[1] Algeo T.J., Li C.,2020. Redox classification and calibration of redox thresholds in sedimentary systems. Geochimica et Cosmochimica Acta, 287, 8-26. https://doi.org/10.1016/j.gca.2020.01.055.
[2] Algeo T.J., Liu J.,2020. A re-assessment of elemental proxies for paleoredox analysis. Chemical Geology, 540, 119549. https://doi.org/10.1016/j.chemgeo.2020.119549.
[3] Algeo T.J., Lyons T.W., 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21, PA1016. https://doi.org/10.1029/2004PA001112.
[4] Algeo T.J., Maynard J.B.,2004. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206, 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009.
[5] Algeo T.J., Tribovillard N.,2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268, 211-225. https://doi.org/10.1016/j.chemgeo.2009.09.001.
[6] Anderson R.F., Winckler G., 2005. Problems with paleoproductivity proxies. Paleoceanography, 20, 1-7. https://doi.org/10.1029/2004PA001107.
[7] Barrera I.A.R., Nogueira, A.C.R., Bandeira, J., 2020. The Silurian glaciation in the eastern Parnaíba Basin, Brazil: Paleoenvironment, sequence stratigraphy and insights for the evolution and paleogeography of West Gondwana. Sedimentary Geology, 406, 105714. https://doi.org/10.1016/j.sedgeo.2020.105714.
[8] Cai Q., Chen X., Zhang B., Liu A., Han J., Zhang G., Li Y.,2020. Origin of siliceous minerals in the black shale of the Wufeng and Longmaxi formations in the Yichang area, western Hubei Province: Geological significance for shale gas. Acta Geologica Sinica, 94, 931-946. https://doi.org/10.3969/j.issn.0001-5717.2020.03.018.
[9] Cai Q., Chen X., Zhang G., Zhang B., Han J., Chen L., Li P., Li Y., 2021a. Characteristics and exploration potential of the Wufeng-Longmaxi shale gas reservoirs of Lower Paleozoic in Yichang area, western Hubei Province, China. Oil and Gas Geology, 42, 107-123. https://doi.org/10.11743/ogg20210110.
[10] Cai Q., Hu M., Kane O.I., Li M., Zhang B., Hu Z., Deng Q., Xing N.,2022. Cyclic variations in paleoenvironment and organic matter accumulation of the Upper Ordovician-Lower Silurian black shale in the Middle Yangtze Region, South China: Implications for tectonic setting, paleoclimate, and sea-level change. Marine and Petroleum Geology, 136, 105477. https://doi.org/10.1016/j.marpetgeo.2021.105477.
[11] Cai Q., Hu M., Zhang B., Ngia N., Liu A., Liao R., Kane O., Li H., Hu Z., Deng Q., Shen J.,2021b. Source of silica and its implications for organic matter enrichment in the Upper Ordovician-Lower Silurian black shale in western Hubei Province, China: Insights from geochemical and petrological analysis. Petroleum Science, 118159. https://doi.org/10.1016/j.petsci.2021.10.012.
[12] Catuneanu O.,2006. Principles of Sequence Stratigraphy. Elsevier, Amsterdam, pp. 7-70. https://doi.org/10.1002/9781444313710.ch2.
[13] Catuneanu O., Abreu V., Bhattacharya J.P., Blum M.D., Dalrymple R.W., Eriksson P.G., Fielding C.R., Fisher W.L., Galloway W.E., Gibling M.R., Giles K.A., Holbrook J.M., Jordan R., Kendall C.G.S.C., Macurda, B., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E., Winker, C., 2009. Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 92, 1-33. https://doi.org/10.1016/j.earscirev.2008.10.003.
[14] Chen K., Zhang D., Tuo X.,2020. Relationship between geological structure and marine shale gas preservation conditions in the western Middle Yangtze Block. Natural Gas Industry B, 7, 583-593. https://doi.org/10.1016/j.ngib.2020.04.002.
[15] Chen L., Jiang S., Chen P., Chen X., Zhang B., Zhang G., Lin W., Lu Y.,2021. Relative sea-level changes and organic matter enrichment in the Upper Ordovician-Lower Silurian Wufeng-Longmaxi formations in the Central Yangtze area, China. Marine and Petroleum Geololgy, 124, 104809. https://doi.org/10.1016/j.marpetgeo.2020.104809.
[16] Chen L., Lu Y., Jiang S., Li J., Guo T., Luo C., Xing F.,2015a. Sequence stratigraphy and its application in marine shale gas exploration: A case study of the Lower Silurian Longmaxi Formation in the Jiaoshiba shale gas field and its adjacent area in southeast Sichuan Basin, SW China. Journal of Natural Gas Science and Engineering, 27, 410-423. https://doi.org/10.1016/j.jngse.2015.09.016.
[17] Chen X., Fan J.X., Zhang Y.D., Wang H.Y., Chen Q., Wang W.H., Liang F., Guo W., Zhao Q., Nie H.K.,2015b. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform. Journal of Stratigraphy, 39, 351-358. https://doi.org/10.19839/j.cnki.dcxzz.2015.04.001.
[18] Chen X., Rong J.Y., Li Y., Boucot A.J., 2004. Facies patterns and geography of the Yangtze Region, South China, through the Ordovician and Silurian transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 204, 353-372. https://doi.org/10.1016/S0031-0182(03)00736-3.
[19] Fan C., Li H., Qin Q., He S., Zhong C.,2020. Geological conditions and exploration potential of shale gas reservoir in Wufeng and Longmaxi formations of southeastern Sichuan Basin, China. Journal of Petroleum Science and Engineering, 191, 107138. https://doi.org/10.1016/j.petrol.2020.107138.
[20] Fan J.X., Melchin M.J., Chen X., Wang Y., Zhang Y.D., Chen Q., Chi Z.L., Chen F., 2011. Biostratigraphy and geography of the Ordovician-Silurian Lungmachi black shales in South China. Science China Earth Sciences, 54, 1854-1863. https://doi.org/10.1007/s11430-011-4301-3.
[21] Finnegan S., Bergmann K., Eiler J.M., Jones D.S., Fike D.A., Eisenman I., Hughes N.C., Tripati A.K., Fischer W.W., 2011. The magnitude and duration of Late Ordovician-Early Silurian glaciation. Science, 331, 903-906. https://doi.org/10.1126/science.1200803.
[22] Fortey R.A., Cocks L.R.M., 2003. Paleontological evidence bearing on global Ordovician-Silurian continental reconstructions. Earth-Science Reviews, 61, 245-307. https://doi.org/10.1016/S0012-8252(02)00115-0.
[23] Gambacorta G., Trincianti E., Torricelli S.,2016. Anoxia controlled by relative sea-level changes: An example from the Mississippian Barnett Shale Formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 459, 306-320. https://doi.org/10.1016/j.palaeo.2016.07.015.
[24] Goldman D., Sadler P.M., Leslie S.A., Melchin M.J., Agterberg F.P., Gradstein F.M., 2020. The Ordovician Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., (Eds.). Geologic Time Scale 2020. Elsevier, pp. 631-694. https://doi.org/10.1016/B978-0-12-824360-2.00020-6.
[25] Gorjan P., Kaiho K., Fike D.A., Xu C.,2012. Carbon- and sulfur-isotope geochemistry of the Hirnantian (Late Ordovician) Wangjiawan (Riverside) section, South China: Global correlation and environmental event interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology, 337-338, 14-22. https://doi.org/10.1016/j.palaeo.2012.03.021.
[26] Guan Q., Dong D., Zhang H., Sun S., Zhang S., Gip W., 2021. Types of biogenic quartz and its coupling storage mechanism in organic-rich shales: A case study of the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation in the Sichuan Basin, SW China. Petroleum Exploration and Development, 48, 813-823. https://doi.org/10.1016/S1876-3804(21)60068-X.
[27] Guo T.L.,2016. Discovery and characteristics of the Fuling shale gas field and its enlightenment and thinking. Frontiers of Earth Science, 23, 29-43. https://doi.org/10.13745/j.esf.2016.01.003.
[28] Guo X.S.,2017. Sequence stratigraphy and evolution model of the Wufeng-Longmaxi Shale in the Upper Yangtze Area. Earth Science - Journal of China University of Geosciences, 42, 1069-1082. https://doi.org/10.3799/dqkx.2017.086.
[29] Han Y., Ran B., Liu S., Li Z., Ye Y., Sun W., Yang D., Wang S.,2021. Main controlling factors of organic-matter enrichment in the Ordovician-Silurian marine organic-rich mudrock in the Yangtze Block, South China. Marine and Petroleum Geology, 127, 104959 https://doi.org/10.1016/j.marpetgeo.2021.104959.
[30] Haq B.U., Schutter S.R., 2008. A chronology of Paleozoic sea-level changes. Science, 322, 64-68. https://doi.org/10.1126/science.1161648.
[31] Harper D.A.T., Hammarlund, E.U., Rasmussen, C.M.Ø., 2014. End Ordovician extinctions: A coincidence of causes. Gondwana Research, 25, 1294-1307. https://doi.org/10.1016/j.gr.2012.12.021.
[32] Hayton S., Rees A.J., Vecoli M., 2017. A punctuated Late Ordovician and Early Silurian deglaciation and transgression: Evidence from the subsurface of northern Saudi Arabia. American Association of Petroleum Geologists Bulletin, 101, 863-886. https://doi.org/10.1306/08251616058.
[33] He Z., Nie H., Li S., Luo J., Wang H., Zhang G.,2020. Differential enrichment of shale gas in Upper Ordovician and Lower Silurian controlled by the plate tectonics of the Middle-Upper Yangtze, South China. Marine and Petroleum Geology, 118, 104357. https://doi.org/10.1016/j.marpetgeo.2020.104357.
[34] Huang H., He D., Li D., Li Y., Zhang W., Chen J.,2020. Geochemical characteristics of organic-rich shale, Upper Yangtze Basin: Implications for the Late Ordovician-Early Silurian orogeny in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 554, 109822. https://doi.org/10.1016/j.palaeo.2020.109822.
[35] Huang H., He D., Li Y., Li J., Zhang L.,2018. Silurian tectonic-sedimentary setting and basin evolution in the Sichuan area, southwest China: Implications for palaeogeographic reconstructions. Marine and Petroleum Geology, 92, 403-423. https://doi.org/10.1016/j.marpetgeo.2017.11.006.
[36] Ji W., Hao F., Song Y., Tian J., Meng M., Huang H.,2020. Organic geochemical and mineralogical characterization of the Lower Silurian Longmaxi shale in the southeastern Chongqing area of China: Implications for organic matter accumulation. International Journal of Coal Geology, 220, 103412. https://doi.org/10.1016/j.coal.2020.103412.
[37] Jin C., Liao Z., Tang Y.,2020. Sea-level changes control organic matter accumulation in the Longmaxi shales of southeastern Chongqing, China. Marine and Petroleum Geology, 119, 104478. https://doi.org/10.1016/j.marpetgeo.2020.104478.
[38] Johnson M.E., Rong J.Y., Yang X.C., 1985. Intercontinental correlation by sea-level events in the Early Silurian of North America and China (Yangtze Platform). Geological Society of America Bulletin, 96, 1384-1397. https://doi.org/10.1130/0016-7606(1985)96<1384:ICBSEI>2.0.CO;2.
[39] Khan M.Z., Feng Q., Zhang K., Guo W.,2019. Biogenic silica and organic carbon fluxes provide evidence of enhanced marine productivity in the Upper Ordovician-Lower Silurian of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 534, 109278. https://doi.org/10.1016/j.palaeo.2019.109278.
[40] Kiipli E., Kiipli T.,2020. Hirnantian sea-level changes in the Baltoscandian Basin, a review. Palaeogeography, Palaeoclimatology, Palaeoecology, 540, 109524. https://doi.org/10.1016/j.palaeo.2019.109524.
[41] Kiipli E., Kiipli T., Kallaste T., Pajusaar S.,2017. Trace elements indicating humid climatic events in the Ordovician-Early Silurian. Chemie der Erde - Geochemistry, 77, 625-631. https://doi.org/10.1016/j.chemer.2017.05.002.
[42] Li N., Li C., Algeo T.J., Cheng M., Jin C., Zhu G., Fan J., Sun Z.,2021. Redox changes in the outer Yangtze Sea (South China) through the Hirnantian Glaciation and their implications for the end-Ordovician biocrisis. Earth-Science Reviews, 212, 103443. https://doi.org/10.1016/j.earscirev.2020.103443.
[43] Liu G., Zhai G., Zou C., Cheng L., Guo X., Xia X., Shi D., Yang Y., Zhang C., Zhou Z.,2019. A comparative discussion of the evidence for biogenic silica in Wufeng-Longmaxi siliceous shale reservoir in the Sichuan Basin, China. Marine and Petroleum Geology, 109, 70-87. https://doi.org/10.1016/j.marpetgeo.2019.06.016.
[44] Liu Y., Li C., Algeo T.J., Fan J., Peng P.,2016. Global and regional controls on marine redox changes across the Ordovician-Silurian boundary in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 463, 180-191. https://doi.org/10.1016/j.palaeo.2016.10.006.
[45] Liu Z., Algeo T.J., Guo X., Fan J., Du X., Lu Y.,2017. Paleo-environmental cyclicity in the Early Silurian Yangtze Sea (South China): Tectonic or glacio-eustatic control? Palaeogeography, Palaeoclimatology, Palaeoecology, 466, 59-76. https://doi.org/10.1016/j.palaeo.2016.11.007.
[46] Lu Y.B., Huang C., Jiang S., Zhang J., Lu Y.C., Liu Y.,2019a. Cyclic late Katian through Hirnantian glacioeustasy and its control of the development of the organic-rich Wufeng and Longmaxi shales, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 526, 96-109. https://doi.org/10.1016/j.palaeo.2019.04.012.
[47] Lu, Y.B, Jiang S., Lu, Y.C, Xu S., Shu Y., Wang Y.,2019b. Productivity or preservation? The factors controlling the organic matter accumulation in the late Katian through Hirnantian Wufeng organic-rich shale, South China. Marine and Petroleum Geology, 109, 22-35. https://doi.org/10.1016/j.marpetgeo.2019.06.007.
[48] Ma Y., Fan M., Lu Y., Guo X., Hu H., Chen L., Wang C., Liu X.,2016. Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in southwestern China: Implications for depositional controls on organic matter accumulation. Marine and Petroleum Geology, 75, 291-309. https://doi.org/10.1016/j.marpetgeo.2016.04.024.
[49] Malekzadeh M.,Hosseini-Barzi, M., Sadeghi, A., Critelli, S., 2020. Geochemistry of Asara Shale Member of Karaj Formation, Central Alborz, Iran: Provenance, source weathering and tectonic setting. Marine and Petroleum Geology, 121, 104584. https://doi.org/10.1016/j.marpetgeo.2020.104584.
[50] Maletz J., Wang C., Wang X., 2021. Katian (Ordovician) to Aeronian (Silurian, Llandovery) graptolite biostratigraphy of the YD-1 drill core, Yuanan County, Hubei Province, China. Papers in Palaeontology, 7, 163-194. https://doi.org/10.1002/spp2.1267.
[51] McLennan S.M.,1993. Weathering and Global Denudation. The Journal of Geology, 101, 295-303. https://doi.org/10.1086/648222.
[52] Melchin M.J., Sadler P.M., Cramer B.D., 2020. The Silurian Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.). Geologic Time Scale 2020. https://doi.org/10.1016/b978-0-12-824360-2.00021-8.
[53] Munnecke A., Calner M., Harper D.A.T., Servais, T., 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: A synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 296, 389-413. https://doi.org/10.1016/j.palaeo.2010.08.001.
[54] Murray R.W.,1994. Chemical criteria to identify the depositional environment of chert: General principles and applications. Sedimentary Geology, 90, 213-232. https://doi.org/10.1016/0037-0738(94)90039-6.
[55] Nelson D.M., Tréguer P., Brzezinski M.A., Leynaert A., Quéguiner B., 1995. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 9, 359-372. https://doi.org/10.1029/95GB01070.
[56] Nesbitt H.W., Young G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715-717. https://doi.org/10.1038/299715a0.
[57] Nie H., Chen Q., Zhang G., Sun C., Wang P., Lu Z.,2021. An overview of the characteristic of typical Wufeng-Longmaxi shale gas fields in the Sichuan Basin, China. Natural Gas Industry B, 8, 217-230. https://doi.org/10.1016/j.ngib.2021.04.001.
[58] Pohl A., Donnadieu Y., Le Hir G., Ferreira D., 2017. The climatic significance of Late Ordovician-Early Silurian black shales. Paleoceanography, 32, 397-423. https://doi.org/10.1002/2016PA003064.
[59] Price J.R., Velbel M.A.,2003. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202, 397-416. https://doi.org/10.1016/j.chemgeo.2002.11.001.
[60] Rimmer S.M., Thompson J.A., Goodnight S.A., Robl T.L.,2004. Multiple controls on the preservation of organic matter in Devonian-Mississippian marine black shales: Geochemical and petrographic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215, 125-154. https://doi.org/10.1016/j.palaeo.2004.09.001.
[61] Ross D.J.K., Bustin, R.M., 2009. Investigating the use of sedimentary geochemical proxies for paleoenvironment interpretation of thermally mature organic-rich strata: Examples from the Devonian-Mississippian shales, Western Canadian Sedimentary Basin. Chemical Geology, 260, 1-19. https://doi.org/10.1016/j.chemgeo.2008.10.027.
[62] Scott C., Lyons T.W., Bekker A., Shen Y., Poulton S.W., Chu X., Anbar A.D., 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452, 456-459. https://doi.org/10.1038/nature06811.
[63] Shao J., Yang S., Li C.,2012. Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: Inferences from analysis of fluvial sediments. Sedimentary Geology, 265-266, 110-120. https://doi.org/10.1016/j.sedgeo.2012.03.020.
[64] Shen J.J., Wang P., Chen K., Zhang D., Wang Y., Cai Q., Meng J.,2021. Relationship between volcanic activity and enrichment of shale organic matter during the Ordovician-Silurian transition in western Hubei, Southern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 577, 110551. https://doi.org/10.1016/j.palaeo.2021.110551.
[65] Šliaupa S., Lozovskis S., Lazauskienė J., Šliaupienė R.,2020. Petrophysical and mechanical properties of the Lower Silurian perspective oil/gas shales of Lithuania. Journal of Natural Gas Science and Engineering, 79, 103336. https://doi.org/10.1016/j.jngse.2020.103336.
[66] Stockey R.G., Cole D.B., Planavsky N.J., Loydell D.K., Frýda J., Sperling E.A., 2020. Persistent global marine euxinia in the Early Silurian. Nature Communication, 11, 1-10. https://doi.org/10.1038/s41467-020-15400-y.
[67] Su W., Huff W.D., Ettensohn F.R., Liu X., Zhang J., Li Z.,2009. K-bentonite, black-shale and flysch successions at the Ordovician-Silurian transition, South China: Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana. Gondwana Research, 15, 111-130. https://doi.org/10.1016/j.gr.2008.06.004.
[68] Tang L., Song Y., Jiang S., Jiang Z., Li Z., Yang Y., Li X., Xiao L.,2020. Organic matter accumulation of the Wufeng-Longmaxi shales in southern Sichuan Basin: Evidence and insight from volcanism. Marine and Petroleum Geology, 120, 104564. https://doi.org/10.1016/j.marpetgeo.2020.104564.
[69] Taylor S., McLennan S., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford, London.
[70] Topór T., Derkowski A., Ziemiański P., Marynowski L.,McCarty, D.K., 2017. Multi-variable constraints of gas exploration potential in the Lower Silurian shale of the Baltic Basin (Poland). International Journal of Coal Geology, 179, 45-59. https://doi.org/10.1016/j.coal.2017.05.001.
[71] Tribovillard N., Algeo T.J., Lyons T., Riboulleau A.,2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232, 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012.
[72] Ver Straeten,C.A., Brett, C.E., Sageman, B.B., 2011. Mudrock sequence stratigraphy: A multi-proxy (sedimentological, paleobiological and geochemical) approach, Devonian Appalachian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 54-73. https://doi.org/10.1016/j.palaeo.2010.10.010.
[73] Wang G.X., Zhan R.B., Percival I.G.,2019a. The end-Ordovician mass extinction: A single-pulse event? Earth-Science Reviews, 192, 15-33. https://doi.org/10.1016/j.earscirev.2019.01.023.
[74] Wang H.Y., Shi Z.S., Sun S.S., 2021. Biostratigraphy and reservoir characteristics of the Ordovician Wufeng Formation-Silurian Longmaxi Formation shale in the Sichuan Basin and its surrounding areas, China. Petroleum Exploration and Development, 48, 1019-1032. https://doi.org/10.1016/S1876-3804(21)60088-5.
[75] Wang P., Du Y.S., Yu W.C., Algeo T.J., Zhou Q., Xu Y., Qi L., Yuan L.J., Pan W.,2020. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history. Earth-Science Reviews, 201, 103032. https://doi.org/10.1016/j.earscirev.2019.103032.
[76] Wang X.Q., Zhu Y.M., Lash G.G., Wang Y.,2019b. Multi-proxy analysis of organic matter accumulation in the Upper Ordovician-Lower Silurian black shale on the Upper Yangtze Platform, South China. Marine and Petroleum Geology, 103, 473-484. https://doi.org/10.1016/j.marpetgeo.2019.03.013.
[77] Xu Z., Jiang S., Yao G., Liang X., Xiong S.,2019. Tectonic and depositional setting of the Lower Cambrian and Lower Silurian marine shales in the Yangtze Platform, South China: Implications for shale gas exploration and production. Journal of Asian Earth Sciences, 170, 1-19. https://doi.org/10.1016/j.jseaes.2018.10.023.
[78] Yan C., Jin Z., Zhao J., Du W., Liu Q.,2018. Influence of sedimentary environment on organic matter enrichment in shale: A case study of the Wufeng and Longmaxi formations of the Sichuan Basin, China. Marine and Petroleum Geology, 92, 880-894. https://doi.org/10.1016/j.marpetgeo.2018.01.024.
[79] Yan D., Chen D., Wang Q., Wang J., 2010. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block, South China. Geology, 38, 599-602. https://doi.org/10.1130/G30961.1.
[80] Yan D., Chen D., Wang Z., Li J., Yang X., Zhang B.,2019. Climatic and oceanic controlled deposition of Late Ordovician-Early Silurian black shales on the North Yangtze platform, South China. Marine and Petroleum Geology, 110, 112-121. https://doi.org/10.1016/j.marpetgeo.2019.06.040.
[81] Yan D., Wang H., Fu Q., Chen Z., He J., Gao Z.,2015. Geochemical characteristics in the Longmaxi Formation (Early Silurian) of South China: Implications for organic matter accumulation. Marine and Petroleum Geology, 65, 290-301. https://doi.org/10.1016/j.marpetgeo.2015.04.016.
[82] Yang S., Hu W., Wang X., Jiang B., Yao S., Sun F., Huang Z., Zhu F.,2019. Duration, evolution, and implications of volcanic activity across the Ordovician-Silurian transition in the Lower Yangtze region, South China. Earth and Planetary Science Letters, 518, 13-25. https://doi.org/10.1016/j.epsl.2019.04.020.
[83] Zhao J., Jin, Z.J, Jin, Z.K, Geng, Y., Wen X., Yan C.,2016. Applying sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale deposition in the Sichuan Basin, China. International Journal of Coal Geology, 163, 52-71. https://doi.org/10.1016/j.coal.2016.06.015.
[84] Zhu Y., Chen G., Liu Y., Shi X., Wu W., Luo C., Yang X., Yang Y., Zou Y., 2021. Sequence stratigraphy and lithofacies paleogeographic evolution of Katian Stage-Aeronian Stage in southern Sichuan Basin, SW China. Petroleum Exploration and Development, 48, 974-985. https://doi.org/10.11698/PED.2021.05.09.
[85] Zou C., Qiu Z., Poulton S.W., Dong D., Wang H., Chen D., Lu B., Shi Z., Tao H., 2018. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction. Geology, 46, 535-538. https://doi.org/10.1130/G40121.1. |