aSchool of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China; bKey Laboratory of Strategy Evaluation for Shale Gas, Ministry of Land and Resources, Beijing 100083, China; cExploration and Development Research Institute of Shengli Oilfield Branch of Sinopec, Dongying 257015, Shandong Province, China
Abstract The sources, transportation and depositional processes of lacustrine mudrock are still poorly understood. Existing studies have demonstrated the controlling effect of astronomical forcing on lacustrine mudrock deposition, but its depositional mechanism and evolution are still not systematically investigated. Most research related to astronomical forcing exclusively highlights the sedimentation of carbonate rocks in deep-water lacustrine setting, with insufficient attention paid to the thick organic-rich, deep-lake mudrock. With the increasing interest in exploration and development of shale oil and gas accumulations, it is urgent to deeply understand depositional rules of lacustrine mudrock. This study reviews sediment sources, depositional mechanism and evolution process of mudrock through expounding the correlations between the periodic changes of astronomical forces, the parameters of Earth orbital and mudrock compositions. By investigating the existing literature and using some actual data of Jiyang Depression, Bohai Bay Basin in East China, this study expounds on the influence of astronomical cycles on the deposition of lacustrine mudrock. Moreover, efforts are made to analyze the effects of various orbital parameters (e.g., precession, obliquity, and eccentricity with the periods ranging from tens of thousands years to million years) on the deposition of mudrock from small-scale (decimeters to meters) to large-scale (10s to 100s meters). Further, it is feasible to apply the high-precision isochronous stratigraphic correlation into clarifying the distribution of favorable shale oil and gas reservoirs. To conclude, this study enunciates the sedimentation of mudrock from a new perspective (astronomical forcing) and provides a direction for the research on sedimentation of fine-grained sedimentary rocks.
Corresponding Authors:
* E-mail address: jianguozhangenergy@163.com (J.-G. Zhang). School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China.
Cite this article:
. Research status of lacustrine mudrock deposition constrained from astronomical forcing[J]. Journal of Palaeogeography, 2022, 11(3): 315-331.
. Research status of lacustrine mudrock deposition constrained from astronomical forcing[J]. Journal of Palaeogeography, 2022, 11(3): 315-331.
[1] Abels H.A., Abdul A.H., Calvo J.P., Tuenter E., 2009a. Shallow lacustrine carbonate microfacies document orbitally paced lake-level history in the Miocene Teruel Basin (North-East Spain). Sedimentology, 56 (2), 399-419. https://doi.org/10.1111/j.1365-3091.2008.00976.x. [2] Abels H.A., Abdul A.H., Ventra D., Hilgen F.J., 2009b. Orbital climate forcing in mudflat to marginal lacustrine deposits in the Miocene Teruel Basin (Northeast Spain). Journal of Sedimentary Research, 79 (11), 831-847. http://dx.doi.org/10.2110/jsr.2009.081. [3] Abels H.A., Kraus M.J., Gingerich P.D., 2013. Precession-scale cyclicity in the fluvial Lower Eocene Willwood Formation of the Bighorn Basin, Wyoming (USA). Sedimentology, 60 (6), 1467-1483. https://doi.org/10.1111/sed.12039. [4] Algeo T.J., Schwark L., Hower J.C.,2004. High-resolution geochemistry and sequence stratigraphy of the Hushpuckney Shale (Swope Formation, eastern Kansas): Implications for climato-environmental dynamics of the Late Pennsylvanian Midcontinent Seaway. Chemical Geology, 206(3-4), 259-288. https://doi.org/10.1016/j.chemgeo.2003.12.028. [5] Anderson R.Y.,1986. The varve microcosm: Propagator of cyclic bedding.Paleoceanography, 1(4), 373-382. [6] Anderson R.Y., Dean W.E., 1988. Lacustrine varve formation through time.Palaeogeography, Palaeoclimatology, Palaeoecology, 62(1), 215-235. [7] Aplin A.C., Macquaker J.S.H., 2011. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems.American Association of Petroleum Geologists Bulletin, 95(12), 2031-2059. [8] Arthur M.A., Schlanger S.O., Jenkyns H.C., 1987. The Cenomanian-Turonian Oceanic Anoxic Event, II. Palaeoceanographic controls on organic-matter production and preservation. In: Brooks, J., Fleet, A.J., (Eds.), Marine Petroleum Source Rocks. Geological Society Special Publication, pp. 401-420. [9] Arthur M.A., Dean W.E., 1998. Organic-matter production and preservation and evolution of anoxia in the Holocene Black Sea.Paleoceanography, 13, 395-411. [10] Ballèvre M., Fourcade S., Capdevila R., Peucat J.J., Cocherie A., Fanning C.M., 2012. Geochronology and geochemistry of Ordovician felsic volcanism in the Southern Armorican Massif (Variscan Belt, France): Implications for the breakup of Gondwana.Gondwana Research, 21(4), 1019-1036. [11] Bohacs K.M., Grabowski G.J., Carroll A.R., Mankiewicz P.J., Miskell-Gerhardt, K.J., Schwalbach, J.R., Wegner, M.B., Simo, J.A., 2005. Production, destruction, and dilution — the many paths to source-rock development. In: Harris, N.B., (Ed.). The Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. SEPM (Society for Sedimentary Geology), Special Publication, pp. 61-101. [12] Brauer A.,2004. Annually laminated lake sediments and their palaeoclimatic relevance. In: Jansson, M., (Eds.). The Climate in Historical Times. Springer, Berlin, pp. 109-127. [13] Cai J.G.,2003. Organic clay complexes in argillaceous sediments and mudstones. PhD Dissertation, Tongji University (in Chinese with English Abstract). [14] Cai J.G., Li Y.L., Zeng X., Wei H.L., 2015. Organic-inorganic interaction in argillaceous sediments (rocks) and its significance. National Congress on Sedimentology and Unconventional Resources, Wuhan (in Chinese). [15] Cai J.G., Zeng X., Wei H.L., Song M.S., Wang X.J., Liu Q., 2019. From water to sediment: Exploring the deposition process of organic matter and its significance. Journal of Paleogeography, 21(1), 49-66 (in Chinese with English Abstract). [16] Catuneanu O., Abreu V., Bhattacharya J.P., Blum M.D., Dalrymple R.W., Eriksson P.G., Fielding C.R., Fisher W.L., Galloway W.E., Gibling M.R., Giles K.A., Holbrook J.M., Jordan R., Kendall C.G.St.C.,Macurda, B., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E., Winker, C., 2009. Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 92 (1-2), 1-33. https://doi.org/10.1016/j.earscirev.2008.10.003. [17] Chen D.Z.,2000. Cyclic strata: A developing theory.Quaternary Research, 20(2), 186-195 (in Chinese with English Abstract). [18] Chen X., Zhong J.H., Yuan J., Wang H., Wang J., 2009. Characteristics of clay mineral and its hydrocarbon significance in Paleogene clastic reservoir of Bonan sag.Acta Petrolei Sinica, 30(2), 201-207 (in Chinese with English Abstract). [19] Churchill J.H., Williams A.J., Ralph E.A., 2004. Bottom stress generation and sediment transport over the shelf and slope off of Lake Superior's Keweenaw Peninsula.Journal of Geophysical Research, 10, 1-10. [20] Cooper M.C., O'Sullivan P.E., Shine A.J., 2000. Climate and solar variability recorded in Holocene laminated sediments — A preliminary assessment.Quaternary International, 67(1), 363-371. DOI: 10.1016/S1040-6182(00)00059-8. [21] Davies S.J., Pickering K.T., 1999. Stratigraphic control on mudrock chemistry, Kimmeridgian boulder bed succession, NE Scotland.Chemical Geology, 156(1), 5-23. DOI: 10.1016/S0009-2541(98)00179-X. [22] De Geer, G., 1937. Geochronologia Suecica Principles.Altas with Plates, 13, 49-54. [23] Dean W.E., Gardner J.V., 1982. Origin and geochemistry of redox cycles of Jurassic to Eocene age, Cape Verde Basin (DSDP Site 367), continental margin of northwest Africa. In: Schlanger, S.O., Cita, M.B., (Eds.). Nature and Origin of Cretaceous Organic Carbon-Rich Facies. Academic Press, London, pp. 55-78. [24] Elrick M., Hinnov L.A., 2007. Millennial-scale paleoclimate cycles recorded in widespread Paleozoic deeper water rhythmites of North America.Palaeogeography, Palaeoclimatology, Palaeoecology, 243(3), 348-372. DOI: 10.1016/j.palaeo.2006.08.008. [25] Fang Q., Wu H.C., Hinnov L.A., Wang X., Yang T., Li H., Zhang S., 2016. A record of astronomically forced climate change in a Late Ordovician (Sandbian) deep marine sequence, Ordos Basin, North China.Sedimentary Geology, 341, 163-174. [26] Feng Z.Z., Bao H.P., Jia J.H., Wang Y., Deng X.G., 2013. Lithofacies palaeography as a guide to petroleum exploration. In: Feng, Z.Z., (Ed.). Sedimentology of China (Second Edition). Volume 2, Chapter 30, Section 5, Sedimentary facies of the Yanchang Formation of Middle and Upper Triassic in Ordos Basin breakthrough of petroleum exploration. Petroleum Industry Press, Beijing, 1775-1792 (in Chinese with English Abstract). [27] Fienga A., Laskar J., Morley T., 2009. INPOP08, a 4-D planetary ephemeris: From asteroid and time-scale computations to ESA mars express and venus express contributions.Astronomy and Astrophysics, 507, 1675-1686. DOI: 10.1051/0004-6361/200911755. [28] Fu W.J.,1995. Influence of clay mineral on sandstone reservoir prosperities.Journal of Palaeogeography (Chinese Edition), 2(3), 59-68 (in Chinese with English Abstract). [29] Ghadeer S.G., Macquaker J.H., 2011. Sediment transport processes in an ancient mud-dominated succession: A comparison of processes operating in marine offshore settings and anoxic basinal environments.Journal of the Geological Society, 168(5), 1121-1132. DOI: 10.1144/0016-76492010-016. [30] Gierlowski-Kordesch, E.H., 2010. Lacustrine carbonates. In: Alonso-Zarza, A.M., Tanner, L.H., (Eds.). Carbonates in Continental Settings: Facies, Environments, and Processes Developments in Sedimentology, Volume 61. Elsevier, Amsterdam, pp. 1-101. [31] Glenn C.R., Kelts K., 1991. Sedimentary rhythms in lake deposits. In: Einsele, G., Ricken, W., Seilacher, A., (Eds.). Cycles and Events in Stratigraphy. Springer-Verlag, Berlin Heidelberg, pp. 188-221. [32] Håkanson L.,Jansson., M., 1992. Principle of Lacustrine Environment. Translated by Zheng, G.Y. Beijing, Science Press, 190 pp. [33] Halfman J.D., Dittman D.E., Owens R.W., Etherington M.D., 2006. Storm-induced redistribution of deepwater sediments in Lake Ontario.Journal of Great Lakes Research, 32(2), 348-360. DOI: 10.3394/0380-1330(2006)32[348:SRODSI]2.0.CO;2. [34] Haugaard R., Pecoits E., Lalonde S.V., Rouxel O.J., Konhauser K.O., 2016. The Joffre Banded Iron Formation, Hamersley Group, Western Australia: Assessing the palaeoenvironment through detailed petrology and chemostratigraphy.Precambrian Research, 273, 12-37. [35] Hawley N., Lee C.H., 1999. Sediment resuspension and transport in Lake Michigan during the unstratified period.Sedimentology, 46(5), 791-805. DOI: 10.1046/j.1365-3091.1999.00251.x. [36] Hay B.J., Honjo S., 1990. Interannual variability in partical flux in the southwestern Black Sea.Deep-Sea Research, 37, 911-928. DOI: 10.1016/0198-0149(90)90103-3. [37] Horppila J., Niemisto J., 2008. Horizontal and vertical variations in sedimentation and resuspension rates in a stratifying lake: Eeffects of internal seiches.Sedimentology, 55(5), 1135-1144. DOI: 10.1111/j.1365-3091.2007. 00939.x. [38] Jarmołowicz-Szulc K., Kozłowska A., 2016. Temperature and isotopic relations in carbonate minerals in the Middle Jurassic Sideritic Rocks of central and southern Poland.Geological Quarterly, 60(4), 881-892. [39] Jia Y.F.,2011. The variation of precipitation in Poyang Lake Basin and its relationship with sunspots.Tropical Geography, 31(2), 178-181 (in Chinese with English Abstract). [40] Jiang Z.X.,2010. Research status and development trend of sedimentary systems and sequence stratigraphy.Oil and Gas Geology, 31(5), 535-541 (in Chinese with English Abstract). [41] Jiang Z.X., Chen D.Z., Qiu L.W., Liang H.B., Ma J., 2007. Source-controlled carbonates in a small Eocene half-graben lake basin (Shulu Sag) in central Hebei Province, North China.Sedimentology, 54(2), 265-292. DOI: 10.1111/j.1365-3091.2006.00834.x. [42] Jiang Z.X., Liang C., Wu J., Zhang J.G., Zhang W.Z., Wang Y.S., Liu H.M., Chen X., 2013. Some problems in the study of fine sedimentary rocks containing oil and gas.Acta Petrolei Sinica, 34, 1031-1039 (in Chinese with English Abstract). [43] Jiang Z.X., Zhang W.Z., Liang C., Chen X., Wang Y.S., Liu H.M., 2014. Basic characteristics and evaluation factors of shale oil reservoir. Acta Petrolei Sinica, 35(1), 184-196 (in Chinese with English Abstract). [44] Jin C.Z., Dong W.B., Bai Y.F., 2020. Lithofacies characteristics and genesis analysis of Gulong shale in Songliao Basin.Petroleum Geology and Oilfield Development in Daqing, 39(3), 35-44 (in Chinese with English Abstract). [45] Katz B.J.,2005. Controlling factors on source rock development: A review of productivity, preservation, and sedimentation rate. In: Harris, N.B., (Eds.). The Deposition of Organic Carbon-rich Sediments: Models, Mechanisms, and Consequences. SEPM, Society for Sedimentary Geology, Special Publication, pp. 7-16. [46] Kemp D.B.,2016. Optimizing significance testing of astronomical forcing in cyclostratigraphy.Paleoceanography and Paleoclimatology, 31(12), 1516-1531. [47] Kietzmann D.A., Palma R.M., Llanos M.P.I., 2015. Cyclostratigraphy of an orbitally-driven Tithonian-Valanginian carbonate ramp succession, Southern Mendoza, Argentina: Implications for the Jurassic-Cretaceous boundary in the Neuquén Basin.Sedimentary Geology, 315, 29-46. [48] Kong X.X., Jiang Z.X., Han C., Zheng L.J., Yang Y.P., Liu Y.P., 2016. The characteristics and reservoir significance of fine carbonate grains in the lower subsection of Sha 3 in Shulu Depression.Petroleum Geology and Recovery Efficiency, 23(4), 19-26 (in Chinese with English Abstract). [49] Könitzer S.F., Davies S.J., Stephenson M.H., Leng M.J., 2014. Depositional controls on mudstone lithofacies in a basinal setting: Implications for the delivery of sedimentary organic matter. Journal of Sedimentary Research, 84(3), 198-214. [50] Lash G.G., Blood D.R., 2004. Origin of shale fabric by mechanical compaction of flocculated clay: Evidence from the Upper Devonian Rhinestreet Shale, Western New York, USA.Journal of Sedimentary Research, 74(1), 110-116. [51] Larsen C.P.S., MacDonald G.M., 1993. Lake morphometry, sediment mixing and the selection of sites for fine resolution palaeoecological studies.Quaternary Science Reviews, 12(9), 781-792. [52] Laskar J., Fienga A., Gastineau M., 2011. La 2010: A new orbital solution for the long-term motion of the Earth.Astronomy and Astrophysics, 532, 77-89. [53] Laskar J., Robutel P., Joutel F., 2004. A longterm numerical solution for the insolation quantities of the Earth.Astronomy and Astrophysics, 428, 261-285. [54] Last W.M.,2001. Textural analysis of lake sediments. In: Last, W.M., Smol, P., (Eds.). Tracking Environmental Change using Lake Sediments. Volume 2: Physical and Geochemical Methods. Kluwer Academic Publishers, Dordrecht, pp. 41-81. [55] Lehrmann D.J., Yang W., Sickmann Z.T., Ferrill D.A., McGinnis R.N., Morris A.P., Smart K.J., Gulliver K.D.H., 2019. Controls on sedimentation and cyclicity of the Boquillas and equivalent Eagle Ford Formation from detailed outcrop studies of Western and Central Texas, USA.Journal of Sedimentary Research, 89(7), 629-653. [56] LeVay S., Gilbert C.D., 1976. Laminar patterns of geniculocortical projection in the cat. Basin Research, 113(1), 1-19. [57] Lever H.,2004. Climate changes and cyclic sedimentation in the Mid-Late Permian: Kennedy Group, Carnarvon Basin, western Australia.Gondwana Research, 7(1), 135-142. [58] Liang C., Jiang Z.X., Cao Y.C., Wu M.H., Guo L., Zhang C.M., 2016. Deep-water depositional mechanisms and significance for unconventional hydrocarbon exploration: A case study from the Lower Silurian Longmaxi shale in the southeastern Sichuan Basin.American Association of Petroleum Geologists Bulletin, 100(5), 773-794. [59] Liu C.L., Shu X.X., Liu Z.W., 2001. Microcosmic characteristics of Paleogene lacustrine source rocks in Jiyang Depression. Acta Sedimentologica Sinica, 19(2), 293-297 (in Chinese with English Abstract). [60] Liu Q.Y., Zhu D.Y., Meng Q.Q., Liu J.Y., Wu X.Q., Zhou B., Jin Z.J., 2019. The basic connotation of oil and gas formation under deep fluid and organic-inorganic interaction.Chinese Science Earth Science, 49(3), 499-520 (in Chinese with English Abstract). [61] Lou J., Schwab D.J., Beletsky D., Hawley N., 2000. A model of sediment resuspension and transport dynamics in southern Lake Michigan.Journal of Geophysical Research, 105(3), 6591-6610. [62] Loucks R.G., Ruppel S.C., 2007. Mississippian Barnett mudstone: Lithofacies and depositional setting of a deepwater mudstone-gas succession in the Fort Worth basin, Texas.American Association of Petroleum Geologists Bulletin, 91(4), 579-601. [63] Lourens L.J.,2004. Revised tuning of Ocean Drilling Program Site 964 and KC01B (Mediterranean) and implications for the δ18O, tephra, calcareous nannofossil, and geomagnetic reversal chronologies of the past 1.1 Myr. Paleoceanography and Paleoclimatology, 19, PA3010. https://doi.org/10.1029/2003PA000997. [64] Machlus M.L., Olsen P.E., Christie-Blick N., Hemming S.R., 2008. Spectral analysis of the Lower Eocene Wilkins Peak Member, Green River Formation, Wyoming: Support for Milankovitch cyclicity.Earth and Planetary Science Letters, 268(1), 64-75. [65] Ma C., Li M.S., 2020. Astronomical time scale of the Turonian constrained by multiple paleoclimate proxies.Geoscience Frontiers, 11(4), 1345-1352. [66] Macquaker J.H., Bentley S.J., Bohacs K.M., 2010b. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions.Geology, 38(10), 947-950. [67] Macquaker J.H., Bohacs K.M., 2007. On the accumulation of mud.Science, 318(5857), 1734-1735. [68] Macquaker J.H., Keller M.A., Davies S.J., 2010a. Algal blooms and “marine snow”: Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments.Journal of Sedimentary Research, 80(11), 934-942. [69] Macquaker J.H., Taylor K.G., Gawthorpe R.L., 2007. High-resolution facies analyses of mudstones: Implications for paleoenvironmental and sequence stratigraphic interpretations of offshore ancient mud-dominated successions.Journal of Sedimentary Research, 77(4), 324-339. [70] McAllister R.T., Taylor K.G., 2015. Diagenetic evolution of the Eagle Ford Formation, SW Texas: Impacts upon reservoir quality and rock properties. Unconventional Resources Technology Conference (URTeC). DOI: 10.15530/urtec-2015-2153115. [71] Meyers S.R., Malinverno A., 2018. Proterozoic Milankovitch cycles and the history of the solar system.Proceedings of the National Academy of Sciences, 115(25), 6363-6368. [72] Milliken K.L., Esch W.L., Reed R.M., Zhang T., 2012. Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas.American Association of Petroleum Geologists Bulletin, 96(8), 1553-1578. [73] Ocakoglu F., Acikalin S., Yilmaz I.O., Safak U., Gokceoglu C., 2012. Evidence of orbital forcing in lake-level fluctuations in the Middle Eocene oil shale-bearing lacustrine successions in the Mudurnu-Göynük Basin, NW Anatolia (Turkey).Journal of Asian Earth Sciences, 56, 54-71. [74] Olsen P.E., Kent D.V., 1999. Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic time-scale and the long-term behavior of the planets.Philosophical Transactions Mathematical Physical and Engineering Science, 357, 1761-1786. [75] Park M.H., Fursich F., 2001. Cyclic nature of lamination in the Tithonian Solnhofen Plattenkalk of southern Germany and its palaeoclimatic implications.International Journal of Earth Sciences, 90(4), 847-854. [76] Pearson S.J., Marshall J.E.A., Kemp A.E.S., 2004. The White Stone Band of the Kimmeridge Clay Formation, an integrated high-resolution approach to understanding environmental change.Journal of the Geological Society, 161(4), 675-683. [77] Pedersen T.F., Calvert S.E., 1990. Anoxia vs. productivity: What controls the formation of organic-carbon-rich sediments and sedimentary rocks?American Association of Petroleum Geologists Bulletin, 74, 454-466. [78] Peng J.W.,2020a. Sedimentology of the Upper Pennsylvanian organic-matter Cline Shale, Midland Basin: Form gravity flows to pelagic suspension fallout.Sedimentology, 68(2), 805-833. [79] Peng J.W., Milliken K.L., Fu Q.L., 2020b. Quartz types in the Upper Pennsylvanian organic-rich Cline Shale (Wolf camp D), Midland Basin, Texas: Implications for silica diagenesis, porosity evolution and rock mechanical properties.Sedimentology, 67(4), 2040-2064. [80] Piper D.Z., Calvert S.E., 2009. A marine biogeochemical perspective on black shale deposition. Earth-Science Reviews, 95(1), 63-96. [81] Plint A.G.,2014. Mud dispersal across a Cretaceous prodelta: Storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies.Sedimentology, 61(3), 609-647. [82] Plint A.G., Macquaker J.H., Varban B.L., 2012. Bedload transport of mud across a wide, storm-influenced ramp: Cenomanian-Turonian Kaskapau Formation, western Canada foreland basin.Journal of Sedimentary Research, 82(11), 801-822. [83] Potter P.E., Maynard J.B., Depetris P.J., 2005. Mud and Mudstones. Springer, New York, 432 pp. [84] Ren L.F.,1992. Clay Mineral and Clay Rock. Geological Publishing House, Beijing, 20 pp. (in Chinese). [85] Ricketts B.D.,1994. Mud-flat cycles, incised channels, and relative sea-level changes on a Paleocene mud-dominated coast, Ellesmere Island, Arctic Canada.Journal of Sedimentology research, 64(2), 211-218. [86] Ruddiman W.F.,2014. Earth's Climate Past and Future. W.H. Freeman and Company, 154 pp. [87] Salen G., Tyson R.V., Telnaes N., Talbot M.R., 2000. Contrasting watermass conditions during deposition of the Whitby Mudstone (Lower Jurassic) and Kimmeridge Clay (Upper Jurassic) Formations, UK.Palaeogeography, Palaeoclimatology, Palaeoecology, 163(3-4), 163-196. [88] Schieber J.,2011. Reverse engineering mother nature — Shale sedimentology from an experimental perspective.Sedimentary Geology, 238(1), 1-22. [89] Schieber J., Krinsley D., Riciputi L., 2000. Diagenetic origin of quartz silt in mudstones and implications for silica cycling.Nature, 406(6799), 981-985. [90] Schieber J., Southard J., Thaisen K., 2007. Accretion of mudstone beds from migrating floccule ripples. Science, 318(5857), 1760-1763. [91] Schieber J., Southard J.B., 2009. Bedload transport of mud by floccule ripples — Direct observation of ripple migration processes and their implications.Geology, 37(6), 483-486. [92] Schimmelmann A., Lange C.B., Schieber J., Francus P., Ojala A.E., Zolitschka B., 2016. Varves in marine sediments: A review.Earth-Science Reviews, 159, 215-246. [93] Schwab D.J., Eadie B.J., Assel R.A., Roebber P.J., 2006. Climatology of large sediment resuspension events in southern Lake Michigan.Journal of Great Lakes Research, 32(1), 50-62. [94] Sierro F.J., Ledesma S., Flores J.A., Torrescusa S., Del Olmo W.M., 2000. Sonic and gamma-ray astrochronology: Cycle to cycle calibration of Atlantic climatic records to Mediterranean sapropels and astronomical oscillations.Geology, 28(8), 695-698. [95] Soyinka O.A., Slatt R.M., 2008. Identification and micro-stratigraphy of hyperpycnites and turbidites in Cretaceous Lewis Shale, Wyoming.Sedimentology, 55(5), 1117-1133. [96] Stiller M., Nissenbaum A., 1999. A stable carbon isotope study of dissolved inorganic carbon in Hardwater Lake Kinneret (Sea of Galille).South African Journal of Science, 95(4), 166-170. [97] Szurlies M.,2007. Latest Permian to Middle Triassic cyclo-magnetostratigraphy from the Central European Basin, Germany: Implications for the geomagnetic polarity timescale.Earth and Planetary Science Letters, 261, 602-619. [98] Tanner L.H.,2000. Palustrine/lacustrine and alluvial facies of the Norian Owl Rock Formation (Chinle Group), Four Corners region, southwestern USA: Implications for Late Triassic paleoclimate.Journal of Sedimentary Research, 70, 1280-1289. [99] Taylor K.G., Macquaker J.H.S., 2014. Diagenetic alterations in a silt- and clay-rich mudstone succession: An example from the Upper Cretaceous Mancos Shale of Utah, USA.Clay Minerals, 49, 213-227. [100] Thompson J.B., Schultze-Lam S., Berveridge T.J., Des Marais D.J., 1997. Whiting events: Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton.Limnology and Oceanography, 42, 133-141. [101] Tripsanas E.K., Bryant W.R., Phaneuf B.A., 2004. Depositional processes of uniform mud deposits (unifites), Hedberg Basin, northwest Gulf of Mexico: New perspectives.American Association of Petroleum Geologists Bulletin, 88(6), 825-840. [102] Tucker M.,1991. Geological background to carbonate sedimentation. In: Tucker, M., Wright, P., (Eds.). Carbonate Sedimentology. Blackwell Science, Oxford, pp. 28-70. [103] Tyson R.V.,1995. Sedimentary Organic Matter: Organic Facies and Palynofacies. Chapman and Hall, London, 615 pp. [104] Tyson R.V.,2001. Sedimentation rate, dilution, preservation and total organic carbon: Some results of a modelling study.Organic Geochemistry, 32, 333-339. [105] Tyson R.V.,2005. The productivity versus preservation controversy: Cause, flaws, and resolution. In: Harris, N.B., (Ed.). The Deposition of Organic Carbon-rich Sediments: Models, Mechanisms, and Consequences. Special Publication Society for Sedimentary Geology, pp. 17-33. [106] Urban N.R., Lu X., Chai Y., Apul D.S., 2004. Sediment trap studies in Lake Superior: Insights into resuspension, cross-margin transport, and carbon cycling.Journal of Great Lakes Research, 30, 147-161. [107] Valero L., Garcés M., Cabrera L., Costa E., Sáez A., 2014. 20 Myr of eccentricity paced lacustrine cycles in the Cenozoic Ebro Basin.Earth and Planetary Science Letters, 408, 183-193. [108] Wang F.A.,2014. Sunspots and the Earth environment.Environmental Protection and Circular Economy, 12, 28-30 (in Chinese with English Abstract). [109] Wang G.M., Zhong J.H., 2004. Review and prospect of the research on sedimentary mechanism of lacustrine laminae.Acta Petrologica et Mineralogica, 23(1), 43-48 (in Chinese with English Abstract). [110] Wang J.H., Jiang Z.X., Zhang Y.F., 2015. Subsurface lacustrine storm-seiche depositional model in the Eocene Lijin Sag of the Bohai Bay Basin, East China.Sedimentary Geology, 328, 55-72. [111] Wang P.X., Liu C.L., 1993. Methods for the study of paleolimnology in oil-bearing basins. Ocean Press, Beijing, 213 pp. (in Chinese with English Abstract). [112] Wilson R.D., Schieber J., 2015. Sedimentary facies and depositional environment of the Middle Devonian Geneseo Formation of New York, USA.Journal of Sedimentary Research, 85(11), 1393-1415. [113] Wright P.,1991. Lacustrine carbonates. In: Tucker, M., Wright, P., (Eds.). Carbonate Sedimentology. Blackwell Science, Oxford, pp. 164-221. [114] Wu H.C., Zhang S.H., Feng Q.L., Fang N.Q., Yang T.S., Li H.Y., 2011. Theoretical basis, research progress and prospect of cyclic stratigraphy.Earth Science — Journal of China University of Geosciences, 36(3), 409-428 (in Chinese with English Abstract). [115] Wu H.C., Zhang S.H., Jiang G.Q., 2012. Astrochronology of the Early Turonian-Early Campanian terrestrial succession in Songliao Basin, northeastern China and its implication for the long-period behavior of the Solar System.Palaeogeography, Palaeoclimatology, Palaeoecology, 385, 55-70. [116] Xie Y., Wang J., Li L.X., Xie Z.W., Deng G.S., Li M.H., 2010. Distribution of the Cretaceous clay minerals on Ordos Basin, China and its implication to sedimentary and diagenetic environment.Geological Bulletin of China, 29(1), 93-104 (in Chinese with English Abstract). [117] Xu J.L., Pan Z.R., Yang Y.M., Zhu Y.H., Fan N.M., 1997. Paleogene Goubenzoic Algae and Suspected Sources in Shengli Oil Region, Shandong Province. Petroleum University Press, Dongying, 241 pp. (in Chinese). [118] Xu T.T., Wang H.X., Zhang Y.Y., Zhao X., Bao Y., 2003. Clay Minerals of Petroliferous Basins in China. Petroleum Industry Press, Beijing (in Chinese with English Abstract). [119] Yang R.C., Han Z.Z., Fan A.P., Loon A.J.V., 2018. Gravity flow sedimentary fine-grained rock and its petroleum geological significance. Abstracts of the 15th National Conference on Paleogeography and Sedimentology, pp. 129-130 (in Chinese with English Abstract). [120] Zhang J.G., Jiang Z.X., Jiang X.L., Wang S.Q., Liang C., Wu M.H., 2016a. Oil generation induces sparry calcite formation in lacustrine mudrock, Eocene of East China.Marine and Petroleum Geology, 71, 344-359. [121] Zhang J.G., Jiang Z.X., Liang C., Wu J., Xian B.Z., Li Q., 2016b. Lacustrine massive mudrock in the Eocene Jiyang Depression, Bohai Bay Basin, China: Nature, origin and significance.Marine and Petroleum Geology, 77, 1042-1055. [122] Zhang J.G., Jiang Z.X., Liu L.A., Yuan F., Feng L.Y., Li C.S., 2021. Lithofacies characteristics and sedimentary evolution of fine-grained sedimentary rocks in the lower sub-member of the third member of Shahejie Formation in Zhanhua sag, Bohai Bay Basin.Acta Petrolei Sinica, 42(3), 293-306 (in Chinese with English Abstract). [123] Zhang J.G., Jiang Z.X., Liu P., Kong X.X., Ge Y.J., 2022. Deposition mechanism and geological assessment of continental ultrafine-grained shale oil reservoirs.Acta Petrolei Sinica, 43(2), 234-249 (in Chinese with English Abstract). [124] Zolitschka B., Francus P., Ojala A.E., Schimmelmann A., 2015. Varves in lake sediments — A review.Quaternary Science Reviews, 117, 1-41.