aShandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Sciences and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong Province, China; bInstitute of Earth Sciences, China University of Geosciences, Beijing 100083, China; cSchool of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; dChinese Academy of Geological Sciences, Beijing 100037, China
Abstract The Cretaceous has been considered a “high-fire” world accompanied by widespread by-products of combustion in the rock record. The mid-Cretaceous oceanic anoxic event 1b (OAE1b) is marked by one of the major perturbations in the global carbon cycle characterized by deposition of organic-rich sediments in both marine and terrestrial settings. However, our understanding is still limited on changes in wildfire activity during OAE1b period. Here, we carried out a comprehensive analysis, including organic carbon isotope (δ13Corg), total organic carbon (TOC), coal petrology, trace elements, and pyrolytic polycyclic aromatic hydrocarbons (pyroPAHs), of coal seams of the middle Aptian to early Albian Shahezi Formation from borehole SK-2 in Songliao Basin, Northeast China. Two negative δ13Corg excursions in the Shahezi Formation can be corresponded with the 113/Jacob and Kilian sub-events of OAE1b. Moreover, the intensive peatland wildfires have been identified during the sub-event periods of OAE1b based on the co-occurrence of high abundance of charcoal and pyroPAHs at that time. In addition, Sr/Ba, Sr/Cu and Sr/Rb ratios demonstrate that enhanced peatland wildfires were controlled by dryer climate conditions owing to episodic northward migration of arid zones in East Asia related with rising global temperature during the sub-events of OAE1b. The climate-driven extensive wildfire activity in the mid-latitude terrestrial ecosystems can be a contributing factor for OAE1b through the increased flux of nutrients fuelling primary producers in the lake and marine environments and leading to more speculative anoxia to allow the deposition of organic-rich sediments. Our results provide essential understanding of the importance of wildfires in driving mechanism of OAEs in Earth's history.
Corresponding Authors:
* E-mail address: lvdawei95@126.com (D.-W. Lü). Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Sciences and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong Province, China.
Cite this article:
. Intensive peatland wildfires during the Aptian-Albian oceanic anoxic event 1b: Evidence from borehole SK-2 in the Songliao Basin, NE China[J]. Journal of Palaeogeography, 2022, 11(3): 448-467.
. Intensive peatland wildfires during the Aptian-Albian oceanic anoxic event 1b: Evidence from borehole SK-2 in the Songliao Basin, NE China[J]. Journal of Palaeogeography, 2022, 11(3): 448-467.
[1] Arthur M., Brumsack H.-J., Jenkyns H., Schlanger S., 1990. Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequences, Cretaceous resources, events and rhythms. Springer, pp. 75-119. [2] Baker S.J.,2022. Fossil evidence that increased wildfire activity occurs in tandem with periods of global warming in Earth's past.Earth-Science Reviews, 224, 103871. [3] Baker S.J., Belcher C.M., Barclay R.S., Hesselbo S.P., Laurin J., Sageman B.B., 2020. CO2-induced climate forcing on the fire record during the initiation of Cretaceous oceanic anoxic event 2.Geological Society of America Bulletin, 132, 321-333. [4] Baker S.J., Hesselbo S.P., Lenton T.M., Duarte L.V., Belcher C.M., 2017. Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia.Nature communications, 8, 1-7. [5] Belcher C.M.,2013. Fire phenomena and the Earth system: An interdisciplinary guide to fire science. John Wiley & Sons. [6] Belcher C.M., Hudspith V.A., 2017. Changes to Cretaceous surface fire behaviour influenced the spread of the early angiosperms.New Phytologist, 213, 1521-1532. [7] Belcher C.M., Yearsley J.M., Hadden R.M., McElwain J.C., Rein G., 2010. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years.Proceedings of the National Academy of Sciences, 107, 22448-22453. [8] Benamara A., Charbonnier G., Adatte T., Spangenberg J.E., Föllmi K.B., 2020. Precession-driven monsoonal activity controlled the development of the early Albian Paquier oceanic anoxic event (OAE1b): Evidence from the Vocontian Basin, SE France.Palaeogeography, Palaeoclimatology, Palaeoecology, 537, 109406. [9] Berrocoso Á.J., MacLeod K.G., Martin E.E., Bourbon E., Londoño C.I., Basak C., 2010. Nutrient trap for Late Cretaceous organic-rich black shales in the tropical North Atlantic.Geology, 38, 1111-1114. [10] Blumer M.,1976. Polycyclic aromatic compounds in nature. Scientific American, 234, 34-45. [11] Bottini C., Erba E., 2018. Mid-Cretaceous paleoenvironmental changes in the western Tethys.Climate of the Past, 14, 1147-1163. [12] Boucot A., Chen X., Scotese C., Fan J., 2009. Reconstruction of global paleoclimate in Phanerozoic. Science Press, Beijing, 173 pp. (in Chinese with English Abstract). [13] Boucot A.J., Scotese C.R., Xu C., Morley R.J., 2013. Phanerozoic paleoclimate: An atlas of lithologic indicators of climate. SEPM Society for Sedimentary Geology, Tulsa, 478 pp. [14] Boudinot F.G., Sepúlveda J., 2020. Marine organic carbon burial increased forest fire frequency during Oceanic Anoxic Event 2.Nature Geoscience, 13, 693-698. [15] Bralower T.J., CoBabe E., Clement B., Sliter W.V., Osburn C.L., Longoria J., 1999. The record of global change in mid-Cretaceous (Barremian-Albian) sections from the Sierra Madre, northeastern Mexico.The Journal of Foraminiferal Research, 29, 418-437. [16] Brown S.A., Scott A.C., Glasspool I.J., Collinson M.E., 2012. Cretaceous wildfires and their impact on the Earth system. Cretaceous Research, 36, 162-190. [17] Chaudhuri S.N.,2016. Coal macerals. Encyclopedia of Mineral and Energy Policy. Springer, Berlin, Heidelberg, pp. 1-6. [18] Chen J., Wang Y., Chen Y., Liu L., Ji J., Lu H., 2000. Rb and Sr geochemical characterization of the Chinese loess and its implications for palaeomonsoon climate.Acta Geologica Sinica (English Edition), 75, 259-266. [19] Coccioni R., Sabatino N., Frontalini F., Gardin S., Sideri M., Sprovieri M., 2014. The neglected history of Oceanic Anoxic Event 1b: Insights and new data from the Poggio le Guaine section (Umbria-Marche Basin).Stratigraphy, 11, 245-282. [20] Coffin M.F., Eldholm O., 1994. Large igneous provinces: crustal structure, dimensions, and external consequences.Reviews of Geophysics, 32, 1-36. [21] Coffin M.F., Pringle M., Duncan R., Gladczenko T., Storey M., Müller R., Gahagan L., 2002. Kerguelen hotspot magma output since 130 Ma.Journal of Petrology, 43, 1121-1137. [22] Dai S., Seredin V.V., Ward C.R., Hower J.C., Xing Y., Zhang W., Song W., Wang P., 2015. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China.Mineralium Deposita, 50(2), 159-186. [23] Dai S., Wang X., Zhou Y., Hower J.C., Li D., Chen W., Zhu X., Zou J., 2011. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the Late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chemical Geology, 282, 29-44. [24] Deng S., Lu Y., Fan R., Fang L., Li X., Liu L., 2012. Toarcian (Early Jurassic) oceanic anoxic event and the responses in terrestrial ecological system.Earth Science - Journal of China University of Geosciences, 37(SUPPL.2), 23-38 (in Chinese with English abstract). [25] Denis E.H., Pedentchouk N., Schouten S., Pagani M., Freeman K.H., 2017. Fire and ecosystem change in the Arctic across the Paleocene-Eocene Thermal Maximum.Earth and Planetary Science Letters, 467, 149-156. [26] Erbachen J., Gerth W., Schmiedl G., Hemleben C., 1998. Benthic foraminiferal assemblages of late Aptian-early Albian black shale intervals in the Vocontian Basin, SE France.Cretaceous Research, 19, 805-826. [27] Erbacher J., Huber B.T., Norris R.D., Markey M., 2001. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period.Nature, 409, 325-327. [28] Feng Z., Jia C., Xie X., Zhang S., Feng Z., Cross T.A., 2010. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin, Northeast China.Basin Research, 22, 79-95. [29] Feurdean A., Vasiliev I., 2019. The contribution of fire to the late Miocene spread of grasslands in eastern Eurasia (Black Sea region).Scientific Reports, 9, 1-7. [30] Fletcher T.L., Warden L., Sinninghe Damsté J.S., Brown K.J., Rybczynski N., Gosse J.C., Ballantyne A.P., 2019. Evidence for fire in the Pliocene Arctic in response to amplified temperature.Climate of the Past, 15, 1063-1081. [31] Friedrich O., Nishi H., Pross J.R., Schmiedl G., Hemleben C., 2005. Millennial- to centennial-scale interruptions of the Oceanic Anoxic Event 1b (Early Albian, mid-Cretaceous) inferred from benthic foraminiferal repopulation events.Palaios, 20, 64-77. [32] Fu Y., Cheng R., Gao Y., Zhou Y., Xu Z., 2022. Pyroclastic deposition in the Cretaceous Shahezi Formation (Well SK-2) Songliao Basin, China: Implications for tectonics and volcanism.Geological Journal, 57, 2346-2364. [33] Gao Y., Ibarra D.E., Rugenstein J.K.C., Chen J., Kukla T., Methner K., Gao Y., Huang H., Lin Z., Zhang L., Xi D., Wu H., Carroll A.R., Graham S.A., Chamberlain C.P., Wang C., 2021. Terrestrial climate in mid-latitude East Asia from the latest Cretaceous to the earliest Paleogene: A multiproxy record from the Songliao Basin in northeastern China.Earth-Science Reviews, 216, 103572. [34] Gao Y., Ibarra D.E., Wang C., Caves J.K., Chamberlain C.P., Graham S.A., Wu H., 2015. Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous.Geology, 43, 287-290. [35] Gao Y., Wang C., Wang P., Gao Y., Huang Y., Zou C., 2019. Progress on continental scientific drilling project of Cretaceous Songliao Basin (SK-1 and SK-2).Science Bulletin, 64, 73-75. [36] Gilder S., Courtillot V., 1997. Timing of the North-South China collision from new Middle to Late Mesozoic paleomagnetic data from the North China Block. Journal of Geophysical Research: Solid Earth, 102, 17713-17727. [37] Glasspool I.J., Scott A.C., 2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal.Nature Geoscience, 3, 627-630. [38] Glasspool I.J., Scott A.C., Waltham D., Pronina N., Shao L., 2015. The impact of fire on the Late Paleozoic Earth system.Frontiers in Plant Science, 6, 756. [39] Herrle J.O., Kößler P., Friedrich O., Erlenkeuser H., Hemleben C., 2004. High-resolution carbon isotope records of the Aptian to Lower Albian from SE France and the Mazagan Plateau (DSDP Site 545): A stratigraphic tool for paleoceanographic and paleobiologic reconstruction.Earth and Planetary Science Letters, 218, 149-161. [40] Herrle J.O., Pross J., Friedrich O., Kößler P., Hemleben C., 2003. Forcing mechanisms for mid-Cretaceous black shale formation: Evidence from the Upper Aptian and Lower Albian of the Vocontian Basin (SE France).Palaeogeography, Palaeoclimatology, Palaeoecology, 190, 399-426. [41] Hesselbo S.P., Gröcke D.R., Jenkyns H.C., Bjerrum C.J., Farrimond P., Morgans Bell H.S., Green O.R., 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event.Nature, 406, 392-395. [42] Hou H., Wang C., Zhang J., Ma F., Fu W., Wang P., Huang Y., Zou C., Gao Y., Gao Y., 2018. Deep continental scientific drilling engineering project in Songliao Basin: Progress in Earth science research.China Geology, 1, 173-186. [43] Hower J., Rathbone R., Wild G., Davis A., 1996. Observations on the use of vitrinite maximum reflectance versus vitrinite random reflectance for high volatile bituminous coals.Journal of Coal Quality, 13, 71-76. [44] Hower J.C., O'Keefe J.M.K., Eble C.F., Raymond A., Valentim B., Volk T.J., Richardson A.R., Satterwhite A.B., Hatch R.S., Stucker J.D., Watt M.A., 2011. Notes on the origin of inertinite macerals in coal: Evidence for fungal and arthropod transformations of degraded macerals.International Journal of Coal Geology, 86, 231-240. [45] Hu G., Hu W., Cao J., Yao S., Liu W., Zhou Z., 2014. Fluctuation of organic carbon isotopes of the Lower Cretaceous in coastal southeastern China: Terrestrial response to the Oceanic Anoxic Events (OAE1b).Palaeogeography, Palaeoclimatology, Palaeoecology, 399, 352-362. [46] Jenkyns H.C.,2010. Geochemistry of oceanic anoxic events.Geochemistry, Geophysics, Geosystems, 11, Q03004. [47] Jerrett R.M., Price G.D., Grimes S.T., Dawson A.T., 2015. A paleoclimatic and paleoatmospheric record from peatlands accumulating during the Cretaceous-Paleogene boundary event, Western Interior Basin, Canada.Geological Society of America Bulletin, 127, 1564-1582. [48] Jones T.P.,1997. Fusain in Late Jurassic sediments from the Witch Ground Graben, North Sea, UK.Mededelingen - Nederlands Instituut voor Toegepaste Geowetenschappen TNO, 58, 93-103. [49] Jones T.P., Chaloner W.G., 1991. Fossil charcoal, its recognition and palaeoatmospheric significance.Palaeogeography, Palaeoclimatology, Palaeoecology, 97, 39-50. [50] Ketris M.P., Yudovich Y.E., 2009. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78, 135-148. [51] Kraal P., Slomp C.P., Forster A., Kuypers M.M., 2010. Phosphorus cycling from the margin to abyssal depths in the proto-Atlantic during oceanic anoxic event 2.Palaeogeography, Palaeoclimatology, Palaeoecology, 295, 42-54. [52] Kump L.,1988. Terrestrial feedback in atmospheric oxygen regulation by fire and phosphorus.Nature, 335, 152-154. [53] Leckie R.M., Bralower T.J., Cashman R., 2002. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography and Paleoclimatology, 17 (3), 13-1-13-29. [54] Lenton T.M., Daines S.J., Mills B.J., 2018. COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews, 178, 1-28. [55] Lerman A.,1978. Lakes: Chemistry, Geology, Physics. Springer-Verlag New York, Berlin, 366 pp. [56] Lidgard S., Crane P.R., 1990. Angiosperm diversification and Cretaceous floristic trends: A comparison of palynofloras and leaf macrofloras.Paleobiology, 16, 77-93. [57] Lima A.L.C., Farrington J.W., Reddy C.M., 2005. Combustion-derived polycyclic aromatic hydrocarbons in the environment — a review.Environmental Forensics, 6, 109-131. [58] Liu H., Wang P., Gao Y., Hou H., Yin Y., Li H., Feng Y., 2021. New data from ICDP borehole SK-2 and its constraint on the beginning of the Lower Cretaceous Shahezi Formation in the Songliao Basin, NE China.Science Bulletin, 66, 411-413. [59] Ludvigson G.A., Joeckel R., Gonzalez L.A., Gulbranson E.L., Rasbury E.T., Hunt G.J., Kirkland J.I., Madsen S., 2010. Correlation of Aptian-Albian carbon isotope excursions in continental strata of the Cretaceous foreland basin, eastern Utah, USA.Journal of Sedimentary Research, 80, 955-974. [60] Lupia R., Lidgard S., Crane P.R., 1999. Comparing palynological abundance and diversity: Implications for biotic replacement during the Cretaceous angiosperm radiation.Paleobiology, 25, 305-340. [61] Marynowski L., Simoneit B.R., 2009. Widespread Upper Triassic to Lower Jurassic wildfire records from Poland: Evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons.Palaios, 24, 785-798. [62] Mathews R.P., Pillai S.S.K., Manoj M.C., Agrawal S., 2020. Palaeoenvironmental reconstruction and evidence of marine influence in Permian coal-bearing sequence from Lalmatia Coal Mine (Rajmahal Basin), Jharkhand, India: A multi-proxy approach.International Journal of Coal Geology, 224, 103485. [63] Matsumoto H., Coccioni R., Frontalini F., Shirai K., Jovane L., Trindade R., Savian J.F., Kuroda J., 2022. Mid-Cretaceous marine Os isotope evidence for heterogeneous cause of oceanic anoxic events.Nature Communications, 13, 1-9. [64] Matsumoto H., Kuroda J., Coccioni R., Frontalini F., Sakai S., Ogawa N.O., Ohkouchi N., 2020. Marine Os isotopic evidence for multiple volcanic episodes during Cretaceous Oceanic Anoxic Event 1b.Scientific Reports, 10, 1-10. [65] McElwain J.C., Wade-Murphy J., Hesselbo S.P., 2005. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals.Nature, 435, 479-482. [66] Nabbefeld B., Grice K., Summons R.E., Hays L.E., Cao C., 2010. Significance of polycyclic aromatic hydrocarbons (PAHs) in Permian/Triassic boundary sections.Applied Geochemistry, 25, 1374-1382. [67] Navarro-Ramirez J.P., Bodin S., Heimhofer U., Immenhauser A., 2015. Record of Albian to early Cenomanian environmental perturbation in the eastern sub-equatorial Pacific.Palaeogeography, Palaeoclimatology, Palaeoecology, 423, 122-137. [68] Niklas K., Tiffney B., Knoll A., 1983. Patterns in vascular land plant diversification: An analysis at the species level.Nature, 303, 614-616. [69] Okada H.,2000. Nature and development of Cretaceous sedimentary basins in East Asia: A review.Geosciences Journal, 4(4), 271-282. [70] O'Keefe J.M.K., Bechtel A., Christanis K., Dai S., DiMichele W.A., Eble C.F., Esterle J.S., Mastalerz M., Raymond A.L., Valentim B.V., Wagner N.J., Ward C.R., Hower J.C., 2013. On the fundamental difference between coal rank and coal type. International Journal of Coal Geology, 118, 58-87. [71] Pei F., Xu W., Yang D., Zhao Q., Liu X., Hu Z., 2007. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin. Chinese Science Bulletin, 52, 942-948. [72] Petersen H.I., Lindström S., 2012. Synchronous wildfire activity rise and mire deforestation at the Triassic-Jurassic Boundary. PLoS ONE, 7(10): e47236. https://doi.org/10.1371/journal.pone.0047236. [73] Ren J., Tamaki K., Li S., Junxia Z., 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas.Tectonophysics, 344, 175-205. [74] Sabatino N., Coccioni R., Manta D.S., Baudin F., Vallefuoco M., Traina A., Sprovieri M., 2015. High-resolution chemostratigraphy of the late Aptian-early Albian oceanic anoxic event (OAE 1b) from the Poggio le Guaine section (Umbria-Marche Basin, central Italy).Palaeogeography, Palaeoclimatology, Palaeoecology, 426, 319-333. [75] Sabatino N., Ferraro S., Coccioni R., Bonsignore M., Del Core M., Tancredi V., Sprovieri M., 2018. Mercury anomalies in upper Aptian-lower Albian sediments from the Tethys realm.Palaeogeography, Palaeoclimatology, Palaeoecology, 495, 163-170. [76] Schlanger S.O., Jenkyns H.C., 1976. Cretaceous oceanic anoxic events: Causes and consequences. Geologie en Mijnbouw, 55(3), 179-184. [77] Scott A.C.,1989. Observations on the nature and origin of fusain. International Journal of Coal Geology, 12, 443-475. [78] Scott A.C.,2000. The Pre-Quaternary history of fire.Palaeogeography, Palaeoclimatology, Palaeoecology, 164, 281-329. [79] Scott A.C.,2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis.Palaeogeography, Palaeoclimatology, Palaeoecology, 291, 11-39. [80] Scott A.C., Glasspool I.J., 2006. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration.Proceedings of the National Academy of Sciences, 103, 10861-10865. [81] Scott A.C., Glasspool I.J., 2007. Observations and experiments on the origin and formation of inertinite group macerals. International Journal of Coal Geology, 70, 53-66. [82] Scott A.C., Kenig F., Plotnick R.E., Glasspool I.J., Chaloner W.G., Eble C.F., 2010. Evidence of multiple late Bashkirian to early Moscovian (Pennsylvanian) fire events preserved in contemporaneous cave fills.Palaeogeography, Palaeoclimatology, Palaeoecology, 291, 72-84. [83] Sen S.,2016. Review on coal petrographic indices and models and their applicability in paleoenvironmental interpretation.Geosciences Journal, 20, 719-729. [84] Shen J., Algeo T.J., Planavsky N.J., Yu J., Feng Q., Song H., Song H., Rowe H., Zhou L., Chen J., 2019. Mercury enrichments provide evidence of Early Triassic volcanism following the end-Permian mass extinction.Earth-Science Reviews, 195, 191-212. [85] Shen W., Sun Y., Lin Y., Liu D., Chai P., 2011. Evidence for wildfire in the Meishan section and implications for Permian-Triassic events.Geochimica et Cosmochimica Acta, 75, 1992-2006. [86] Song Y., Algeo T.J., Wu W., Luo G., Li L., Wang Y., Xie S., 2020. Distribution of pyrolytic PAHs across the Triassic-Jurassic boundary in the Sichuan Basin, southwestern China: Evidence of wildfire outside the Central Atlantic Magmatic Province.Earth-Science Reviews, 201, 102970. [87] Spencer C.N., Hauer F.R., 1991. Phosphorus and nitrogen dynamics in streams during a wildfire. Journal of the North American Benthological Society, 10, 24-30. [88] Stach E., Murchison D., Taylor G.H., Zierke F., 1982. Stach's Textbook of Coal Petrology. Borntraeger Berlin. [89] Sun Y., Zhao C., Püttmann W., Kalkreuth W., Qin S., 2017. Evidence of widespread wildfires in a coal seam from the Middle Permian of the North China Basin.Lithosphere, 9, 595-608. [90] Taylor M.J., Shay J.M., Hamlin S.N., 1993. Changes in water-quality conditions in Lexington Reservoir, Santa Clara County, California, following a large fire in 1985 and flood in 1986. US Department of the Interior, US Geological Survey. [91] Trabucho Alexandre J., van Gilst R.I., Rodríguez-López J.P., De Boer P.L., 2011. The sedimentary expression of oceanic anoxic event 1b in the North Atlantic.Sedimentology, 58, 1217-1246. [92] Wang C., Feng Z., Zhang L., Huang Y., Cao K., Wang P., Zhao B., 2013. Cretaceous paleogeography and paleoclimate and the setting of SK-I borehole sites in Songliao Basin, northeast China.Palaeogeography Palaeoclimatology, Palaeoecology, 385, 17-30. [93] Wang C., Gao Y., Ibarra D., Wu H., Wang P., 2021a. An unbroken record of climate during the age of dinosaurs.Eos Transactions American Geophysical Union, 102. DOI:10.1029/2021EO158455. [94] Wang D.D., Yin L.S., Shao L.Y., Lyu D.W., Liu H.Y., Wang S., Dong G.Q., 2021c. Characteristics and evolution of inertinite abundance and atmosphericpO2 during China’s coal-forming periods. Journal of Palaeogeography, 10(1), 1-25. [95] Wang P., Xie X., Mattern F., Ren Y., Zhu D., Sun X., 2007. The Cretaceous Songliao Basin: Volcanogenic succession, sedimentary sequence and tectonic evolution, NE China.Acta Geologica Sinica (English Edition), 81, 1002-1011. [96] Wang P.J., Mattern F., Didenko N.A., Zhu D.F., Singer B., Sun X.M., 2016. Tectonics and cycle system of the Cretaceous Songliao Basin: An inverted active continental margin basin.Earth-Science Reviews, 159, 82-102. [97] Wang S., Shao L., Li J., Li J., Jones T., Zhu M., Zhou J., 2021b. Coal petrology of the Yimin Formation (Albian) in the Hailar Basin, NE China: Paleoenvironments and wildfires during peat formation.Cretaceous Research, 124, 104815. [98] Wang S., Shao L.Y., Yan Z.M., Shi M.J., Zhang Y.H., 2019. Characteristics of Early Cretaceous wildfires in peat-forming environment, NE China. Journal of Palaeogeography, 8(3), 238-250. [99] Wang Y., Zhang F., Zhang D., Miao L., Li T., Xie H., Meng Q., Liu D., 2006. Zircon SHRIMP U-Pb dating of meta-diorite from the basement of the Songliao Basin and its geological significance.Chinese Science Bulletin, 51, 1877-1883. [100] Watson A.,1978. Consequences for the biosphere of grassland and forest fires. Ph.D. Thesis, Reading University. [101] Watson A.J., Lovelock J.E., 2013. The dependence of flame spread and probability of ignition on atmospheric oxygen: An experimental investigation. In: Belcher, C.M., (Ed.). Fire Phenomena and The Earth System: An Interdisciplinary Guide to Fire Science, pp. 273-287. [102] Wu H., Zhang S., Hinnov L.A., Jiang G., Yang T., Li H., Wan X., Wang C., 2014. Cyclostratigraphy and orbital tuning of the terrestrial upper Santonian-lower Danian in Songliao Basin, northeastern China.Earth and Planetary Science Letters, 407, 82-95. [103] Wu H., Zhang S., Jiang G., Huang Q., 2009. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications. Earth and Planetary Science Letters, 278, 308-323. [104] Xu X.T., Shao L.Y., Eriksson K.A., Pang B., Wang S., Yang C.X., Hou H.H., 2022. Terrestrial records of the early Albian Ocean Anoxic Event: Evidence from the Fuxin lacustrine basin, NE China.Geoscience Frontiers, 13, 101275. [105] Xu X.T., Shao L.Y., Lan B., Wang S., Hilton J., Qin J.Y., Hou H.H., Zhao J., 2020. Continental chemical weathering during the Early Cretaceous Oceanic Anoxic Event (OAE1b): A case study from the Fuxin fluvio-lacustrine basin, Liaoning Province, NE China.Journal of Palaeogeography, 9(2), 246-266. [106] Yan Z., Shao L., Glasspool I., Wang J., Wang X., Wang H., 2019. Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the End-Permian Mass Extinction Event.International Journal of Coal Geology, 207, 75-83. [107] Youngblood W., Blumer M., 1975. Polycyclic aromatic hydrocarbons in the environment: Homologous series in soils and recent marine sediments.Geochimica et Cosmochimica Acta, 39, 1303-1314. [108] Yu Z., He H., Deng C., Lu K., Shen Z., Li Q., 2020. New SIMS U-Pb geochronology for the Shahezi Formation from CCSD-SK-IIe borehole in the Songliao Basin, NE China.Science Bulletin, 65, 1049-1051. [109] Zhang X., Chen K., Hu D., Sha J., 2016. Mid-Cretaceous carbon cycle perturbations and Oceanic Anoxic Events recorded in southern Tibet.Scientific Reports, 6, 1-6. [110] Zhang Z., Wang C., Lü D., Hay W.W., Wang T., Cao S., 2020. Precession-scale climate forcing of peatland wildfires during the early Middle Jurassic greenhouse period.Global and Planetary Change, 184, 103051. [111] Zhao X., Zheng D., Wang H., Fang Y., Xue N., Zhang H., 2022. Carbon cycle perturbation and mercury anomalies in terrestrial Oceanic Anoxic Event 1b from Jiuquan Basin, NW China.Geological Society, London, Special Publications, 521. [112] Zhu R., Shao J., Pan Y., Shi R., Shi G., Li D., 2002. Paleomagnetic data from Early Cretaceous volcanic rocks of West Liaoning: Evidence for intracontinental rotation.Chinese Science Bulletin, 47, 1832-1837.