Palaeoclimatology, Palaeoecology 191(1): 1-14. https://doi.org/10.1016/S0031-0182(02)00636-3.
[80] Schubert, B.A., Jahren, A.H.2018. Incorporating the effects of photorespiration into terrestrial paleoclimate reconstruction. Earth-Science Reviews 177: 637-642. https://doi.org/10.1016/j.earscirev.2017.12.008.
[81] Singh, M.P., Singh, P.K.1996. Petrographic characterization and evolution of the Permian coal deposits of the Rajmahal Basin, Bihar, India. International Journal of Coal Geology 29(1): 93-118. https://doi.org/10.1016/0166-5162(95)00005-4.
[82] Singh P.K., Singh M.P., Prachiti P.K., Kalpana M.S., Manikyamba C., Lakshminarayana G., Singh A.K., Naik A.S.2012. Petrographic characteristics and carbon isotopic composition of Permian coal: Implications on depositional environment of Sattupalli coalfield, Godavari Valley, India. International Journal of Coal Geology 90-91: 34-42. https://doi.org/10.1016/j.coal.2011.10.002.
[83] Srivastava, S.C., Jha, N.1996. Status of Kamthi Formation: Lithological and palaeobotanical evidences.Palaeobotanist 46(1-2): 88-96.
[84] Steemans P., Javaux E.J., Breuer P.,Le Hérissé, A., Marshall, C.P., De Ville De Goyet, F. 2009. Description and microscale analysis of some enigmatic palynomorphs from the Middle Devonian (Givetian) of Libya. Palynology 33(1): 101-112. https://doi.org/10.1080/01916122.2009.9989667.
[85] Traverse A.1994. Sedimentation of Organic Particles. Cambridge: Cambridge University Press, 172 p.
[86] Tyson R.V.1989. Late Jurassic palynofacies trends, Piper and Kimmeridge Clay Formation, UK onshore and offshore. In: Batten, D.J., Keen, M.C. (eds.), Northwest European Micropalaeontology and Palynology. British Micropalaeontological Society Series, pp. 135-172.
[87] Tyson R.V.1993. Palynofacies analysis. In: Jenkins, D.J. (ed.), Applied Micropalaeontology. Dordrecht: Kluwer Academic Publishers, pp. 153-191.
[88] Tyson R.V.1995. Sedimentary Organic Matter: Organic Facies and Palynofacies. Dordrecht: Kluwer Academic, 615 p.
[89] Valdés J., Sifeddine A., Ortlieb L., Pierre C.2009. Interplay between sedimentary organic matter and dissolved oxygen availability in a coastal zone of the Humboldt Current System; Mejilones Bay, northern Chile. Marine Geology 265(3-4): 157-166. https://doi.org/10.1016/j.margeo.2009.07.004.
[90] Van Bergen, P.F., Janssen, N.M., Alferink, M., Kerp, J.H.F. 1990. Recognition of organic matter types in standard palynological slides. In: Fermont, J.J., Weegink, J.W. (eds.), International Symposium on Organic Petrology. Mededelingen Rijks Geologische Dienst 45: 9-21.
[91] Wheeler, A., Götz, A.E.2016. Palynofacies patterns of the Highveld coal deposits (Karoo Basin, South Africa): Clues to reconstruction of palaeoenvironment and palaeoclimate. Acta Palaeobotanica 56(1): 3-15. https://doi.org/10.1515/acpa-2016-0004.
[92] Wheeler, A., Götz, A.E.2017. Palynofacies as a tool for high-resolution palaeoenvironmental and palaeoclimatic reconstruction of Gondwanan post-glacial coal deposits: No. 2 Coal Seam, Witbank Coalfield (South Africa). Palaeobiodiversity and Palaeoenvironments 97(2): 259-271. https://doi.org/10.1007/s12549-016-0248-x.
[93] Wolff G.A., Rukin N., Marshall J.D.1992. Geochemistry of an early diagenetic concretion from the Birchi Bed (L. Lias, W. Dorset, U.K.). Organic Geochemistry 19(4): 431-444. https://doi.org/10.1016/0146-6380(92)90010-U.
[94] Wu Y.Y., Tong J.N., Algeo T.J., Chu D.L., Cui Y., Song H.Y., Shu W.C., Du Y.2019. Organic carbon isotopes in terrestrial Permian-Triassic boundary sections of North China: Implications for global carbon cycle perturbations. GSA Bulletin 132(5-6): 1106-1118. https://doi.org/10.1130/B35228.1.
[95] Zhang M.Z., Ji L.M., Wu Y.D., He C.2015. Palynofacies and geochemical analysis of the Triassic Yanchang Formation, Ordos Basin: Implications for hydrocarbon generation potential and the paleoenvironment of continental source rocks. International Journal of Coal Geology 152(Part B): 159-176. https://doi.org/10.1016/j.coal.2015.11.005.
[96] Zhang S.H., Tang S.H., Tang D.Z., Pan Z.J., Yang F.2010. The characteristics of coal reservoir pores and coal facies in Liulin district, Hedong coal field of China. International Journal of Coal Geology 81(2): 117-127. https://doi.org/10.1016/j.coal.2009.11.007.
[97] Zheng Y.H., Zhou W.J., Meyers P.A., Xie S.C.2007. Lipid biomarkers in the Zoigê-Hongyuan peat deposit: Indicators of Holocene climate changes in West China. Organic Geochemistry 38(11): 1927-1940. https://doi.org/10.1016/j.orggeochem.2007.06.012. |