[1] Allen J.P., Fielding C.R., Rygel M.C., Gibling M.R.,2013. Deconvolving signals of tectonic and climatic controls from continental basins: An example from the Late Paleozoic Cumberland Basin, Atlantic Canada. Journal of Sedimentary Research, 83(10), 847-872. https://doi.org/10.2110/jsr.2013.58.
[2] Alonso-Zarza,A.M., 2018. Study of a modern calcrete forming in Guadalajara, Central Spain: An analogue for ancient root calcretes. Sedimentary Geology, 370, 180-190. https://doi.org/10.1016/j.sedgeo.2018.06.006.
[3] Alonso-Zarza, A.M., Jones, B., 2007. Root calcrete formation on Quaternary karstic surfaces of Grand Cayman. Geologica Acta, 5(1), 77-88. https://doi.org/10.1344/105.000000311.
[4] Alonso-Zarza A.M., Silva P.G., Goy J.L., Zazo C., 1998. Fan-surface dynamics and biogenic calcrete development: Interactions during ultimate phases of fan evolution in the semiarid SE Spain (Murcia). Geomorphology, 24(2-3), 147-167. https://doi.org/10.1016/S0169-555X(98)00022-1.
[5] Baldwin D.S., Rees G.N., Wilson J.S., Colloff M.J., Whitworth K.L., Pitman T.L., Wallace T.A., 2013. Provisioning of bioavailable carbon between the wet and dry phases in a semi-arid floodplain. Oecologia, 172(2), 539-550. https://doi.org/10.1007/s00442-012-2512-8.
[6] Batezelli A.,2015. Continental systems tracts of the Brazilian Cretaceous Bauru Basin and their relationship with the tectonic and climatic evolution of South America. Basin Research, 29(1), 1-25. https://doi.org/10.1111/bre.12128.
[7] Batezelli, A., Ladeira, F.S.B., 2016. Stratigraphic framework and evolution of the Cretaceous continental sequences of the Bauru, Sanfranciscana, and Parecis basins, Brazil. Journal of South American Earth Sciences, 65, 1-24. https://doi.org/10.1016/j.jsames.2015.11.005.
[8] Batezelli A., Ladeira F.S.B., Nascimento D.L.D., Da Silva M.L., 2018. Facies and palaeosol analysis in a progradational distributive fluvial system from the Campanian-Maastrichtian Bauru Group, Brazil. Sedimentology, 66(2), 699-735. https://doi.org/10.1111/sed.12507.
[9] Batzer D.P., Wu H., 2020. Ecology of terrestrial arthropods in freshwater wetlands. Annual Review of Entomology, 65(1), 101-119. https://doi.org/10.1146/annurev-ento-011019-024902.
[10] Bedatou E., Melchor R.N., Genise J.F.,2009. Complex palaeosol ichnofabrics from Late Jurassic-Early Cretaceous volcaniclastic successions of central Patagonia, Argentina. Sedimentary Geology, 218, 74-102. https://doi.org/10.1016/j.sedgeo.2009.04.005.
[11] Benoit J.B.,2010. Water management by dormant insects: comparisons between dehydration resistance during summer aestivation and winter diapause. In: Navas, C.A., Carvalho, J.E., (Eds.), Aestivation: Molecular and Physiological Aspects. Progress in Molecular and Subcellular Biology, vol. 49. Springer, Berlin, Heidelberg, pp. 209-229. https://doi.org/10.1007/978-3-642-02421-4_10.
[12] Birkeland P.W.,1999. Soils and Geomorphology, Third edition. Oxford University Press, New York/Oxford.
[13] Bowen J., Hembree D., 2014. Neoichnology of two spirobolid millipedes: Improving the understanding of the burrows of soil detritivores. Palaeontologia Electronica, 17, 1-48. https://doi.org/10.26879/395.
[14] Bown T. M., Kraus M. J., 1983. Ichnofossils of the alluvial Willwood Formation (lower Eocene), Bighorn Basin, northwest Wyoming, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 43, 95-128. https://doi.org/10.1016/0031-0182(83)90050-0.
[15] Bradshaw M.,1981. Paleoenvironmental interpretations and systematics of Devonian trace fossils from the Taylor Group (lower Beacon Supergroup), Antarctica. New Zealand Journal of Geology and Geophysics, 24, 615-652. https://doi.org/10.1080/00288306.1981.10421537.
[16] Brock M.A.,2011. Persistence of seed banks in Australian temporary wetlands. Freshwater Biology, 56(7), 1312-1327. https://doi.org/10.1111/j.1365-2427.2010.02570.x.
[17] Bromley R.G.,1996. Trace Fossils: Biology, Taphonomy, and Applications. Chapman and Hall, London.
[18] Bromley R.G., Ekdale A.A., 1986. Composite ichnofabrics and tiering of burrows. Geological Magazine, 123(1), 59-65. https://doi.org/10.1017/S0016756800026534.
[19] Brown G., Oliveira L., Norton D., Alberton O., Brandao O., Saridakis G., Torres E., 2003. Quantifying scarab beetle-grub holes and their volume as affected by different tillage and crop management systems. In: International Soil Tillage Research Organization Proceedings, Brisbane, Australia, pp. 213-218.
[20] Brown G.G., Alberton O., Brandão Jr O., Saridakis G.P., Torres E., 2001. Número e volume dos buracos de corós (Scarabaeidae) em plantio direto e convencional na Embrapa Soja.Anais da VIII Reunião Sul-Brasileira Sobre Pragas de Solo, 172, pp. 212-217.
[21] Brussaard L.,1987. Kleptocopry of Aphodius coenosus (Coleoptera, Aphodiidae) in nests of Typhaeus typhoeus (Coleoptera, Geotrupidae) and its effect on soil morphology. Biology and Fertility of Soils, 3(1), 117-119. https://doi.org/10.1007/BF00260591.
[22] Brussaard L., Runia L.T., 1984. Recent and ancient traces of scarab beetle activity in sandy soils of the Netherlands. Geoderma, 34(3-4), 229-250. https://doi.org/10.1016/0016-7061(84)90041-7.
[23] Buatois, L.A., Mángano, M.G.2007. Invertebrate ichnology of continental freshwater environments. In: Miller III, W. (Ed.), Trace Fossils. Concepts, Problems, Prospects. Elsevier, Amsterdam, pp. 285-323. https://doi.org/10.1016/B978-044452949-7/50143-1.
[24] Buatois L.A., Mángano M.G., 2002. Trace fossils from Carboniferous floodplain deposits in western Argentina: Implications for ichnofacies models of continental environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 183(1-2), 71-86. https://doi.org/10.1016/S0031-0182(01)00459-X.
[25] Buatois L.A., Mángano M.G., 2004. Animal-substrate interactions in freshwater environments: Applications of ichnology in facies and sequence stratigraphic analysis of fluvial-lacustrine successions. In: McIlroy, D. (Ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society of London, Special Publications, vol. 228, 311-333. https://doi.org/10.1144/GSL.SP.2004.228.01.14.
[26] Buatois L.A., Mángano M.G., 2011. Ichnology: Organism-Substrate Interactions in Space and Time. Cambridge, Cambridge University Press.
[27] Buatois L.A., Uba C.E., Mángano M.G., Hulka C., Heubeck C., 2007. Deep and intense bioturbation in continental environments: Evidence from Miocene fluvial deposits of Bolivia. In: Bromley, R.G., Buatois, L.A., Mángano, M.G., Genise, J.F., Melchor, R.N., (Eds.), Sediment-Organism Interactions: A Multifaceted Ichnology. SEPM Special Publication, vol. 88, pp. 123-136. https://doi.org/10.2110/pec.07.88.
[28] Buatois L.A., Wetzel A., Mángano M.G.,2020. Trace-fossil suites and composite ichnofabrics from meandering fluvial systems: The Oligocene lower freshwater molasse of Switzerland. Palaeogeography, Palaeoclimatology, Palaeoecology, 558, 109944. https://doi.org/10.1016/j.palaeo.2020.109944.
[29] Bullock P., Fedoroff N., Jongerius A., Stoops, G. Tursina T., 1985. Handbook for Soil Thin Section Description. Wolverhampton, Wayne Research.
[30] Colombi C.E., Parrish J.T.,2008. Late Triassic environmental evolution in southwestern Pangea: Plant taphonomy of the Ischigualasto Formation. Palaios, 23(12), 778-795. https://doi.org/10.2110/palo.2007.p07-101r.
[31] Costigan K.H., Kennard M.J., Leigh C., Sauquet E., Datry T., Boulton A.J., 2017. Flow regimes in intermittent rivers and ephemeral streams. In: Datry, T., Bonada, N., Boulton, A. (Eds), Intermittent Rivers and Ephemeral Streams. Academic Press, London, pp. 51-78. https://doi.org/10.1016/B978-0-12-803835-2.00003-6.
[32] Counts J.W., Hasiotis S.T.,2009. Neoichnological experiments with masked chafer beetles (Coleoptera: Scarabaeidae): Implications for backfilled continental trace fossils. Palaios, 24(2), 74-91. https://doi.org/10.2110/palo.2008.p08-026r.
[33] D'Alessandro A., Bromley R.G., 1987. Meniscate trace fossils and theMuensteria-Taenidium problem. Palaeontology, 30(4), 743-763.
[34] Datry T., Corti R., Heino J., Hugueny B., Rolls R.J., Ruhí A.2017. Habitat fragmentation and metapopulation, metacommunity, and metaecosystem dynamics in intermittent rivers and ephemeral streams. In: Datry, T., Bonada, N., Boulton, A. (Eds.), Intermittent Rivers and Ephemeral Streams. Academic Press, London, pp. 377-403. https://doi.org/10.1016/B978-0-12-803835-2.00014-0.
[35] Delgado L., Batezelli A., Ladeira F.S.B., 2021. Paleoenvironmental and paleoclimatic reconstruction of Lower to Upper Cretaceous sequences of the Bauru Basin based on paleosol geochemistry and mineralogical analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 569, 110328. https://doi.org/10.1016/j.palaeo.2021.110328.
[36] Delgado L., Batezelli A., Ladeira F.S.B., Luna, J., 2019. Paleoenvironmental and paleoclimatic interpretation of the Late Cretaceous Marília Formation (Brazil) based on paleosol geochemistry. Catena, 180, 365-382. https://doi.org/10.1016/j.catena.2019.05.003.
[37] Delvigne J.E.,1998. Atlas of Micromorphology of Mineral Alteration and Weathering. Mineralogical Association of Canada, Ontario.
[38] Dias-Brito D., Musacchio E.A., De Castro J.C., Maranhão M., Suárez J.M., Rodrigues R., 2001. Grupo Bauru: uma unidade continental do Cretáceo no Brasil: concepções baseadas em dados micropaleontológicos, isótopos e estratigráficos.Revue de Paléobiologie, 20, 245-304.
[39] Díez-Canseco,D., Buatois, L.A., Mángano, M.G., Díaz-Molina, M., Benito, M.I., 2016. Ichnofauna from coastal meandering channel systems (Upper Cretaceous Tremp Formation, South-Central Pyrenees, Spain): Delineating the fluvial-tidal transition. Journal of Paleontology, 90(2), 250-268. https://doi.org/10.1017/jpa.2016.12.
[40] Dorador J.,Rodríguez-Tovar, F.J., 2018. High-resolution image treatment in ichnological core analysis: Initial steps, advances, and prospects. Earth-Science Reviews, 177, 226-237. https://doi.org/10.1016/j.earscirev.2017.11.020.
[41] Dupraz C., Reid R., Braissant O., Decho A.W., Norman R.S., Visscher P.T.,2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 141-162. https://doi.org/10.1016/j.earscirev.2008.10.005.
[42] Fielding C.R.,2006. Upper flow regime sheets, lenses, and scour fills: Extending the range of architectural elements for fluvial sediment bodies. Sedimentary Geology, 190, 227-240. https://doi.org/10.1016/j.sedgeo.2006.05.009.
[43] Fielding C.R., Alexander J., Allen J.P.,2018. The role of discharge variability in the formation and preservation of alluvial sediment bodies. Sedimentary Geology, 365, 1-20. https://doi.org/10.1016/j.sedgeo.2017.12.022.
[44] Fielding C.R., Alexander J., Newman-Sutherland E., 1997. Preservation of in situ vegetation in fluvial channel deposits — Data from the modern Burdekin River of North Queensland, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 135, 123-144. https://doi.org/10.1016/S0031-0182(97)00022-9.
[45] Fielding C.R., Allen J.P., Alexander J., Gibling M.R., Rygel M.C., Calder J.H., 2011. Fluvial systems and their deposits in hot, seasonal semiarid and subhumid settings: Modern and ancient examples. In: Davidson, S.K., Leleu, S., North, C.P., (Eds.), From River to Rock Record: The Preservation of Fluvial Sediments and Their Subsequent Interpretation. SEPM Special Publication, vol. 97, pp. 89-111.
[46] Fragoso C.E., Weinschütz L.C., Vega C.S., Guimarães G.B., Manzig P.C., Kellner A.W.A., 2013. Short note on the pterosaurs from the Caiuá Group (Upper Cretaceous, Bauru Basin), Paraná State, Brazil. In: International Symposium on Pterosaur. Rio de Janeiro, pp. 71-72.
[47] Frey R.W., Pemberton S.G., Fagerstrom J.A., 1984. Morphological, ethological, and environmental significance of the ichnogeneraScoyenia and Ancorichnus. Journal of Paleontology, 58(2), 511-528.
[48] Gassen D.N.,2000. Os escarabeídeos na fertilidade de solo sob plantio direto. In: Fertbio 2000, Biodinâmica do Solo. Universidade Federal de Santa Maria-RS, Brazil. CDROM. https://www.agencia.cnptia.embrapa.br/recursos/biotacap4ID-QOAsuHeSsM.pdf (accessed in 28 March 2022).
[49] Genise J.F.,2017. Ichnoentomology: Insect Traces in Soils and Paleosols. Topics in Geobiology 37. Springer International Publishing. https://doi.org/10.1007/978-3-319-28210-7.
[50] Genise J.F., Bellosi E.S., Gonzalez M.G., 2004. An approach to the description and interpretation of ichnofabrics in palaeosols. In: McIlroy, D. (Ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society of London, Special Publications, vol. 228, pp. 355-382. https://doi.org/10.1144/GSL.SP.2004.228.01.16.
[51] Genise J.F., Laza J.H., 1998. Monesichnus ameghinoi Roselli: A complex insect trace fossil produced by two distinct trace makers. Ichnos, 5(3), 213-223. https://doi.org/10.1080/10420949809386418.
[52] Gibson S.A., Thompson R.N., Leonardos O.H., Dickin A.P., Mitchell J.G., 1995. The Late Cretaceous impact of the Trindade mantle plume: Evidence from large volume, mafic, potassic magmatism in SE Brazil. Journal of Petrology, 36(1), 189-229. https://doi.org/10.1093/petrology/36.1.189.
[53] Gobbo-Rodrigues S.R.,2001. Carófitas e ostracodes do Grupo Bauru. Master Science Thesis, São Paulo State University.
[54] Goldberg K., Garcia A.J.,2000. Palaeobiogeography of the Bauru Group, a dinosaur-bearing Cretaceous unit, northeastern Paraná Basin, Brazil. Cretaceous Research, 21(2-3), 241-254. https://doi.org/10.1006/cres.2000.0207.
[55] Good T.R., Ekdale A.A.,2014. Paleoecology and taphonomy of trace fossils in the eolian Upper Triassic/Lower Jurassic Nugget Sandstone, northeastern Utah. Palaios, 29(8), 401-413. https://doi.org/10.2110/palo.2014.013.
[56] Goudie A.S.,1983. Calcrete. In: Goudie, A.S., Pye, K. (Eds.), Chemical Sediments and Geomorphology. Academic Press, London, pp. 93-131.
[57] Gowland S., Taylor A.M., Martinius A.W., 2018. Integrated sedimentology and ichnology of Late Jurassic fluvial point‐bars - Facies architecture and colonization styles (Lourinhã Formation, Lusitanian Basin, western Portugal). Sedimentology, 65(2), 400-430. https://doi.org/10.1111/sed.12385.
[58] Hartley A.J., Weissmann G.S., Nichols G.J., Warwick G.L.,2010. Large distributive fluvial systems: Characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80(2), 167-183. https://doi.org/10.2110/jsr.2010.016.
[59] Hembree D.I.,2009. Neoichnology of burrowing millipedes: Linking modern burrow morphology, organism behavior, and sediment properties to interpret continental ichnofossils. Palaios, 24(7), 425-439. https://doi.org/10.2110/palo.2008.p08-098r.
[60] Hembree D.I.,2019. Burrows and ichnofabric produced by centipedes: Modern and ancient examples. Palaios, 34(10), 468-489. https://doi.org/10.2110/palo.2019.059.
[61] Joeckel R.M., Tucker S.T., Fielding C.R.,2015. Sedimentological effects and stratigraphic implications of a rare, high-stage flowing an evolving, braided to anabranching stream with riparian woodland. Sedimentary Geology, 325, 71-89. https://doi.org/10.1016/j.sedgeo.2015.05.006.
[62] Junk W.J., Wantzen K.M., 2004. The flood pulse concept: New aspects, approaches, and applications-an update. In: Welcome, R.L., Petr, T. (Eds.), Second International Symposium on the Management of Large Rivers for Fisheries. Food and Agriculture Organization and Mekong River Commission, FAO Regional Office for Asia and the Pacific, pp. 117-149.
[63] Keighley D.G., Pickerill R.K., 1994. The ichnogenusBeaconites and its distinction from Ancorichnus and Taenidium. Palaeontology, 37(2), 305-337.
[64] Khalaf F.I.,Al-Zamel, A., 2016. Petrography, micromorphology, and genesis of Holocene pedogenic calcrete in Al-Jabal Al-Akhdar, Sultanate of Oman. Catena, 147, 496-510. https://doi.org/10.1016/j.catena.2016.07.044.
[65] Khormali F., Monger C.,2020. Hot desert soils: Global distribution and unique characteristics. Geoderma Regional, 23, e00330. https://doi.org/10.1016/j.geodrs.2020.e00330.
[66] Klappa C.F.,1980. Rhizoliths in terrestrial carbonates: Classification, recognition, genesis, and significance. Sedimentology, 27(6), 613-629. https://doi.org/10.1111/j.1365-3091.1980.tb01651.x.
[67] Košir, A., 2004. Microcodium revisited: Root calcification products of terrestrial plants on carbonate-rich substrates. Journal of Sedimentary Research, 74(6), 845-857. https://doi.org/10.1306/040404740845.
[68] Krapovickas V.,2012. Ichnology of distal overbank deposits of the Santa Cruz Formation (late early Miocene): Paleohydrologic and paleoclimatic significance. In: Viscaíno, S.F., Kay, R.F., Bargo, M.S. (Eds.), Early Miocene Paleobiology in Patagonia: High-Latitude Paleocommunities of the Santa Cruz Formation, pp. 91-103. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511667381.007
[69] Krapovickas V., Ciccioli P.L., Mángano M.G., Marsicano C.A., Limarino C.O.,2009. Paleobiology and paleoecology of an arid-semiarid Miocene South American ichnofauna in anastomosed fluvial deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, 284(3-4), 129-152. https://doi.org/10.1016/j.palaeo.2009.09.015.
[70] Kraus M.J.,1999. Paleosols in clastic sedimentary rocks: Their geologic applications. Earth-Science Reviews, 47(1-2), 41-70. https://doi.org/10.1016/S0012-8252(99)00026-4.
[71] Krause J.M., Bown T.M., Bellosi E.S., Genise J.F., 2008. Trace fossils of cicadas in the Cenozoic of Central Patagonia, Argentina. Palaeontology 51(2), 405-418. https://doi.org/10.1111/j.1475-4983.2008.00753.x.
[72] Lövei G.L., Sunderland K.D., 1996. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology, 41(1), 231-256. https://doi.org/10.1146/annurev.en.41.010196.001311.
[73] Machette M.N.,1985. Calcic soils of the southwestern United States. In: Weide, D.L., Faber, M.L. (Eds.), Soils and Quaternary Geology of the Southwestern United States. Geological Society of America Bulletin, vol. 203, pp. 1-21. https://doi.org/10.1130/SPE203-p1.
[74] Mancuso A.C., Krapovickas V., Benavente C.A., Marsicano C.A., 2020. An integrative physical, mineralogical, and ichnological approach to characterize underfilled lake‐basins. Sedimentology 67(6), 3088-3118. https://doi.org/10.1111/sed.12736.
[75] Martinelli A.G., Riff D., Lopes R.P., 2011. Discussion about the occurrence of the genus Aeolosaurus Powell 1987 (Dinosauria, Titanosauria) in the Upper Cretaceous of Brazil. Gaea 7(1), 34-40. https://doi.org/10.4013/4522.
[76] McDonald E.V., Busacca A.J., 1992. Late Quaternary stratigraphy of loess in the Channeled Scabland and Palouse regions of Washington State. Quaternary Research, 38(2), 141-156. https://doi.org/10.1016/0033-5894(92)90052-K.
[77] McLeod, A.I., 2011. Kendall: Kendall rank correlation and MannKendall trend test, R package version 2.2. Available at: .I., 2011. Kendall: Kendall rank correlation and MannKendall trend test, R package version 2.2. Available at: http://cran.rproject.org/package=Kendall.
[78] Melchor, R.N., Bedatou, E., de Valais, S., Genise, J.F., 2006. Lithofacies distribution of invertebrate and vertebrate trace-fossil assemblages in an Early Mesozoic ephemeral fluvio-lacustrine system from Argentina: Implications for the Scoyenia ichnofacies. Palaeogeography, Palaeoclimatology, Palaeoecology, 239(3-4), 253-285. https://doi.org/10.1016/j.palaeo.2006.01.011.
[79] Melchor R.N., Genise J.F., Buatois L.A., Umazano A.M., 2012. Fluvial environments. In: Knaust, D., Bromley, R. (Eds.), Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology, vol. 64. Elsevier, Amsterdam, pp. 329-378. https://doi.org/10.1016/B978-0-444-53813-0.00012-5.
[80] Menegazzo M.C., Catuneanu O., Chang H.K.,2016. The South American retroarc foreland system: The development of the Bauru Basin in the back-bulge province. Marine and Petroleum Geology, 73, 131-156. https://doi.org/10.1016/j.marpetgeo.2016.02.027.
[81] Menezes M.N.,Dal’Bó, P.F., Smith, J.J., Rodrigues, A.G., 2021. The influence of ancient soil biota on the precipitation and distribution of pedogenic carbonate in paleosols of the Marília Formation (Upper Cretaceous, Brazil). Palaeogeography, Palaeoclimatology, Palaeoecology, 571, 110375. https://doi.org/10.1016/j.palaeo.2021.110375.
[82] Mineiro A.S., Santucci R.M.,2018. Ichnofabrics and ichnofossils from the continental deposits of the Serra da Galga Member, Marília Formation, Bauru Group (Upper Cretaceous), Uberaba, Minas Gerais, Brazil. Journal of South American Earth Sciences, 86, 287-300. https://doi.org/10.1016/j.jsames.2018.06.015.
[83] Mineiro, A.S., Santucci, R.M., da Rocha, D.M.S., de Andrade, M.B., Nava, W.R., 2017. Invertebrate ichnofossils and rhizoliths associated with rhizomorphs from the Marília Formation (Echaporã Member), Bauru Group, Upper Cretaceous, Brazil. Journal of South American Earth Sciences, 80, 529-540. https://doi.org/10.1016/j.jsames.2017.10.010.
[84] Nascimento D.L., Batezelli A., Ladeira F.S.B., 2019. The paleoecological and paleoenvironmental importance of root traces: Plant distribution and topographic significance of root patterns in Upper Cretaceous paleosols. Catena, 172, 789-806. https://doi.org/10.1016/j.catena.2018.09.040.
[85] Nascimento D.L., Ladeira F.S.B., Batezelli A., 2017. Pedodiagenetic characterization of Cretaceous paleosols in southwest Minas Gerais, Brazil. Revista Brasileira de Ciência do Solo, 41, 1-18. https://doi.org/10.1590/18069657rbcs20160065.
[86] Netto R.G.,2007. Skolithos-dominated pipe rock in nonmarine environments: An example from the Triassic Caturrita Formation, southern Brazil. In: Bromley, R.G., Buatois, L.A., Mángano, M.G., Genise, J.F., Melchor, R.N. (Eds.), Sediment-Organism Interactions: A Multifaceted Ichnology. SEPM Special Publication, vol. 88, pp. 109-121. https://doi.org/10.2110/pec.07.88.0107.
[87] Nilsson C., Renöfält B.M., 2008. Linking flow regime and water quality in rivers: A challenge to adaptive catchment management.Ecology and Society, 13(2), 1-18.
[88] O'Geen A.T., Busacca A.J., 2001. Faunal burrows as indicators of paleo-vegetation in eastern Washington, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(1-2), 23-37. https://doi.org/10.1016/S0031-0182(01)00213-9.
[89] O'Geen A.T., McDaniel P.A., Busacca A.J., 2002. Cicada burrows as indicators of paleosols in the inland Pacific Northwest. Soil Science Society of America Journal, 66(5), 1584-1586. https://doi.org/10.2136/sssaj2002.1584.
[90] Oliveira C.M., Frizzas M.R., 2017. How climate influences the biology and behaviour of Phyllophaga capillata (Coleoptera: Melolonthidae) in the Brazilian Cerrado. Austral Entomology, 58(2), 336-345. https://doi.org/10.1111/aen.12309.
[91] Oliveira C.M., Frizzas M.R., Morón M.A., 2018. Phyllophaga nitididorsis (Coleoptera: Melolonthidae), the first biennial melolonthid recorded in the Brazilian Cerrado. Austral Entomology, 58(3), 569-577. https://doi.org/10.1111/aen.12362.
[92] Oliveira L.J., Salvadori J.R., 2012. Rhyzophagous beetles (Coleoptera: Melolonthidae). In: Panizzi, A.R., Parra, J.R.P. (Eds.), Insect Bioecology and Nutrition for Integrated Pest Management. CRC, Boca Raton, USA, pp. 353-368.
[93] Plink-Björklund,P., 2015. Morphodynamics of rivers strongly affected by monsoon precipitation: Review of depositional style and forcing factors. Sedimentary Geology, 323, 110-147. https://doi.org/10.1016/j.sedgeo.2015.04.004.
[94] Reineck H.E.,1963. Sedimentgefüge im Bereich der südlichen Nordsee. Abhandlungen der Senckenbergischen Naturforschenden.Gesellschaft, 505, 1-138.
[95] Retallack G.J.,1988. Field recognition of paleosols. In: Reinhardt, J., Sigleo, W.R. (Eds.), Paleosols and Weathering through Geologic Time: Principles and Applications. Geological Society of America Special Papers, vol. 216, pp. 1-20. https://doi.org/10.1130/SPE216-p1.
[96] Retallack G.J.,2001a. Soils of the Past. An Introduction to Paleopedology, Second Edition. Blackwell Publishing. https://doi.org/ 10.1002/9780470698716.
[97] Retallack G.J.,2001b. Scoyenia burrows from Ordovician palaeosols of the Juniata Formation in Pennsylvania. Palaeontology, 44(2), 209-235. https://doi.org/10.1111/1475-4983.00177.
[98] Rodrigues A.G.,Dal'Bó, P.F., Basilici, G., Soares, M.V.T., Menezes, M.N., 2019. Biotic influence in the genesis of laminar calcretes in vertisols of the Marília Formation (Upper Cretaceous, Brazil). Journal of Sedimentary Research, 89(5), 440-458. https://doi.org/10.2110/jsr.2019.22.
[99] Rodríguez-Tovar,F.J., Alcala, L., Cobos, A., 2016. Taenidium at the lower Barremian El Hoyo dinosaur track site (Teruel, Spain): Assessing palaeoenvironmental conditions for the invertebrate community. Cretaceous Research, 65, 48-58. https://doi.org/10.1016/j.cretres.2016.04.013.
[100] Sabater S., Timoner X., Bornette G., De Wilde, M., Stromberg, J.C., Stella, J.C., 2017. The biota of intermittent rivers and ephemeral streams: Algae and vascular plants. In: Datry, T., Bonada, N., Boulton, A., (Eds.), Intermittent Rivers and Ephemeral Streams. Academic Press, London, pp. 189-216. https://doi.org/10.1016/B978-0-12-803835-2.00016-4.
[101] Santucci R.M., Bertini R.J., 2001. Distribuição paleogeográfica e biocronológica dos titanossauros (Saurischia, Sauropoda) do Grupo Bauru, Cretáceo Superior do sudeste brasileiro.Brazilian Journal of Geology, 31(3), 307-314.
[102] Savrda C.E., Blanton‐Hooks A.D., Collier J.W., Drake R.A., Graves R.L., Hall A.G., Wood H.A., 2000. Taenidium and associated ichnofossils in fluvial deposits, Cretaceous Tuscaloosa Formation, eastern Alabama, southeastern USA. Ichnos, 7(3), 227-242. https://doi.org/10.1080/10420940009380162.
[103] Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfed S., Schmid B., Tivanez J., White D. J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A., 2012. Fiji: An open-source platform for biological-image analysis. Nature Methods, 9, 676-682. https://doi.org/10.1038/nmeth.2019.
[104] Schoeneberger P.J., Wysocki D.A., Benham E.C., Broderson W.D., 2001. Field Book for Describing and Sampling Soils. USDA-NRCS, National Soil Survey Center, Lincoln, NE.
[105] Sciscio L., Broderick T.J., Barrett P.M., Munyikwa D., Zondo M., Choiniere J.N.,2021. Invertebrate and plant trace fossils from the terrestrial Late Triassic of Zimbabwe. Palaios, 36(4), 129-140. https://doi.org/10.2110/palo.2020.071.
[106] Sheldon N.D., Hamer J.M., 2010. Evidence for an early sagebrush ecosystem in the latest Eocene of Montana. The Journal of Geology, 118(4), 435-445. https://doi.org/10.1086/652660.
[107] Sheldon N.D., Tabor N.J.,2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95(1-2), 1-52. https://doi.org/10.1016/j.earscirev.2009.03.004.
[108] Smith J.J., Hasiotis S.T.,2008. Traces and burrowing behaviors of the cicada nymph Cicadetta calliope: Neoichnology and paleoecological significance of extant soil-dwelling insects. Palaios, 23(8), 503-513. https://doi.org/10.2110/palo.2007.p07-063r.
[109] Smith J.J., Hasiotis S.T., Kraus M.J., Woody D.T., 2008. Naktodemasis bowni: New ichnogenus and ichnospecies for adhesive meniscate burrows (AMB), and paleoenvironmental implications, Paleogene Willwood Formation, Bighorn Basin, Wyoming. Journal of Paleontology, 82(2), 267-278. https://doi.org/10.1666/06-023.1.
[110] Soil Survey Staff, 2014. Keys to Soil Taxonomy (14th edition). Washington, DC: USDA-Natural Resources Conservation Service.
[111] Stoops G.,2003. Guidelines for Analysis and Description of Soil and Regolith Thin Sections. Soil Science Society of America, Madison, Wisconsin.
[112] Stoops G., Jongerius A., 1975. Proposal for a micromorphological classification of soil materials. I. A classification of the related distributions of fine and coarse particles. Geoderma, 13(3), 189-199. https://doi.org/10.1016/0016-7061(75)90017-8.
[113] Stoops G., Marcelino V., Mees F., 2010. Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, Amsterdam. https://doi.org/10.1016/C2009-0-18081-9.
[114] Suguio K., Barcelos J.H., 1983. Calcretes of the Bauru Group (Cretaceous), Brazil: Petrology and geological significance.Boletim IG/USP, 14, 31-47.
[115] Tooth S., Nanson G.C., 2000. The role of vegetation in the formation of anabranching channels in an ephemeral river, Northern plains, arid central Australia.Hydrological Processes, 14(16-17), 3099-3117.
[116] Valera-Fernández,D., Cabadas-Baez, H., Solleiro-Rebolledo, E., Landa-Arreguín, F.J., Sedov, S., 2020. Pedogenic carbonate crusts (calcretes) in karstic landscapes as archives for paleoenvironmental reconstructions - A case study from Yucatan Peninsula, Mexico. Catena 194, 104635. https://doi.org/10.1016/j.catena.2020.104635.
[117] Verde M., Ubilla M., Jiménez J.J., Genise J.F.,2007. A new earthworm trace fossil from paleosols: Aestivation chambers from the late Pleistocene Sopas Formation of Uruguay. Palaeogeography, Palaeoclimatology, Palaeoecology, 243(3-4), 339-347. https://doi.org/10.1016/j.palaeo.2006.08.005.
[118] Wang J., Plink‐Björklund P., 2019. Stratigraphic complexity in fluvial fans: Lower Eocene Green River Formation, Uinta Basin, USA. Basin Research, 31, 892-919. https://doi.org/10.1111/bre.12350.
[119] Weissmann G.S., Hartley A.J., Scuderi L.A., Nichols G.J., Davidson S.K., Owen A., Tabor N.J., 2013. Prograding distributive fluvial systems: Geomorphic models and ancient examples. In: Driese, S.G., Nordt, L.C., (Eds.), New Frontiers in Paleopedology and Terrestrial Paleoclimatology. SEPM Special Publication, vol. 104, pp. 131-147. https://doi.org/10.2110/sepmsp.104.
[120] Wright, V.P., 2007. Calcrete. In: Nash, D.J., McLaren, S.J. (Eds.). Geochemical Sediments and Landscapes. Blackwell, Oxford, pp. 10-45. https://doi.org/10.1002/9780470712917.ch2.
[121] Wright, V.P., Platt, N.H., Marriott, S.B., Beck, V.H., 1995. A classification of rhizogenic (root formed) calcretes, with examples from the Upper Jurassic-Lower Cretaceous of Spain and Upper Cretaceous of southern France. Sedimentary Geology, 100(1-4), 143-158. https://doi.org/10.1016/0037-0738(95)00105-0.
[122] Wright, V.P., Platt, N.H., Wimbledon, W.A., 1988. Biogenic laminar calcretes: Evidence of calcified root-mat horizons in paleosols. Sedimentology 35(4), 603-620. https://doi.org/10.1111/j.1365-3091.1988.tb01239.x.
[123] Zamanian, K, Pustovoytov, K., Kuzyakov, Y., 2016. Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews, 157, 1-17. https://doi.org/10.1016/j.earscirev.2016.03.003. |