Pliocene taxodiaceous fossil wood from southwestern Ukraine and its palaeoenvironmental implications
Yi Tiemei1,*, Li Chengsen2, Svetlana Syabryaj3
1. Beijing Institute of Science and Technology Information, Beijing 100048, China
2. Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
3. Institute of Geological Sciences, National Academy of Sciences of Ukraine, Kiev 01601, Ukraine
Mineralized wood collected from Late Pliocene strata near Gorbki village in the Transcarpathian region of Beregovo Kholmogor’e in southwestern Ukraine was anatomically studied and identified. The wood possesses distinctive anatomical features and has distinct growth rings with an abrupt transition from early- to late-wood. Wood consists of tracheids with 1-3 seriate, dominating bi-seriate, opposite pits on the radial walls and taxodioid cross- field pitting, indentures present. Rays are uni-seriate and 1 to 73 cells high. Ray parenchyma horizontal walls thin and smooth. Axial parenchyma distributed in early- and late-wood and is solitary and diffuse, with end walls nearly smooth or slightly nodular. The combination of features observed in the wood indicates it belongs to the conifer family Taxodiaceae and is most similar to modern Sequoia and assigned to the fossil genus Sequoioxylon. Comparison with species of Sequoioxylon show it is most similar to Sequoioxylon burejense, but ray tracheids were not found in our specimens. We describe the specimens here as Sequoioxylon cf. s. burejense noting this similarity. Extant Sequoia is distributed in the northern California coastal forest eco-region of northern California and southern Oregon in the United States where they usually grow in a unique environment with heavy seasonal precipitation (2500 mm annually), cool coastal air and fog drip. This study supplies magafossil evidence of Sequoioxylon as an element of the Late Pliocene forest community in Ukraine and indicates a climate with heavy seasonal precipitation and fog drip.
This study was supported by the China and Ukraine cooperation fund of Chinese Academy Sciences and National Natural Science Foundation of China (No. 31170206).
Yi Tiemei1,Li Chengsen,Svetlana Syabryaj. Pliocene taxodiaceous fossil wood from southwestern Ukraine and its palaeoenvironmental implications[J]. Journal of Palaeogeography, 2013, 2(4): 362-368.
Yi Tiemei1,Li Chengsen,Svetlana Syabryaj. Pliocene taxodiaceous fossil wood from southwestern Ukraine and its palaeoenvironmental implications[J]. Journal of Palaeogeography, 2013, 2(4): 362-368.
Basinger, J. F., 1981. The vegetative body of Metasequoia milleri from the Middle Eocene of southern British Columbia. Canadian Journal of Botany, 59(12): 2379-2410.
Blokhina, N. I., 1986. Sequoia Wood from the Late Oligocene of Siziman Bay, Khabarovsk Krai. Paleontologicheskii Zhurnal, 3: 131-135.
Blokhina, N. I., 1997. Fossil Wood of Sequoioxylon chemrylicum sp. nov. (Taxodiaceae) from the Paleogene of Chemurnaut Bay, Kamchatka. Paleontological Journal, 31(2): 235-238.
Blokhina, N. I., 2004. Fossil Wood Sequoioxylon sachalinicum sp. nov. (Taxodiaceae) from the Tertiary Deposits of Western Sakhalin Island. Botanicheskii Zhurnal, 89(5): 139-147.
Blokhina, N. I., Afonin, M. A., Kodrul, T. M., 2010. Fossil wood of Sequoioxylon burejense sp. nov. (Taxodiaceae) from the Upper Cretaceous of the Zeya-Bureya Basin (Russian Far East). Paleontological Journal, 44(10): 1231-1239.
Blokhina, N. I., Nassichuk, W. W., 2000. Lower Tertiary Wood of Sequoioxylon canadense sp. nov. (Taxodiaceae) from a Kimberlite Pipe (Northern Canada). Botanicheskii Zhurnal, 85(4): 122-132.
Chaney, R. W., 1951. A revision of fossil Sequoia and Taxodium in western North America based on the recent discovery of Metasequoia. Transactions of the American Philosophical Society, New Series, 40: 171-263.
Dieter Uhl, 2006. Fossil plants as palaeoenvironmental proxies�� Some remarks on selected approaches. Acta Palaeobotanica, 46(2): 87-100.
Earle, C. J., 2011. ��Sequoia sempervirens��. The Gymnosperm Database. Olympia, Washington: self-published. Fairon-Demaret, M., Steurbautb, E., Damblonb, F., Dupuisc, C., Smithb, T., Gerrienne, P., 2003. The in situ Glyptostroboxylon forest of Hoegaarden (Belgium) at the Initial Eocene Thermal Maximum (55 Ma). Review of Palaeobotany and Palynology, 126(1-2): 103-129.
Farjon, A., 2005. A monograph of Cupressaceae and Sciadopitys.
Royal Botanic Gardens, Kew: Richmond, Surrey, UK. Florin, R., 1963. The distribution of conifer and taxa genera in time and space. Acta Horti Bergiani, 20: 121-312.
Gothan, W., 1905. Zur Anatomie lebender und fossiler Gymnospermen Holzer, Abliandl, Konigl, Preuss, Geol, Landesanstalt, Neue Folge, Heft 44.
Greguss, P., 1955. Xylotomische Bestimmung der heute lebenden Gymnospermen. Akad��miai Kiad��, Budapest.
Greguss, P., 1967. Fossil Gymnospermen Woods in Hungary from the Permian to the Pliocene. Akad��miai Kiad��, Budapest.
Iamandei, S., Iamandei, E., 1999. Fossil Conifer Wood from Prvleni- Ociu, Metalliferous Mts. Acta Palaeobotanica, 2: 201-212.
Iljinskaja, I. A., 1968. Neogene Floras of the Transcarpathian Region of USSR. Nauka, Leningrad, 1-117 (in Russian).
Kr?usel, R., 1949. Die fossilen Koniferen H?lzer (unter Ausschlu�� von Araucarioxylon Kraus.). II. Kritische Untersuchungen zur Diagnostik lebender und fossiler Koniferen H?lzer. Palaeontographica Abteilung B, 89(4-6): 83-203.
Michaux, J., Suc, J.-P., Vernet, J.-L., 1979. Climatic inference from the history of the Taxodiaceae during the Pliocene and the early Pleistocene in Western Europe. Review of Palaeobotany and Palynology, 27(2): 185-191.
Peirce, A. S., 1936. Anatomical interrelationships of the Taxodiaceae. Trop. Woods, 46: 1-15.
Phillips, E. W. J., 1949. Identification of softwoods by their microscopic structure. London: HMSO.
Richter, H. G., Grosser, D., Heinz, I., Gasson, P. E., 2004. IAWA list of microscopic features for softwood identification. IAWA Committee. IAWA Journal, 25: 1-70.
Royer, D. L., Wilf, P., Janesko, D. A., Kowalski, E. A., Dilcher, D. L., 2005. Correlation of climate and plant ecology to leaf size and shape: Potential proxies for the fossil record. American Journal of Botany, 92: 1141-1151.
Sch?nfeld, E., 1955. Metasequoia in der westdeutschen Braunkohle. Senckenbergiana lethaea, 36 (5-6): 389-399.
Sheremeta, V. G., 1958. Stratigraphy of the Transcarpathian Pliocene deposits by ostracode fauna. Voprosy Geologii, 9: 70-86 (in Russian).
S��ss, H., Velitzelos, E., 1997. Fossile H?lzer der Familie Taxodiaceae aus terti?ren Schichten des Versteinerten Walds von Lesbos, Griechenland. Feddes Repertorium, 108(1-2): 1-30.
Syabryaj, S., 1997. Floristic characters of the upper coal-bearing formation in the Transcarpathians. Geological Society, London, Special Publications, 125: 229-236.
Torrey, R. E., 1923. The Comparative Anatomy and Phylogeny of the Coniferales. Part 3. Mesozoic and Tertiary Coniferous Woods. Memoirs of the Boston Society of Natural History, 6(2): 39-106.
Visscher, G. E., Jagels, R., 2003. Separation of Metasequoia and Glyptostrobus (Cupressaceae) based on wood anatomy. IAWA Journal, 24(4): 439-450.
Willebrand, G., 1995. Untersuchung von ausgew?hlten mikroanatomischen Merkmalen zur Bestimmung von Nadelh?lzern. Diplomarbeit, Fachhochschule Rosenheim, Fachbereich Holztechnik.
Wu, Z. Y., Raven, P. H., 1999. Flora of China, Vol. 4: Cycadaceae through Fagaceae. Sci. Press and Missouri Bot. Garden Press, Beijing and St. Louis.