[1] Albright III L.B., Woodburne III M.O., Fremd III T.J., Swisher III III C.C., MacFadden III B.J., Scott III G.R., 2008. Revised chronostratigraphy and biostratigraphy of the John Day Formation (Turtle Cove and Kimberly members), Oregon, with implications for updated calibration of the Arikareean North American Land Mammal Age.The Journal of Geology, 116, 211-237.
[2] Alt J.C., France-Lanord C., Floyd P.A., Castillo P., Galy A., 1992. 22. Low-temperature hydrothermal alteration of Jurassic ocean crust, site 801.
[3] Alt J.C., Teagle D.A., 2003. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801.Chemical Geology, 201, 191-211.
[4] Amorosi A.,1997. Detecting compositional, spatial, and temporal attributes of glaucony: a tool for provenance research.Sedimentary Geology, 109, 135-153.
[5] Bailey S.W.,1980. Summary of recommendations of AIPEA nomenclature committee on clay minerals.American Mineralogist, 65, 1-7.
[6] Baker L.L., Rember W.C., Sprenke K.F., Strawn D.G., 2012. Celadonite in continental flood basalts of the Columbia River Basalt Group.American Mineralogist, 97(8-9), 1284-1290.
[7] Baldermann A., Banerjee S., Czuppon G., Dietzel M., Farkaš J., Lӧhr S., Moser U., Scheiblhofer E., Wright N.M., Zack T., 2022. Impact of green clay authigenesis on element sequestration in marine settings.Nature Communications, 13, 1-11.
[8] Baldermann A., Dietzel M., Mavromatis V., Mittermayr F., Warr L.N., Wemmer K., 2017. The role of Fe on the formation and diagenesis of interstratified glauconite-smectite and illite-smectite: A case study of Upper Cretaceous shallow-water carbonates.Chemical Geology, 453, 21-34.
[9] Baldermann A., Warr L.N., Grathoff G.H., Dietzel M., 2013. The rate and mechanism of deep-sea glauconite formation at the Ivory Coast-Ghana Marginal Ridge.Clays and Clay Minerals, 61, 258-276.
[10] Banerjee S., Bansal U., Thorat A.V., 2016. A review on palaeogeographic implications and temporal variation in glaucony composition.Journal of Palaeogeography, 5(1), 43-71.
[11] Banerjee S., Chattoraj S.L., Saraswati P.K., Dasgupta S., Sarkar U., 2012. Substrate control on formation and maturation of glauconites in the Middle Eocene Harudi Formation, western Kutch, India.Marine and Petroleum Geology, 30, 144-160.
[12] Banerjee S., Choudhury T.R., Saraswati P.K., Khanolkar S., 2020. The formation of authigenic deposits during Paleogene warm climatic intervals: a review.Journal of Palaeogeography, 9(1), 1-27.
[13] Banerjee S., Farouk S., Nagm E., Choudhury T.R., Meena S.S., 2019. High Mg-glauconite in the Campanian Duwi formation of Abu Tartur plateau, Egypt and its implications.Journal of African Earth Sciences, 156, 12-25.
[14] Banerjee S., Jeevankumar S., Eriksson P.G., 2008. Mg-rich ferric illite in marine transgressive and highstand systems tracts: examples from the Paleoproterozoic Semri Group, central India.Precambrian Research, 162, 212-226.
[15] Banerjee S., Mondal S., Chakraborty P.P., Meena S.S., 2015. Distinctive compositional characteristics and evolutionary trend of Precambrian glaucony: example from Bhalukona Formation, Chhattisgarh basin, India.Precambrian Research, 271, 33-48.
[16] Bansal U., Banerjee S., Pande K. and Ruidas D.K., 2020. Unusual seawater composition of the Late Cretaceous Tethys imprinted in glauconite of Narmada basin, central India.Geological Magazine, 157(2), 233-247.
[17] Besson G., Drits V.A., 1997. Refined relationships between chemical composition of dioctahedral fine-grained micaceous minerals and their infrared spectra within the OH stretching region. Part II: The main factors affecting OH vibrations and quantitative analysis.Clays and Clay Minerals, 45, 170-183.
[18] Besson G., Drits V.A., Daynyak L.G., Smoliar B.B., 1987. Analysis of cation distribution in dioctahedral micaceous minerals on the basis of IR spectroscopy data.Clay Minerals, 22, 465-478.
[19] Bishop J., Madejová J., Komadel P., Fröschl H., 2002. The influence of structural Fe, Al and Mg on the infrared OH bands in spectra of dioctahedral smectites.Clay minerals, 37, 607-616.
[20] Buckley H.A., Bevan J.C., Brown K.M., Johnson L.R., Farmer V.C., 1978. Glauconite and celadonite: two separate mineral species.Mineralogical Magazine, 42, 373-382.
[21] Chattoraj S.L., Banerjee S., Saraswati P.K., 2009. Glauconites from the Late Palaeocene—Early Eocene Naredi Formation, western Kutch and their genetic implications.Journal of the Geological Society of India, 73, 567-574.
[22] Chattoraj S.L., Banerjee S., Saraswati P.K., Bansal U., 2016. Origin, depositional setting and stratigraphic implications of Palaeogene glauconite of Kutch.SpecialPublication of GeologicalSociety ofIndia, 6, 75-88.
[23] De Morae’s L.C., Seer H.J., 2018. Pillow lavas and fluvio-lacustrine deposits in the northeast of Paraná Continental Magmatic Province, Brazil.Journal of Volcanology and Geothermal Research, 355, 78-86.
[24] Derkowski A., Środoń J., Franus W., Uhlík P., Banaś M., Zielinski G., Čaplovičová M., Franus M., 2009. Partial dissolution of glauconitic samples: implications for the methodology of K-Ar and Rb-Sr dating.Clays and Clay Minerals, 57, 531-554.
[25] Drits V.A., Dainyak L.G., Muller F., Besson G., Manceau A., 1997. Isomorphous cation distribution in celadonites, glauconites and Fe-illites determined by infrared, Mössbauer and EXAFS spectroscopies.Clay minerals, 32, 153-179.
[26] Duarte L.C., Hartmann L.A., Vasconcellos M.A.Z., Medeiros J.T.N., Theye T., 2009. Epigenetic formation of amethyst-bearing geodes from Los Catalanes gemological district, Artigas, Uruguay, southern Paraná Magmatic Province.Journal of Volcanology and Geothermal Research, 184, 427-436.
[27] Einaudi F., Pezard P.A., Cochemé J.J., Coulon C., Laverne C., Godard M., 2000. Petrography, geochemistry and physical properties of a continuous extrusive section from the Sarami Massif, Semail ophiolite.Marine Geophysical Researches, 21(3), 387-408.
[28] Fernández-Landero S., Fernández-Caliani J.C., 2021. Mineralogical and crystal-chemical constraints on the glauconite-forming process in Neogene sediments of the lower Guadalquivir Basin (SW Spain).Minerals, 11, p.578.
[29] Foster M.D.,1969. Studies of celadonite and glauconite (No. 614-F).
[30] French W.J., Hassan M.D., Westcott J.E., 1977. A celadonite-vermiculite series from the volcanic rocks of the Ochils, Stirlingshire.Mineralogical Magazine, 41(320), 481-485.
[31] Gallahan W.E., Duncan R.A., 1994. Spatial and temporal variability in crystallization of celadonites within the Troodos ophiolite, Cyprus: Implications for low‐temperature alteration of the oceanic crust.Journal of Geophysical Research: Solid Earth, 99, 3147-3161.
[32] Gilg H.A., Morteani G., Kostitsyn Y., Preinfalk C., Gatter I., Strieder A.J., 2003. Genesis of amethyst geodes in basaltic rocks of the Serra Geral Formation (Ametista do Sul, Rio Grande do Sul, Brazil): a fluid inclusion, REE, oxygen, carbon, and Sr isotope study on basalt, quartz, and calcite.Mineralium Deposita, 38, 1009-1025.
[33] Giorgetti G., Marescotti P., Cabella R., Lucchetti G., 2001. Clay mineral mixtures as alteration products in pillow basalts from the eastern flank of Juan de Fuca Ridge: a TEM-AEM study.Clay Minerals, 36, 75-91.
[34] Hofmann B.A., Helfer M., Diamond L.W., Villa I.M., Frei R., Eikenberg J., 2004. Topography-driven hydrothermal breccia mineralization of Pliocene age at Grimsel Pass, Aar massif, Central Swiss Alps.Schweizerischemineralogische und petrographischeMitteilungen, 84, 271-302.
[35] Hover V.C., Ashley G.M., 2003. Geochemical signatures of paleodepositional and diagenetic environments: a STEM/AEM study of authigenic clay minerals from an arid rift basin, Olduvai Gorge, Tanzania.Clays and Clay Minerals, 51, 231-251.
[36] Jafarzadeh M., Choudhury T.R., Taheri A., Banerjee S., Jafarian A., 2020. Glauconite within Albian-Cenomanian Aitamir Formation, Kopet-Dagh Basin, northeastern Iran: origin and implications of cretaceous seawater.Arabian Journal of Geosciences, 13, 1-14.
[37] Keeling J.,Zwingmann H., Self P., Raven M., 2014. Timing and Significance of Celadonite Alteration in Graphitic Schist on southern Eyre Peninsula, South Australia.Australian Clay Minerals Society Conference, Perth,3-5 February 2014.
[38] Kimbara K., Shimoda S., 1973. A ferric celadonite in amygdales of dolerite at Taiheizan, Akita prefecture, Japan.Clay Science, 4, 143-150.
[39] Laureijs C.T., Coogan L.A., Spence J., 2021. Regionally variable timing and duration of celadonite formation in the Troodos lavas (Cyprus) from Rb-Sr age distributions.Chemical Geology, 560, p.119995.
[40] Laverne C., Grauby O., Alt J.C., Bohn M., 2006. Hydroschorlomite in altered basalts from Hole 1256D, ODP Leg 206: The transition from low‐temperature to hydrothermal alteration. Geochemistry, Geophysics, Geosystems, 7(10).
[41] Li G., Peacor D.R., Coombs D.S., Kawachi Y., 1997. Solid solution in the celadonite family: The new minerals ferroceladonite, K2Fe2+2 Fe3+3 Si8O20 (OH) 4, and ferroaluminoceladonite, K2Fe2+2 Al2Si8O20 (OH) 4.American Mineralogist, 82, 503-511.
[42] Li Y., Wang G., Santosh M., Wang J., Dong P., Li H., 2020. Subduction initiation of the SE Paleo-Asian Ocean: Evidence from a well preserved intra-oceanic forearc ophiolite fragment in central Inner Mongolia, North China.Earth and Planetary Science Letters, 535, p.116087.
[43] Liivamägi S., Šrodoń J., Bojanowski M.J., Gerdes A., Stanek J.J., Williams L., Szczerba M., 2018. Paleosols on the Ediacaran basalts of the East European Craton: A unique record of paleoweathering with minimum diagenetic overprint.Precambrian Research, 316, 66-82.
[44] López-Quirós A., Escutia C., Sánchez-Navas A., Nieto F., Garcia-Casco A., Martín-Algarra A., Evangelinos D., Salabarnada A., 2019. Glauconyauthigenesis, maturity and alteration in the Weddell Sea: An indicator of paleoenvironmental conditions before the onset of Antarctic glaciation.Scientific reports, 9, 1-12.
[45] López-Quirós A., Sánchez-Navas A., Nieto F., Escutia C., 2020. New insights into the nature of glauconite.American Mineralogist, 105, 674-686.
[46] Loveland P.J., Bendelow V.C., 1984. Celadonite-aluminous-glauconite: an example from the Lake District, UK.Mineralogical magazine, 48(346), 113-117.
[47] Mattioli M., Cenni M., Passaglia E., 2016. Secondary mineral assemblages as indicators of multi stage alteration processes in basaltic lava flows: Evidence from the Lessini Mountains, Veneto Volcanic Province, Northern Italy.Periodico Di Mineralogia, 85, 1-24.
[48] Mehl K.W., Bitschene P.R., Schmincke H.U., Hertogen J., 1991. 16. Composition, alteration, and origin of the basement lavas and volcaniclastic rocks at site 738, southern Kerguelen plateau. In: Proceedings of Ocean Drilling Program (ODP), 119, 299-322.
[49] Meunier A., El Albani A., 2007. The glauconite-Fe‐illite-Fe‐smectite problem: a critical review.Terra Nova, 19, 95-104.
[50] Morteani G., Kostitsyn Y., Preinfalk C., Gilg H.A., 2010. The genesis of the amethyst geodes at Artigas (Uruguay) and the paleohydrology of the Guaraní aquifer: structural, geochemical, oxygen, carbon, strontium isotope and fluid inclusion study.International Journal of Earth Sciences, 99, 927-947.
[51] Neuhoff P.S., Fridriksson T., Arnorsson S., Bird D.K., 1999. Porosity evolution and mineral paragenes is during low-grade metamorphism of basaltic lavas at Teigarhorn, eastern Iceland.American Journal of Science, 299, 467-501.
[52] Nieto F., Abad I., Bauluz B., Reolid M., 2021. Textural and genetic relationships between glauconite and celadonite at the nanoscale: two different structural-compositional fields.European Journal of Mineralogy, 33, 503-517.
[53] Odin G.S., Desprairies A., Fullagar P.D., Bellon H., Decarreau A., Frohlich F., Zelvelder M., 1988. Chapter D nature and geological significance of celadonite. In: Developments in Sedimentology (Vol. 45, pp. 337-398). Elsevier.
[54] Odin G.S., Matter A.,1981. De glauconiarum origine.,Sedimentology, 21, 121-151.
[55] Odom I.E.,1984. Glauconite and celadonite minerals.Reviews in Mineralogy and Geochemistry, 13(1), 545-584.
[56] Ospitali F., Bersani D., Di Lonardo G., Lottici P.P., 2008. ‘Green earths’: vibrational and elemental characterization of glauconites, celadonites and historical pigments. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 39, 1066-1073.
[57] Park J., Lim H., Myeong B., Jang Y.D., 2022. Hydrothermal mineralization of celadonite: Hybridized fluid-basalt interaction in Janggi, Korea.American Mineralogist: Journal of Earth and Planetary Materials, 107, 1149-1163.
[58] Parron C., Amouric M., 1990. Crystallochemical heterogeneity of glauconites and the related problem of glauconite-celadonite distinction.Chemical Geology, 84(1-4), 286-289.
[59] Pérez-Martínez I., Villanueva-Estrada R.E., Cardona-Benavides A., Rodríguez-Díaz A.A., Rodríguez-Salazar M.T. and Guadalupe J., 2020. Hydrogeochemical reconnaissance of the Atotonilcoel Alto-Santa Rita geothermal system in the northeastern Chapala graben in Mexico.Geothermics, 83, 101733.
[60] Rieder M., Cavazzini G., D’yakonov Y.S., Frank-Kamenetskii V.A., Gottardi G., Guggenheim S., Koval P.W., Mueller G., Neiva A.M., Radoslovich E.W., Robert J.L., 1998. Nomenclature of the micas. Clays and Clay Minerals, 46, 586-595.
[61] Robinson D., Bevins R.E., Rowbotham G., 1993. The characterization of mafic phyllosilicates in low-grade metabasalts from eastern North Greenland.American Mineralogist, 78, 377-390.
[62] Roy Choudhury T., Banerjee S., Khanolkar S., Meena S.S., 2021a. Paleoenvironmental conditions during the Paleocene-Eocene Transition Imprinted within the Glauconitic Giral Member of the Barmer Basin, India.Minerals, 12, 56.
[63] Roy Choudhury T.R., Banerjee S., Khanolkar S., Saraswati P.K., Meena S.S., 2021b. Glauconite authigenesis during the onset of the Paleocene-Eocene Thermal Maximum: A case study from the Khuiala Formation in Jaisalmer Basin, India.Palaeogeography, Palaeoclimatology, Palaeoecology, 571, 110388.
[64] Roy Choudhury T.R., Khanolkar S., Banerjee S., 2022. Glauconite authigenesis during the warm climatic events of Paleogene: Case studies from shallow marine sections of Western India. Global and Planetary Change, p.103857.
[65] Savko K.A., Piliugin S.M., Bazikov N.S., 2015. Experimental data for high-temperature decomposition of natural celadonite from banded iron formation. ChineseJournal of Geochemistry, 34, 507-514.
[66] Savko K.A., Poskryakova M.V., 2003. Riebeckite-aegirine-celadonite BIF at the Mikhailovskoe Iron Deposit of the Kursk Magnetic Anomaly: phase equilibria and metamorphic conditions.
[67] Schenato F., Formoso M.L.L., Dudoignon P., Meunier A., Proust D., Mas A., 2003. Alteration processes of a thick basaltic lava flow of the Paraná Basin (Brazil): petrographic and mineralogical studies.Journal of South American Earth Sciences, 16, 423-444.
[68] Schmidt S.T., Süssenberger A., Wemmer K., Steele-MacInnes, M., 2021. Posteruptive Thermal History of the Proterozoic Basaltic North Shore Volcanic Group of the Midcontinent Rift: Evidence from K/Ar Data of Celadonite.Lithosphere, 2021.
[69] Schramm B., Devey C.W., Gillis K.M., Lackschewitz K., 2005. Quantitative assessment of chemical and mineralogical changes due to progressive low-temperature alteration of East Pacific Rise basalts from 0 to 9 Ma.Chemical Geology, 218, 281-313.
[70] Seifert F.,1968. X-ray powder data for Mg-Al-celadonite (leucophyllite) from Barcza, Poland.Contributions to Mineralogy and Petrology, 19, 93-96.
[71] Sheldon N.D.,2003. Pedogenesis and geochemical alteration of the Picture Gorge subgroup, Columbia River basalt, Oregon.Geological Society of America Bulletin, 115, 1377-1387.
[72] Singh P., Banerjee S., Pande K., Bhattacharya S., Sarkar S., Le Pera E., 2022. Authigenic green mica in interflow horizons within Late Cretaceous Deccan Volcanic Province, India and its genetic implications.Minerals, 12(2), 198.
[73] Środoń J., Kuzmenkova O., Stanek J.J., Petit S., Beaufort D., Gilg H.A., Liivamägi S., Goryl M., Marynowski L., Szczerba M., 2019. Hydrothermal alteration of the Ediacaran Volyn-Brest volcanics on the western margin of the East European Craton. Precambrian Research, 325, 217-235.
[74] Środoń J., Paszkowski M., Drygant D., Anczkiewicz A., Banaś M., 2013. Thermal history of Lower Paleozoic rocks on the Peri-Tornquist margin of the East European Craton (Podolia, Ukraine) inferred from combined XRD, K-Ar, and AFT data.Clays and Clay Minerals, 61, 107-132.
[75] Sustavov S.G., Khanin D.A., Shagalov E.S., 2019. Chromceladonite from the Southern Sarany Chromite Deposit (Northern Urals).Geology of Ore Deposits, 61, 680-688.
[76] Tounekti A., Boukhalfa K., Choudhury T.R., Soussi M., Banerjee S., 2021. Global and local factors behind the authigenesis of Fe-silicates (Glauconite/Chamosite) in Miocene strata of Northern Tunisia.Journal of African Earth Sciences, 184, 104342.
[77] Vasyukova O.V., Williams-Jones A.E., 2019. Closed system fluid-mineral-mediated trace element behaviour in peralkaline rare metal pegmatites: Evidence from Strange Lake.Chemical Geology, 505, 86-99.
[78] Velde B.,2003. Green clay minerals (Vol. 7, p. 407).
[79] Weisenberger T., Selbekk R.S., 2009. Multi-stage zeolite facies mineralization in the Hvalfjördur area, Iceland.International Journal of Earth Sciences, 98, 985-999.
[80] Weiszburg T.G., Tóth E., Beran A., 2004. Celadonite, the 10-Å green clay mineral of the manganese carbonate ore, Úrkút, Hungary.Acta Mineralogica-Petrographica, 45, 65-80.
[81] Wise W.S., Eugster H.P., 1964. Celadonite: synthesis, thermal stability and occurrence.American Mineralogist: Journal of Earth and Planetary Materials, 49, 1031-1083.
[82] Yun N., Yiqun L., Dingwu Z., Ningchao Z., Xin J., Peng Z., 2016. Characteristics and origin of amygdale and crack fillers in volcanic rock of Late Carboniferous in Santanghu basin, Xinjiang.Acta PetrologicaSinica, 32, 1901-1913.
[83] Zhang G.L., Smith‐Duque C., 2014. Seafloor basalt alteration and chemical change in the ultra-thinly sedimented South Pacific.Geochemistry, Geophysics, Geosystems, 15, 3066-3080.
[84] Zviagina B.B., Drits V.A., Dorzhieva O.V., 2020. Distinguishing Features and Identification Criteria for K-Dioctahedral 1 M Micas (Illite-Aluminoceladonite and Illite-Glauconite-Celadonite Series) from Middle-Infrared Spectroscopy Data.Minerals, 10, 153.
[85] Zviagina B.B., Drits V.A., Sakharov B.A., Ivanovskaya T.A., Dorzhibva O.V., McCarty D.K., 2017. Crystal-chemical regularities and identification criteria in Fe-bearing, K-dioctahedral 1M micas from X-ray diffraction and infrared spectroscopy data.Clays and Clay Minerals, 65, 234-251. |