[1] Algeo T.J., Ingall E., 2007. Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2.Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3), 130-155.
[2] Algeo T.J., Kuwahara K., Sano H., Bates S., Lyons T., Elswick E., Hinnov L., Ellwood B., Moser J., Maynard J.B., 2011. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean.Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1), 65-83.
[3] Algeo T.J., Morford J., Cruse A., 2012. Reprint of: new applications of trace metals as proxies in marine paleoenvironments.Chemical Geology, 324/325, 160-164.
[4] Algeo T.J., Tribovillard N., 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation.Chemical Geology, 268, 211-225.
[5] Alibo D.S., Nozaki Y., 1999. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation.Geochimica et Cosmochimica Acta, 63(3/4), 363-372.
[6] Allègre C.J., Louvat P., Gaillardet J., Meynadier L., Rad S., Capmas F., 2010. The fundamental role of island arc weathering in the oceanic Sr isotope budget.Earth and Planetary Science Letters, 292, 51-56.
[7] Allègre C.J., Minster J.F., 1978. Quantitative models of trace element behavior in magmatic processes.Earth and Planetary Science Letters, 38(1), 1-25.
[8] Armstrong-Altrin J.S., Lee Y.I., Verma S.P., Sooriamuthu R., 2004. Geochemistry of sandstones from the upper miocenekudankulam formation, southern India:implications for provenance, weathering, and tectonic setting.Journal of Sedimentary Research, 74, 285-297.
[9] Arnaboldi M., Meyers P.A., 2003. Geochemical evidence for paleoclimatic variations during deposition of two Pliocene sapropels from the Vrica section, Calabria.Palaeogeography, Palaeoclimatology, Palaeoecology, 190, 257-271.
[10] Babu C.P., Brumsack H.J., Schnetger B., Bottcher M.E., 2002. Barium as a productivity proxy in continental margin sediments: A study from the eastern Arabian Sea.Marine Geology, 184(3/4), 189-206.
[11] Bhat G.M., Craig J.,Hafiz M., Hakhoo N., 2012. Geology and hydrocarbon potential of Neoproterozoic-Cambrian Basins in Asia: an introduction.The Geological Society London Special Publications, 366(1),1-17.
[12] Bhatia M.R.,1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks:province and tectonic control.Sedimentary Geology, 45, 97-113.
[13] Bhatia M.R., Crook K.A.W., 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basin.Contributions to Mineralogy and Petrology, 92, 181-193.
[14] Canfield D.E.,1998. A new model for Proterozoic ocean chemistry.Nature, 396(6710), 450-453.
[15] Cheng B., Xu J., Deng Q., Liao Z., Wang Y., Faboya O.L., Li S., Liu J., Peng P., 2020. Methane cracking within shale rocks: A new explanation for carbon isotope reversal of shale gas.Marine and Petroleum Geology, 121,104591.
[16] Chen H., Xie X., Mao K., Huang J., 2014. Carbon and oxygen isotopes suggesting deep-water basin deposition associated with hydrothermal events (Shangsi Section, Northwest Sichuan Basin-South China).Chinese Journal of Geochemistry, 33, 77-85.
[17] Chen Z., Benton M.J., 2012. The timing and pattern of biotic recovery following theend-Permian mass extinction.Nature Geoscience, 5(6), 375-383.
[18] Compton J.S.,1988. Degree of supersaturation and precipitation of organogenic dolomite.Geology, 16(4), 318-321.
[19] Craig J., Biffi U., Galimberti R.F., Ghori K.A.R., Gorter J.D., Hakhoo N., Le Heron D.P., Thurow J., Vecoli M., 2013. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks.Marine and Petroleum Geology, 40, 1-47.
[20] Cullers R.L., Barrett T., Carlson R., Robinson B., 1987. Rare-earth element and mineralogic changes in Holocene soil and stream sediment: A case study in the Wet Mountains, Colorado, U.S.A.Chemical Geology, 63(3-4), 275-297.
[21] Daniel J.K., Ross, R. Marc B., 2009. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin.Chemical Geology, 260, 1-19.
[22] Deng H., Qian K., 1993. Sedimentary Geochemistry and Environment Analysis. Science and Technology of Gansu Press, Lanzhou, 4-31.
[23] Dymond J., Suess E., Lyle M., 1992. Barium in deep-sea sediment: a chemical proxy for pal-productivity.Paleoceanography and Paleoclimatology, 7, 163-181.
[24] Floyd P.A., Leveridge B.E., 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones.Journal of the Geological Society, 144(4), 531-542.
[25] Frolov S.V., Akhmanov G.G., Bakay E.A., Lubnina N.V., Korobova N.I., Karnyushina E.E., Kozlova E.V., 2015. Meso-Neoproterozoic petroleum systems of the Eastern Siberian sedimentary basin.Precambrian Research, 259, 95-113.
[26] Gaschnig R.M., Rudnick R.L., McDonough W.F., 2014. Onset of oxidative weathering of continents recorded in the geochemistry of ancient glacial diamictite.Earth and Planetary Science Letters, 408, 87-99.
[27] Gu X., Liu J., Zheng M., Tang J., Qi L., 2002. Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical Evidence.Journal of Sedimentary Research, 72(3), 393-407.
[28] Hakimi M.H., Abdullah W.H., Alqudah M., Makeen Y.M., Mustapha K.A., 2016. Reducing marine and warm climate conditions during the Late Cretaceous, and their influence on organic matter enrichment in the oil shale deposits of north Jordan.International Journal of Coal Geology, 165, 173-189.
[29] Hatch J.R., Leventhal J.S., 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee Country, Kansas, U.S.A.Chemical Geology, 99, 65-82.
[30] Hou G., Wang C., Li J., Qian X., 2006. Late Paleoproterozoic extension and a paleostress field reconstruction of the North China Craton.Tectonophysics, 422, 89-98.
[31] Jones B., Manning D.A.C., 1994. Comparison of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstones.Chemical Geology, 111, 111-129.
[32] Huck S., Heimhofer U., Immenhauser A., Weissert H., 2013. Carbon-isotope stratigraphy of Early Cretaceous (Urgonian) shoal-water deposits: diachronous changes in carbonate-platform production in the north-western Tethys.Sedimentary Geology, 290(4), 157-174.
[33] Lan Y., Huang S., Ma Y., Zhou X., Wei Z., 2016. Genesis of Negative Carbon and Oxygen isotopic composition of Carbonate rock in lower Miocene Zhujiang Formation, Pearl River Mouth Basin.Geological Review, 62(4), 915-928.
[34] Lee J., Lee Y., 2003. Geochemistry and provenance of Lower Cretaceous Sindong and Hayangmudrocks, Gyeongsang Basin, Southeastern Korea.Geosciences Journal, 7(2), 107-122.
[35] Lerman A.,1978. Lakes: Chemistry, geology, physics. Springer, New York, 237-289.
[36] Li C., Love1 G.D., Lyons T.W., Fike D.A., Sessions A.L., Chu X., 2010. A stratified redox model for the Ediacaran ocean.Science, 328(80), 80-83.
[37] Li H., Liu B., Liu X., Meng L., Cheng L., Wang H., 2019. Mineralogy and inorganic geochemistry of the Es4 shales of the Damintun Sag, northeast of the Bohai Bay Basin: Implication for depositional Environment.Marine and Petroleum Geology, 110, 886-900.
[38] Li J., Feng J., Niu X., Zheng J., Chen Z., 2003. The preliminary report on the discovery of black smoker chimney within the Mesoproterozoic sulphide deposit of North China.Acta Petrologica Sinica, 19(1), 167-168 (in Chinese with English abstract).
[39] Li X., Gang W., Yao J., Gao G., Wang C., Li J., Liu Y., Guo Y., Yang S., 2020. Major and trace elements as indicators for organic matter enrichment of marine carbonate rocks: A case study of Ordovician subsalt marine formations in the central-eastern Ordos Basin, North China.Marine and Petroleum Geology, 111, 461-475.
[40] Longman J., Palmer M.R., Gernon T.M., Manners H.R., 2019. The role of tephra in enhancing organic carbon preservation in marine sediments.Earth-Science Reviews, 192, 480-490.
[41] Luo Q., George S.C., Xu Y., Zhong N., 2016. Organic geochemical characteristics of the Mesoproterozoic Hongshuizhuang Formation from northern China: Implications for thermal maturity and biological sources.Organic Geochemistry, 99, 23-37.
[42] Luo Q., Zhong N., Wan Y., Zhang Y., Qin J., Qi L., Ma Y., Zhang Y., 2013. Geochemistry of Mesoproterozoic Hongshuizhuang Formation Shales in Northern North China: Implications for Provenance and Source Weathering.Acta Geologica Sinica, 87(12), 1913-1927 (in Chinese with English abstract).
[43] Luo S., Lv Q., Li L., Dan W., 2012. Depositional environment of Hongshuizhuang and TielingFormation in the Xuanlong depression, YanShan region.Marine Geology Frontiers, 28(2), 10-16 (in Chinese with English abstract).
[44] Ma K., Hu S., Wang T.,Zhang B., Qin S., Shi S., Wang K., Huang Q., 2017. Sedimentary environments and mechanisms of organic matter enrichment in the Mesoproterozoic Hongshuizhuang Formation of northern China.Palaeogeography, Palaeoclimatology, Palaeoecology, 475, 176-187.
[45] Mclennan S.M.,1989. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes.Geochemistry and Mineralogy of Rare Earth Elements, 21,169-200.
[46] Nameroff T.J., Balistrieri L.S., Murray J.W., 2002. Suboxic trace metal geochemistry in the Eastern Tropical North Pacific.Geochimica et Cosmochimica Acta, 66(7), 1139-1158.
[47] Overare B., Osokpor J., Ekeh P.C., Azmy K., 2020. Demystifying provenance signatures and paleo-depositional environment of mudrocks in parts of south-eastern Nigeria: Constraints from geochemistry.Journal of African Earth Sciences, 172, 103954.
[48] Magoon L.B., Dow W.G., 1994. The petroleum system-from Source to trap.AAPG Bulletin, 60, 93-120.
[49] Periasamy V., Venkateshwarlu M., 2017. Petrography and geochemistry of Jurassic sandstones from the Jhuran Formation of Jara dome, Kachchh basin, India: Implications for provenance and tectonic setting.Journal of Earth System Science, 126(44), 1-20.
[50] Peters K.E., Cassa M.R.,1994. Applied source-rock geochemistry. American Association of Petroleum Geologists Bulletin, New York.
[51] Poulton S.W., Fralick P.W., Canfield D.E., 2004. The transition to a sulphidic ocean ~ 1.84 billion years ago.Nature, 431(7005), 173-177.
[52] Pourmand A., Dauphas N., Ireland T.J., 2012. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances.Chemical Geology, 291, 38-54.
[53] Qiao X., Gao L., 2007. Mesoproterozoic palaeoearthquake and palaeogeography in Yan-Liao Aulacogen.Journal of Palaeogeography(Chinese Edition), 8(4), 337-352 (in Chinese with English abstract).
[54] Qiao X., Gao L., Zhang C., 2007. New idea of Meso-Neoproterozoic chronostratigraphic chart and tectonic environment in Sino-Korean Plate.Geological Bulletin of China, 26(5), 503-509 (in Chinese with English abstract).
[55] Qu Y., Pan J., Ma S., Lei Z., Li L., Wu G., 2014. Geological characteristics and tectonic significance of unconformities in Mesoproterozoic successions in the northern margin of the North China Block.Geoscience Frontiers, 5, 127-138.
[56] Rimmer S.,2004. Geochemical paleoredox indicators in Devoniane-Mississippian black shales, Central Appalachian Basin (USA).Chemical Geology, 206, 373-391.
[57] Schoepfer S.D., Shen J., Wei H., Tyson R.V., Ingall E., Algeo T.J., 2015. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity.Earth-Science Reviews, 149, 23-52.
[58] Schenau S.J., Reichart G.J., Lange G.J.D., 2005. Phosphorus burial as a function of
[59] paleoproductivity and redox conditions in Arabian Sea sediments.Geochimica et Cosmochimica Acta, 69(4), 919-931.
[60] She H., Fan H., Hu F., Yang. K., Yang Z., Wang Q., 2018. Migration and precipitation of rare earth elements in the hydrothermal fluids.Acta PetrologicaSinica,34(12), 3567-3581 (in Chinese with English abstract).
[61] Shen J., Zhou L., Feng Q., Zhan M., Lei Y., Zhang N., Xin J., Song Y., Gu Z., 2014. Paleoproductivity evolution across the Permian-Triassic boundary and quantitative of primary productivity of black rock series from the Dalong Formation, South China.Science China-Earth Sciences, 57(7), 1583-1594.
[62] Song Y., Li S., Hu S., 2019. Warm-humid paleoclimate control of salinized lacustrine organic-rich shale deposition in the Oligocene Hetaoyuan Formation of the Biyang Depression, East China.International Journal of Coal Geology, 202, 69-84.
[63] Sun S.,2000. Micropalaeofora of the Hongshuizhuang Formation Jixian System in Jixian Tianjin.Progress in Precambrian Research, 23(3), 165-172 (in Chinese with English abstract).
[64] Tan F.,Wang J.,Wang X., Du B., 2004. Analysis of carbon and oxygen isotope composition and sedimentary environment of the Yanshiping area of the Qiangtang Basin in Middle-late Jurassic.Acta Geoscientica Sinica, 25(2): 119-126.
[65] Tao S., Shan Y., Tang D., Xu H., Li S., Cui Y., 2016. Mineralogy, major and trace element geochemistry of Shichanggou oil shales, Jimusaer, Southern Junggar Basin,China: implications for provenance, palaeoenvironment and tectonic setting.Journal of Petroleum Science and Engineering, 146, 432-445.
[66] Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312.
[67] Tribovillard N., Algeo T.J., Baudin F., Riboulleaua A., 2012. Analysis of marine environmental conditions based on molybdenum-uranium covariation-Applications to Mesozoic paleoceanography. Chemical Geology, 324-325, 46-58.
[68] Tribovillard N., Algeo T.J., Lyons T., Riboulleau A., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update.Chemical Geology, 232, 12-32.
[69] Tyrrell T., 1999. The relative influences of nitrogen and phosphorus on oceanic primary production.Nature, 400, 525-531.
[70] Wang K., Luo S., 2014. Petrology and sedimentary environments of the Hongshuizhuang Formation in the Kuancheng region, Hebei.Sedimentary Geology and Tethyan Geology, 34(2), 29-35 (in Chinese with English abstract).
[71] Wang S., Zou C., Dong D., Wang Y., Li X., Huang J., Guan Q., 2015. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence.Marine and Petroleum Geology, 66, 660-672.
[72] Wang T., Han K., 2011. On Meso-Neoproterozoic primary petroleum resources.Acta Petrologica Sinica,32(1),1-7 (in Chinese with English abstract).
[73] Wang W., Liu S., Santosh M., Deng Z., Guo B., Zhao Y., Zhang S., Yang P., Bai X., Guo R., 2015. Late Paleoproterozoic geodynamics of the North China Craton: Geochemical and zircon U-Pb-Hf records from a volcanic suite in the Yanliao rift.Gondwana Research, 27, 300-325.
[74] Warren J.K., 2000.Dolomite: occurrence, evolution and economically important association.Earth-Science Reviews, 52(1-3),1-81.
[75] Webb G.E., Kamber B.S.,2000. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy.Geochimica et Cosmochimica Acta, 64(9),1557-1565.
[76] Wu H., Chen Y., Jiang G., Ma Q., 2021. Geochemical characteristics and sedimentary paleoenvironment of deep volcanic rocks: a case study of Xingcheng Area in deep Xujiaweizi Fault Depression, Northern Songliao Basin.Journal of Northeast Petroleum University, 45(2), 53-66 (in Chinese with English abstract).
[77] Wu H., Zhang S., Li Z., Li H., Dong J., 2005. New paleomagnetic results from the Yangzhuang Formation of the Jixian System, North China,and tectonic implications.Chinese Science Bulletin, 50(14), 1483-1489.
[78] Xiao B., Liu S., Li Z., Ran B., Ye Y., Yang D., Li J., 2021. Geochemical characteristics of marine shale in the Wufeng Formation-Longmaxi Formation in the northern Sichuan Basin, South China and its implications for depositional controls on organic matter.Journal of Petroleum Science and Engineering, 203(4), 108618.
[79] Yang Y., Qiu L., Wan M., Jia X., Cao,Y., Lei D., Qu C., 2019. Depositional model for a salinized lacustrine basin: the Permian Lucaogou formation, Jimsar Sag, Junggar basin, NW China.Journal of Asian Earth Sciences, 78, 81-59.
[80] Ye Y., Zhang S., Wang H., Wang X., Tan C., Li M., Wu C., Canfield D.E., 2021. Black shale Mo isotope record reveals dynamic ocean redox during the Mesoproterozoic Era.Geochemical Perspectives Letters, 18, 16-21.
[81] Zhai M., Hu B., Peng P., Zhao T., 2014. Meso-Neoproterozoic magmatic events and multi-stage rifting in the NCC.Earth Science Frontiers, 21(1), 100-119 (in Chinese with English abstract).
[82] Zhang K., Liu R., Liu Z., Li B., Han J., Zhao K., 2020. Influence of volcanic and hydrothermal activity on organic matter enrichment in the Upper Triassic YanchangFormation, southern Ordos Basin, Central China.Marine and Petroleum Geology, 112, 104059.
[83] Zhang S., Li Z., Wu H., Wang H., 2000. New paleomagnetic results from the Neoproterozoic successions in southern North China Block and paleogeographic implications.Science in China, 43, 233-244.
[84] Zhang Y., Horsfield B., Hou D., Noah M., Yang S., 2019. Impact of hydrothermal activity on organic matter quantity and quality during deposition in the Permian Dalong Formation, Southern China.Marine and Petroleum Geology, 110, 901-911.
[85] Zhao X., Coe R.S., Gilder S.A., Frost G.M., 1996. Palaeomagnetic constraints on the palaeogeography of China: implications for Gondwanaland.Australian Journal of Earth Sciences, 43(6), 643-672.
[86] Zheng T., Zhao L., Zhu R., 2009. New evidence for subduction during assembly of the North China Craton.Geology, 37, 395-398.
[87] Zhou L., Algeo T.J., Shen J., Hu Z., Gong G., Xie S., Huang J., Gao S., 2015. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciations.Palaeogeography, Palaeoclimatology, Palaeoecology, 420, 223-234.
[88] Zhu R., Zheng T., 2009. Destruction geodynamics of the North China Craton and its Paleoproterozoic plate tectonics. Chinese Science Bulletin, 54(14), 1950-1961 (in Chinese with English abstract). |