[1] Adler J.B.,Bell III, J.F., Fawdon, P., Davis, J., Warner, N.H., Sefton-Nash, E., Harrison, T.N., 2019. Hypotheses for the origin of the Hypanis fan-shaped deposit at the edge of the Chryse escarpment, Mars: Is it a delta? Icarus, 319, 885-908. https://doi.org/10.1016/j.icarus.2018.05.021.
[2] Bilmes A., Veiga G.D., 2018. Linking mid-scale distributive fluvial systems to drainage basin area: Geomorphological and sedimentological evidence from the endorheic Gastre Basin, Argentina. In: Ventra, D., Clarke, L.E. (eds.), Geology and Geomorphology of Alluvial and Fluvial Fans: Terrestrial and Planetary Perspectives. Geological Society, London, Special Publications, vol. 440. Geological Society of London. https://doi.org/10.1144/SP440.4.
[3] Buehler H.A., Weissmann G.S., Scuderi L.A., Hartley A.J.,2011. Spatial and temporal evolution of an avulsion on the Taquari River distributive fluvial system from satellite image analysis. Journal of Sedimentary Research, 81(8), 630-640. https://doi.org/10.2110/jsr.2011.040.
[4] Cartwright R.J., Burr D.M.,2017. Using synthetic aperture radar data of terrestrial analogs to test alluvial fan formation mechanisms on Titan. Icarus, 284, 183-205. https://doi.org/10.1016/j.icarus.2016.11.013.
[5] Davidson S.K., Hartley A.J., Weissmann G.S., Nichols G.J., Scuderi L.A.,2013. Geomorphic elements on modern distributive fluvial systems. Geomorphology, 180-181, 82-95. https://doi.org/10.1016/j.geomorph.2012.09.008.
[6] Dou C., An X.D., Zhao L.J., Zhang S.P., Bi T.W.,2020. Research on the establishment of digital height datum in Golmud. Bulletin of Surveying and Mapping,(8), 108-111. https://doi.org/10.13474/j.cnki.11-2246.2020.0259(in Chinese with English abstract).
[7] Fielding C.R., Ashworth P.J., Best J.L., Prokocki E.W.,Sambrook Smith, G.H., 2012. Tributary, distributary and other fluvial patterns: What really represents the norm in the continental rock record? Sedimentary Geology, 261-262, 15-32. https://doi.org/10.1016/j.sedgeo.2012.03.004.
[8] Geng J., Zhang X.Y., Guo X.N., Li W.X., Gaosan X.B., Wang Y., Zhang H.X., Tang Q.L., Chen L., 2021. Sources of soluble salts in dustfall and their impact on resources and environment in the Qaidam Basin. Acta Geologica Sinica, 95(7), 2082-2098. https://doi.org/10.19762/j.cnki.dizhixuebao.2021231 (in Chinese with English abstract).
[9] Guan Z.L., Lv A.F., Jia S.F., Yan J.B., Dong D.L.,2018. Study on the relationship between vegetation cover and groundwater depth in the middle reaches of Golmud River. South-to-North Water Transfers and Water Science and Technology, 16(3), 86-93. https://doi.org/10.13476/j.cnki.nsbdqk.2018.0073(in Chinese with English abstract).
[10] Guo Q.B., Huang Y.M., Jia P.H., Li H.H., 2021. Evaluation of water quality status in the main oasis agricultural areas of the Qaidam Basin, China. Journal of Agro-Environment Science, 40(3), 650-658. https://doi.org/10.11654/jaes.2020-0773 (in Chinese with English abstract).
[11] Hartley A.J., Weissmann G.S., Nichols G.J., Scuderi L.A., 2010a. Fluvial form in modern continental sedimentary basins: Distributive fluvial systems: Reply. Geology, 38(12), e231-e231. https://doi.org/10.1130/G31588Y.1.
[12] Hartley A.J., Weissmann G.S., Nichols G.J., Warwick G.L.,2010b. Large distributive fluvial systems: Characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80(2), 167-183. https://doi.org/10.2110/jsr.2010.016.
[13] Hartley A.J., Weissmann G.S., Scuderi L.A., 2017. Controls on the apex location of large deltas. Journal of the Geological Society, 174(1), 10-13. https://doi.org/10.1144/jgs2015-154.
[14] Harwin S., Lucieer A., 2012. Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from unmanned aerial vehicle (UAV) imagery. Remote Sensing, 4(6), 1573-1599. https://doi.org/10.3390/rs4061573.
[15] Hu F., Xia G.S., Hu J.W., Zhang L.P., 2015. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sensing, 7(11), 14680-14707. https://doi.org/10.3390/rs71114680.
[16] Huang J., Li Z.Z., Wang W.K., Song G., Wang J.W., 2021. Characteristics of evaporation and its effect factors in the Golmud River catchment. Hydrogeology and Engineering Geology, 48(3), 31-37. https://doi.org/10.16030/j.cnki.issn.1000-3665.202012023 (in Chinese with English abstract).
[17] Immitzer M., Atzberger C., Koukal T., 2012. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sensing, 4(9), 2661-2693. https://doi.org/10.3390/rs4092661.
[18] Immitzer M., Vuolo F., Atzberger C., 2016. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sensing, 8(3), 166-166. https://doi.org/10.3390/rs8030166.
[19] Jacobsen R.E., Burr D.M., 2017. Dichotomies in the fluvial and alluvial fan deposits of the Aeolis Dorsa, Mars: Implications for weathered sediment and paleoclimate. Geosphere, 13(6), 2154-2168. https://doi.org/10.1130/GES01330.1.
[20] Kou W.J.,2006. The Conversion between Surface Water and Ground Water and the Rational Exploitation in Geermu Basin (M.D. thesis). China University of Geosciences (Beijing)(in Chinese).
[21] Latrubesse E.M.,2015. Large rivers, megafans and other Quaternary avulsive fluvial systems: A potential “who's who” in the geological record. Earth-Science Reviews, 146, 1-30. https://doi.org/10.1016/j.earscirev.2015.03.004.
[22] Lei Y.H., Wang F.K., Hou Y., Xu X.L., Liang Z.Y., Yan L.D.,2021. Characteristics of climate resource change in Golmud area and its influence on agricultural production. Jiangsu Agricultural Sciences, 49(15), 221-227. https://doi.org/10.15889/j.issn.1002-1302.2021.15.040 (in Chinese with English abstract).
[23] Li J.G., Menenti M., Mousivand A., Luthi S.M., 2014. Non-vegetated playa morphodynamics using multi-temporal Landsat imagery in a semi-arid endorheic basin: Salar de Uyuni, Bolivia. Remote Sensing, 6(10), 10131-10151. https://doi.org/10.3390/rs61010131.
[24] Liu Q., Wu Z.B., Jia X.P., Xu Y., Wei Z.H., 2021. From local to global: Class feature fused fully convolutional network for hyperspectral image classification. Remote Sensing, 13(24), 5043. https://doi.org/10.3390/rs13245043.
[25] Mancini F., Dubbini M., Gattelli M., Stecchi F., Fabbri S., Gabbianelli G., 2013. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sensing, 5(12), 6880-6898. https://doi.org/10.3390/rs5126880.
[26] D'Oleire-Oltmanns S., Marzolff I., Peter K.D., Ries J.B., 2012. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sensing, 4(11), 3390-3416. https://doi.org/10.3390/rs4113390.
[27] Owen A., Nichols G.J., Hartley A.J., Weissmann G.S., Scuderi L.A.,2015. Quantification of a distributive fluvial system: The Salt Wash DFS of the Morrison Formation, SW U.S.A. Journal of Sedimentary Research, 85(5), 544-561. https://doi.org/10.2110/jsr.2015.35.
[28] Pan J., Zhang C.M., Pang L., Li P., Zhu R.,2019. Depositional evolution characteristics of the Triassic Baikouquan Formation in Xiazijie fan area of Mahu sag, Junggar Basin. Journal of Palaeogeography (Chinese Edition), 21(6), 913-924. https://doi.org/10.7605/gdlxb.2019.06.062 (in Chinese with English abstract).
[29] Pan Y.B., Lü D.R., Pan W.L., Wang Y.N.,2015. A case study of cirrus cloud over Geermu City using two-wavelength polarization lidar. Climatic and Environmental Research, 20(5), 581-588. https://doi.org/10.3878/j.issn.1006-9585.2015.15031(in Chinese with English abstract).
[30] Qi Z.X., Wang S.B., Wang W.P., Wang Q.M., He H.S.,2018. Analysis of sustainable groundwater resources development scenarios in the Golmud alluvial plain. Yellow River, 40(6), 66-71, +76. https://doi.org/10.3969/j.issn.1000-1379.2018.06.015 (in Chinese with English abstract).
[31] Qiao S., Pan W.L., Ban C., Chen L., Yu T., 2019. Characterization of mesospheric inversion layer with Rayleigh lidar data over Golmud.Chinese Journal of Space Science, 39(1), 84-92 (in Chinese with English abstract).
[32] Rao W.B., Li Y.W., Tan H.B., Li Y.G., Wen C., Zhang X.Y., 2021. Stable hydrogen-oxygen isotope composition and atmospheric moisture sources of precipitation in an arid-alpine region: A case study of the Golmud River Watershed on the north slope of the Kunlun Mountains. Journal of Hydraulic Engineering, 52(9), 1116-1125. https://doi.org/10.13243/j.cnki.slxb.20201087 (in Chinese with English abstract).
[33] Rural Social and Economic Investigation Department of the National Bureau of Statistics, 2021. China County Statistical Yearbook · 2020(County and City Volume). China Statistics Press, Beijing (in Chinese).
[34] Sambrook Smith G.H., Best J.L., Ashworth P.J., Fielding C.R., Goodbred S.L., Prokocki E.W., 2010. Fluvial form in modern continental sedimentary basins: Distributive fluvial systems: COMMENT. Geology, 38(12), e230-e230. https://doi.org/10.1130/G31507C.1.
[35] Song J., Liu X.L., 2021. Improving the accuracy of forest identification in mountainous areas from multi-source remote sensing data — The Sunan County section of Qilian Mountains National Park as an example. Acta Prataculturae Sinica, 30(10), 1-14. https://doi.org/10.11686/cyxb2020496 (in Chinese with English abstract).
[36] Song S.L., Sakuno Y., Taniguchi N., Iwashita H., 2021. Reproduction of the marine debris distribution in the Seto Inland Sea immediately after the July 2018 heavy rains in western Japan using multidate Landsat-8 data. Remote Sensing, 13(24), 5048. https://doi.org/10.3390/rs13245048.
[37] Trendell A.M., Atchley S.C., Nordt L.C.,2013. Facies analysis of a probable large-fluvial-fan depositional system: The Upper Triassic Chinle Formation at Petrified Forest National Park, Arizona, U.S.A. Journal of Sedimentary Research, 83(10), 873-895. https://doi.org/10.2110/jsr.2013.55.
[38] Wang S.B., Qi Z.X., He H.S., Wang W.P., Wu P.,2017. Laws of temporal-spatial distribution of vegetation and an analysis of the influencing factors in the Golmud River Basin. China Rural Water and Hydropower,(10), 65-69. https://doi.org/10.3969/j.issn.1007-2284.2017.10.013 (in Chinese with English abstract).
[39] Wang S.B., Qi Z.X., Wang W.P., Zhang G.Q.,2020. Hydrochemical characteristics and causes of formation of the Golmud River. Water Resources Protection, 36(5), 93-98. https://doi.org/10.3880/j.issn.1004-6933.2020.05.014 (in Chinese with English abstract).
[40] Wang S.B., Xiao Y., Wang W.P., Qi Z.X., Zhang T.T., Zhao W.Q.,2016. Groundwater table dynamics in Golmud piedmont plain of Qinghai Province. Journal of Glaciology and Geocryology, 38(1), 241-247. https://doi.org/10.7522/j.issn.1000-0240.2016.0027(in Chinese with English abstract).
[41] Weissmann G.S., Hartley A.J., Nichols G.J., Scuderi L.A., Olson M., Buehler H., Banteah R., 2010. Fluvial form in modern continental sedimentary basins: Distributive fluvial systems. Geology, 38(1), 39-42. https://doi.org/10.1130/G30242.1.
[42] Weissmann G.S., Hartley A.J., Scuderi L.A., Nichols G.J., Owen A., Wright S., Felicia A.L., Holland F., Anaya F.M.L., 2015. Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review. Geomorphology, 250, 187-219. https://doi.org/10.1016/j.geomorph.2015.09.005.
[43] Yang A., Wang X.X., Xing W.C., Hu J., Liu X.L., Li J., 2020. Source and risk evaluation of heavy metals in surface sediments of rivers, lakes and their surrounding soils in Qinghai Province. Journal of Tianjin Normal University (Natural Science Edition), 40(6), 44-53. https://doi.org/10.19638/j.issn1671-1114.20200608 (in Chinese with English abstract).
[44] Yao C.J., Ma H.C., Luo W.J., Ma H.C., 2021. A precisely one-step registration methodology for optical imagery and lidar data using virtual point primitives. Remote Sensing, 13(23), 4836. https://doi.org/10.3390/rs13234836.
[45] Zani H., Assine M.L.,McGlue, M.M., 2012. Remote sensing analysis of depositional landforms in alluvial settings: Method development and application to the Taquari megafan, Pantanal (Brazil). Geomorphology, 161-162, 82-92. https://doi.org/10.1016/j.geomorph.2012.04.003.
[46] Zhang C.M., Hu W., Zhu R., Wang X.L., Hou G.W.,2017. Concept of distributive fluvial system and its significance to oil and gas exploration and development. Lithologic Reservoirs, 29(3), 1-9. https://doi.org/10.3969/j.issn.1673-8926.2017.03.001 (in Chinese with English abstract).
[47] Zhang C.M., Song X.M., Zhi D.M., Zhou X.H., Yin T.J., Yin Y.S., Zhu R., Feng W.J., Zhang B.J., 2020a. Rethinking on the sedimentary system of terrestrial petroliferous basins: Insights from distributive fluvial system. Acta Petrolei Sinica, 41(2), 127-153. https://doi.org/10.7623/syxb202002001 (in Chinese with English abstract).
[48] Zhang C.M., Yin T.J., Tang Y., Guo X.G., Zhao K., Pan J., Chen M.L.,2020b. Advances in sedimentological reservoir research in Mahu sag and northwest margin of Junggar Basin. Journal of Palaeogeography (Chinese Edition), 22(1), 129-146. https://doi.org/10.7605/gdlxb.2020.01.008 (in Chinese with English abstract).
[49] Zhang X.H., Zhang C.M., Feng W.J., Zhu R., Chen Z., Zhao K., Zhang B.J.,2019. Geometry and control factors of distributive fluvial system around the Sugan Lake basin. Acta Geologica Sinica, 93(11), 2947-2959. https://doi.org/10.3969/j.issn.0001-5717.2019.11.017 (in Chinese with English abstract).
[50] Zhang X.H., Zhang C.M., Feng W.J., Xu Q.H., Zhu R., Liu S., Huang R.X., 2021. Sedimentary characteristics of distributive fluvial system in arid area: A case study of the Shule River distributive fluvial system, NW China. Petroleum Exploration and Development 48(4), 877-888. https://doi.org/10.1016/S1876-3804(21)60073-3.
[51] Zhu J.J., Chen H., Xing X., Chen T.T., 2015. Quantification analysis of water sources of desert plants in Qaidam Basin: A case study of Golmud plot. Geographical Research, 34(2), 285-292. https://doi.org/10.11821/dlyj201502008 (in Chinese with English abstract).
[52] Zhu X.Q., Jin X.M., Zhang X.C., Zhang J.,2019. Distribution characteristics of evapotranspiration in the valley piedmont plain of the Golmud River Basin. Hydrogeology and Engineering Geology, 46(5), 55-64. https://doi.org/10.16030/j.cnki.issn.1000-3665.2019.05.08 (in Chinese with English abstract).
[53] Zhu Z.M.,2010. Earth Observation Atmospheric Correction with Combination of Active and Passive Optical Remote Sensing (Ph.D. thesis). Wuhan University (in Chinese). |