[1] Ager D.V.,1963. Principles of Paleoecology. McGraw-Hill Book Co., New York, pp. 1-371.
[2] Algeo T.J., Ingall E.,2007. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 256, 130-155. https://doi.org/10.1016/j.palaeo.2007.02.029.
[3] Algeo T.J., Li C.,2020. Redox classification and calibration of redox thresholds in sedimentary systems. Geochimica et Cosmochimica Acta, 287, 8-26. https://doi.org/10.1016/j.gca.2020.01.055.
[4] Algeo T.J., Lyons T.W., 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21, PA1016. https://doi.org/10.1029/2004PA001112.
[5] Algeo T.J., Maynard J.B.,2004. Trace-element behavior and redox facies in core shales of upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206, 289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009.
[6] Algeo T.J., Rowe H.,2012. Paleoceanographic applications of trace-metal concentration data. Chemical Geology, 324-325, 6-18. https://doi.org/10.1016/j.chemgeo.2011.09.002.
[7] Algeo T.J., Tribovillard N.,2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chemical Geology, 268, 211-225. https://doi.org/10.1016/j.chemgeo.2009.09.001.
[8] Antell G.S., Saupe E.E.,2021. Bottom-up controls, ecological revolutions and diversification in the oceans through time. Current Biology, 31, R1237-R1251. https://doi.org/10.1016/j.cub.2021.08.069.
[9] Bartlett R., Elrick M., Wheeley J.R., Polyak V., Desrochers A., Asmerom Y., 2018. Abrupt global-ocean anoxia during the Late Ordovician-early Silurian detected using uranium isotopes of marine carbonates. Proceedings of the National Academy of Sciences, 115, 5896-5901. https://doi.org/10.1073/pnas.1802438115.
[10] Berry W.B.N., Boucot A.J., 1972. Silurian graptolite depth zonation.Proceedings of the 24th International Geological Congress, Montreal, section 7, Paleontology, pp. 59-65.
[11] Botting J.P.,2021. Hexactins in the ‘protomonaxonid’ sponge Choiaella and proposal of Ascospongiae (class nov.) as a formal replacement for the Protomonaxonida. Bulletin of Geosciences, 96, 265-277. https://doi.org/10.3140/bull.geosci.1823.
[12] Botting J.P., Janussen D., Zhang Y.D., Muir L.A., 2020. Exceptional preservation of two new early rossellid sponges: The dominant species in the Hirnantian (Late Ordovician) Anji Biota of China. Journal of the Geological Society, 177(5), 1025-1038. https://doi.org/10.1144/jgs2020-002.
[13] Botting J.P., Muir L.A., 2013. Spicule structure and affinities of the Late Ordovician hexactinellid-like sponge Cyathophycus loydelli from the Llanfawr Mudstones Lagerstätte, Wales. Lethaia, 46, 444-469. https://doi.org/10.1111/let.12022.
[14] Botting J.P., Muir L.A., Wang W.H., Qie W.K., Tan J.Q., Zhang L.N., Zhang Y.D.,2018. Sponge-dominated offshore benthic ecosystems across South China in the aftermath of the end-Ordovician mass extinction. Gondwana Research, 61, 150-171. https://doi.org/10.1016/j.gr.2018.04.014.
[15] Botting J.P., Muir L.A., Zhang Y.D., Ma X., Ma J.Y., Wang L.W., Zhang J.F., Song Y.Y., Fang X.,2017a. Flourishing sponge-based ecosystems after the end-Ordovician mass extinction. Current Biology, 27(4), 556-562. https://doi.org/10.1016/j.cub.2016.12.061.
[16] Botting J.P., Zhang Y.D., Muir L.A., 2017b. Discovery of missing link between demosponges and hexactinellids confirms palaeontological model of sponge evolution. Scientific Reports, 7, 1-7. https://doi.org/10.1038/s41598-017-05604-6.
[17] Boucot A.J.,1975. Evolution and Extinction Rate controls. In: Developments in Palaeontology and Stratigraphy. Elsevier, Amsterdam, pp. 1-427.
[18] Boucot A.J., Chen X.,2009. Fossil plankton depth zones. Palaeoworld, 18, 213-234. https://doi.org/10.1016/j.palwor.2009.05.002.
[19] Bush A.M., Payne J.L., 2021. Biotic and abiotic controls on the Phanerozoic history of marine animal biodiversity. Annual Review of Ecology Evolution and Systematics, 52, 269-289. https://doi.org/10.1146/annurev-ecolsys-012021-035131.
[20] Chen X.,1990. Graptolite depth zonation. Acta Palaeontologica Sinica, 29, 507-526 (in Chinese with English abstract). https://doi.org/10.19800/j.cnki.aps.1990.05.001.
[21] Chen X., Fan J.X., Wang W.H., Wang H.Y., Nie H.K., Shi X.W., Wen Z.D., Chen D.Y., Li W.J., 2017. Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, central China. Science China Earth Sciences, 60, 1133-1146. https://doi.org/10.1007/s11430-016-9031-9.
[22] Chen X., Melchin M.J., Sheets H.D., Mitchell C.E., Fan J.X., 2005. Patterns and processes of latest Ordovician graptolite extinction and recovery based on data from South China. Journal of Paleontology, 79, 842-861. https://doi.org/10.1666/0022-3360(2005)079[0842:PAPOLO]2.0.CO;2.
[23] Chen X., Rong J.Y., Li Y., Boucot A.J., 2004. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 204, 353-372. https://doi.org/10.1016/S0031-0182(03)00736-3.
[24] Chen Z.Q., Benton M.J., 2012. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nature Geoscience, 5, 375-383. https://doi.org/10.1038/ngeo1475.
[25] Cocks L.M., Torsvik T.H.,2021. Ordovician palaeogeography and climate change. Gondwana Research, 100, 53-72. https://doi.org/10.1016/j.gr.2020.09.008.
[26] Conway Morris, S., 2000. The Cambrian “explosion”: Slow-fuse or megatonnage? Proceedings of the National Academy of Sciences, 97, 4426-4429. https://doi.org/10.1073/pnas.97.9.4426.
[27] Copper P., Jin J.S., 2015. Tracking the early Silurian post-extinction faunal recovery in the Jupiter Formation of Anticosti Island, eastern Canada: A stratigraphic revision. Newsletters on Stratigraphy, 48(2), 221-240. https://doi.org/10.1127/nos/2015/0061.
[28] Dahl T.W., Hammarlund E.U., Rasmussen C.M.Ø., Bond, D.P.G., Canfield, D.E., 2021. Sulfidic anoxia in the oceans during the Late Ordovician mass extinctions - insights from molybdenum and uranium isotopic global redox proxies. Earth-Science Reviews, 220, 103748. https://doi.org/10.1016/j.earscirev.2021.103748.
[29] De Goeij J.M., van Oevelen D., Vermeij M.J.A., Osinga R., Middelburg J.J., de Goeij A.F.P.M., Admiraal W., 2013. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science, 342, 108-110. https://doi.org/10.1126/science.1241981.
[30] De Kluijver,A., Bart, M.C., van Oevelen, D., De Goeij, J.M., Leys, S.P., Maier, S.R., Maldonado, M., Soetaert, K., Verbiest, S., Middelburg, J.J., 2021. An integrative model of carbon and nitrogen metabolism in a common deep-sea sponge(Geodia barretti). Frontiers in Marine Science, 7, 596251. https://doi.org/10.3389/fmars.2020.596251.
[31] Deng Y.Y., Fan J.X., Zhang S.H., Fang X., Chen Z.Y., Shi Y.K., Wang H.W., Wang X.B., Yang J., Hou X.D., Wang Y., Zhang Y.D., Chen Q., Yang A.H., Fan R., Dong S.C., Xu H.Q., Shen S.Z.,2021. Timing and patterns of the Great Ordovician Biodiversification Event and Late Ordovician mass extinction: Perspectives from South China. Earth-Science Reviews, 220, 103743. https://doi.org/10.1016/j.earscirev.2021.103743.
[32] Dhungana A., Mitchell E., 2021. Facilitating corals in an early Silurian deep-water assemblage. Palaeontology, 64, 359-370. https://doi.org/10.1111/pala.12527.
[33] Droser M.L., Bottjer D.J., Sheehan P.M., McGhee J., 2000. Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology, 28, 675-678. https://doi.org/10.1130/0091-7613(2000)28<675:DOTAES>2.0.CO;2.
[34] Edwards C.T., Saltzman M.R., Royer D.L., Fike D.A., 2017. Oxygenation as a driver of the Great Ordovician Biodiversification Event. Nature Geoscience, 10, 925-929. https://doi.org/10.1038/s41561-017-0006-3.
[35] Erwin D.H., Tweedt S., 2012. Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa. Evolutionary Ecology, 26, 417-433. https://doi.org/10.1007/s10682-011-9505-7.
[36] Fan J.X., Shen S.Z., Erwin D.H., Sadler P.M., MacLeod N., Cheng Q.M., Hou X.D., Yang J., Wang X.D., Wang Y., Zhang H., Chen X., Li G.X., Zhang Y.C., Shi Y.K., Yuan D.X., Chen Q., Zhang L.N., Li C., Zhao Y.Y., 2020. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367, 272-277. https://doi.org/10.1126/science.aax4953.
[37] Feng H.Z., Li L.X., Wang W.H., 2010. Early diversification of Ordovician graptolites in Jiangnan Slope, South China. Journal of Earth Science, 21(S1), 29-32. https://doi.org/10.1007/s12583-010-0162-5.
[38] Gradstein F.M., Ogg J.G., 2020. The chronostratigraphic scale. In: Gradstein, F.M., Ogg, J.G, Schmitz, M.D., Ogg, G.M. (Eds.), The Geologic Time Scale. Amsterdam, Netherlands, Elsevier, pp. 21-32. https://doi.org/10.1016/B978-0-12-824360-2.00002-4.
[39] Hammarlund E.U., Dahl T.W., Harper D.A.T., Bond, D.P.G., Nielsen, A.T., Bjerrum, C.J., Schovsbo, N.H., Schönlaub, H.P., Zalasiewicz, J.A., Canfield, D.E., 2012. A sulfidic driver for the end-Ordovician mass extinction. Earth and Planetary Science Letters, 331-332, 128-139. https://doi.org/10.1016/j.epsl.2012.02.024.
[40] Harper D.A.T., Hammarlund, E.U., Rasmussen, C.M.Ø., 2014. End Ordovician extinctions: A coincidence of causes. Gondwana Research, 25, 1294-1307. https://doi.org/10.1016/j.gr.2012.12.021.
[41] Holmden C., Mitchell C.E.,LaPorte, D.F., Patterson, W.P., Melchin, M.J., Finney, S.C., 2013. Nd isotope records of late Ordovician sea-level change—Implications for glaciation frequency and global stratigraphic correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 386, 131-144. https://doi.org/10.1016/j.palaeo.2013.05.014.
[42] Hounslow M.W., Ratcliffe K.T., Harris S.E., Nawrocki J., Wójcik K., Montgomery P., Woodcock N.H.,2021. The Telychian (early Silurian) oxygenation event in northern Europe: A geochemical and magnetic perspective. Palaeogeography, Palaeoclimatology, Palaeoecology, 567, 110277. https://doi.org/10.1016/j.palaeo.2021.110277.
[43] Hu R.N., Tan J.Q., Dick J., Li L., Wang W.H.,2020. Quantification of the influences of radiolarian fossils on the pore structure of Wufeng-Lungmachi gas shales (Ordovician-Silurian) in the Sichuan Basin, South China. Journal of Natural Gas Science and Engineering, 81, 103442. https://doi.org/10.1016/j.jngse.2020.103442.
[44] Khan M.Z., Feng Q.L., Zhang K., Guo W.,2019. Biogenic silica and organic carbon fluxes provide evidence of enhanced marine productivity in the Upper Ordovician-lower Silurian of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 534, 109278. https://doi.org/10.1016/j.palaeo.2019.109278.
[45] Kraal P., Slomp C.P., Reed D.C., Reichart G.J., Poulton S.W.,2012. Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of the northern Arabian Sea. Biogeosciences, 9, 2603-2624. https://doi.org/10.5194/bg-9-2603-2012.
[46] Kröger B., Franeck F., Rasmussen C.M.Ø., 2019. The evolutionary dynamics of the early Palaeozoic marine biodiversity accumulation. Proceedings of the Royal Society B: Biological Sciences, 286, 20191634. Ø., 2019. The evolutionary dynamics of the early Palaeozoic marine biodiversity accumulation. Proceedings of the Royal Society B: Biological Sciences, 286, 20191634. http://doi.org/10.1098/rspb.2019.1634.
[47] Krug A.Z., Patzkowsky M.E., 2004. Rapid recovery from the Late Ordovician mass extinction. Proceedings of the National Academy of Sciences, 101, 17605-17610. https://doi.org/10.1073/pnas.0405199102.
[48] Levin L.A., Etter R.J., Rex M.A., Gooday J., Smith C.R., Stuart T., Hessler R.R., Pawson D., 2001. Environmental influences on regional and deep-sea diversity. Annual Review of Ecology and Systematics, 32, 51-93. https://doi.org/10.1146/annurev.ecolsys.32.081501.114002.
[49] Li L.X., Feng H.Z., Janussen D., Reitner J., 2015. Unusual Deep Water sponge assemblage in South China—Witness of the end-Ordovician mass extinction. Scientific Reports, 5, 16060. https://doi.org/10.1038/srep16060.
[50] Li L.X., Feng H.Z., Wang W.H., Chen W.J., 2012. Proximal development, systematic taxonomy, and dispersal pattern of the Early-Middle Ordovician graptolite Acrograptus from South China. Science China Earth Sciences, 55(7), 1110-1122. https://doi.org/10.1007/s11430-012-4436-x.
[51] Li L.X., Feng H.Z., Wang W.H., Chen W.J.,2017. Graptolite diversification during the Floian and Dapingian (Early-Middle Ordovician): A case study from the Ningkuo Formation of Hunan Province, China. Palaeoworld, 26(3), 431-443. https://doi.org/10.1016/j.palwor.2016.07.004.
[52] Li L.X., Janussen D., Zhan R.B., Reitner J., 2019. Oldest known fossil of Rossellids (Hexactinellida, Porifera) from the Ordovician-Silurian transition of Anhui, South China. Paläontologische Zeitschrift, 93(4), 559-566. https://doi.org/10.1007/s12542-019-00452-3.
[53] Li Y.F., Zhang T.W., Shen B.J., Li Z.M., Shao D.Y., Lash G.G.,2021. Carbon and sulfur isotope variations through the Upper Ordovician and lower Silurian of South China linked to volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology, 567, 110285. https://doi.org/10.1016/j.palaeo.2021.110285.
[54] Liang Y., Servais T., Tang P., Liu J.B., Wang W.H.,2017. Tremadocian (Early Ordovician) chitinozoan biostratigraphy of South China: An update. Review of Palaeobotany and Palynology, 247, 149-163. https://doi.org/10.1016/j.revpalbo.2017.08.008.
[55] Liao R.Q., Sun W.D., 2020. Late Ordovician mass extinction caused by global warming or cooling? Acta Geochimica, 39(5), 595-598. https://doi.org/10.1007/s11631-020-00430-6.
[56] Ling M.X., Zhan R.B., Wang G.X., Wang Y., Amelin Y., Tang P., Liu J.B., Jin J., Huang B., Wu R.C., Xue S., Fu B., Bennett V.C., Wei X., Luan X.C., Finnegan S., Harper D.A.T., Rong, J.Y., 2019. An extremely brief end Ordovician mass extinction linked to abrupt onset of glaciation. Solid Earth Sciences, 4, 190-198. https://doi.org/10.1016/j.sesci.2019.11.001.
[57] Liu J.H., Zhou L., Algeo T.J., Wang X.C., Wang Q., Wang Y., Chen M.L.,2020. Molybdenum isotopic behavior during intense weathering of basalt on Hainan Island, South China. Geochimica et Cosmochimica Acta, 287, 180-204. https://doi.org/10.1016/j.gca.2020.04.018.
[58] Lukowiak M., Pisera A., O’Dea A., 2013. Do spicules in sediments reflect the living sponge community? A test in a Caribbean shallow-water lagoon. Palaios, 28, 373-385. https://dx.doi.org/10.2110/palo.2012.p12-082r.
[59] McLennan S.,2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophysics Geosystems, 2, 2000GC000109. https://doi.org/10.1029/2000GC000109.
[60] Mentel M., Röttger M., Leys S., Tielens A.G., Martin W.F., 2014. Of early animals, anaerobic mitochondria, and a modern sponge. Bioessays, 36, 924-932. https://doi.org/10.1002/bies.201400060.
[61] Mills D.B., Francis W.R., Vargas S., Larsen M., Elemans C.P.H., Canfield D.E., Wörheide G., 2018. The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments. eLife, 7, e31176. https://doi.org/10.7554/eLife.31176.001.
[62] Mills D.B., Ward L.M., Jones C., Sweeten B., Forth M., Treusch A.H., Canfield D.E., 2014. Oxygen requirements of the earliest animals. Proceedings of the National Academy of Sciences, 111, 4168-4172. https://doi.org/10.1073/pnas.1400547111.
[63] Mosch T., Sommer S., Dengler M., Noffke A., Bohlen L., Pfannkuche O., Liebetrau V., Wallmann K.,2012. Factors influencing the distribution of epibenthic megafauna across the Peruvian oxygen minimum zone. Deep Sea Research Part I Oceanographic Research Papers, 68, 123-135. https://doi.org/10.1016/j.dsr.2012.04.014.
[64] Muir L.A., Botting J.P.,2015. An outline of the distribution and diversity of Porifera in the Ordovician Builth Inlier (Wales, UK). Palaeoworld, 24, 176-190. https://doi.org/10.1016/j.palwor.2014.11.003.
[65] Muir L.A., Botting J.P., Beresi M.S., 2017. Lessons from the past: Sponges and the geological record. In: Carballo, J.L., Bell, J.J. (Eds.), Climate Change, Ocean Acidification and Sponges. Springer, Cham, pp. 13-47. https://doi.org/10.1007/978-3-319-59008-0_2.
[66] Muscente A.D., Prabhu A., Zhong H., Eleish A., Meyer M.B., Fox P., Hazen R.M., Knoll A.H., 2018. Quantifying ecological impacts of mass extinctions with network analysis of fossil communities. Proceedings of the National Academy of Sciences, 115, 5217-5222. https://doi.org/10.1073/pnas.1719976115.
[67] Nie H.K., Jin Z.J., Zhang J.C., 2018. Characteristics of three organic matter pore types in the Wufeng-Longmaxi Shale of the Sichuan Basin, Southwest China. Scientific Reports, 8, 7014. https://doi.org/10.1038/s41598-018-25104-5.
[68] Pile A.J., Young C.M.,2006. The natural diet of a hexactinellid sponge: Benthic-pelagic coupling in a deep-sea microbial food web. Deep Sea Research Part I Oceanographic Research Papers, 53, 1148-1156. https://doi.org/10.1016/j.dsr.2006.03.008.
[69] Pohl A., Lu Z.L., Lu W.Y., Stockey R.G., Elrick M., Li M.H., Desrochers A., Shen Y.N., He R.L., Finnegan S., Ridgwell A., 2021. Vertical decoupling in Late Ordovician anoxia due to reorganization of ocean circulation. Nature Geoscience, 14(11), 868-873. https://doi.org/10.1038/s41561-021-00843-9.
[70] Rasmussen C.M.Ø., Kröger B., Nielsen M.L., Colmenar J., 2019. Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proceedings of the National Academy of Sciences, 116, 7207-7213. https://doi.org/10.1073/pnas.1821123116.
[71] Rong J.Y., Fang Z.J., 2004. Comparative analysis of the three major Palaeozoic mass extinctions and their subsequent recoveries in South China. In: Rong, J.Y., Fang, Z.J. (Eds.), Mass Extinction and Recovery: Evidence from the Paleozoic and Triassic of South China. University of Science and Technology of China Press, Hefei, pp. 931-1018 (in Chinese).
[72] Rong J.Y., Huang B.,2019. An indicator of the onset of the end Ordovician mass extinction in South China: The Manosia brachiopod assemblage and its diachronous distribution. Acta Geologica Sinica, 93(3), 509-527. https://doi.org/10.3969/j.issn.0001-5717.2019.03.002 (in Chinese with English abstract).
[73] Rong J.Y., Wei X., Zhan R.B., Wang Y., 2018. A deep water shelly fauna from the uppermost Ordovician in northwestern Hunan, South China and its paleoecological implications. Science China Earth Sciences, 61(6), 730-744. https://doi.org/10.1007/s11430-017-9165-y.
[74] Rong J.Y., Zhan R.B., 2006. Re-evaluation of survivors, Lazarus taxa, and refugia from mass extinction.Earth Science Frontiers, 13, 187-198 (in Chinese with English abstract).
[75] Rong J.Y., Zhan R.B., Xu H.G., Huang B., Yu G.H., 2010. Expansion of the Cathaysian Oldland through the Ordovician-Silurian transition: Emerging evidence and possible dynamics. Science China Earth Sciences, 53(1), 1-17. https://doi.org/10.1007/s11430-010-0005-3.
[76] Scott C., Lyons T.W.,2012. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chemical Geology, 324-325, 19-27. https://doi.org/10.1016/j.chemgeo.2012.05.012.
[77] Sepkoski J.J.,1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7, 36-53. https://doi.org/10.1017/S0094837300003778.
[78] Sheehan P.M.,2001. History of marine biodiversity. Geological Journal, 36, 231-249. https://doi.org/10.1002/gj.890.
[79] Smith M.P., Harper D.A.T., 2013. Causes of the Cambrian explosion. Science, 341, 1355-1356. https://doi.org/10.1126/science.1239450.
[80] Steenbergh A.K., Bodelier P.L.E., Hoogveld H.L., Slomp C.P., Laanbroek H.J., 2011. Phosphatases relieve carbon limitation of microbial activity in Baltic Sea sediments along a redox-gradient. Limnology and Oceanography, 56, 2018-2026. https://doi.org/10.4319/lo.2011.56.6.2018.
[81] Stigall A.L., Edwards C.T., Freeman R.L., Rasmussen C.M.Ø., 2019. Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: Darriwilian assembly of early Paleozoic building blocks. Palaeogeography Palaeoclimatology Palaeoecology, 530, 249-270. https://doi.org/10.1016/j.palaeo.2019.05.034.
[82] Stockey R.G., Cole D.B., Planavsky N.J., Loydell D.K., Frýda J., Sperling E.A., 2020. Persistent global marine euxinia in the early Silurian. Nature Communications, 11, 1804. https://doi.org/10.1038/s41467-020-15400-y.
[83] Su W.B., Huff W.D., Ettensohn F.R., Liu X.M., Zhang J.E., Li Z.M.,2009. K-bentonite, black-shale and flysch successions at the Ordovician-Silurian transition, South China: Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana. Gondwana Research, 15(1), 111-130. https://doi.org/10.1016/j.gr.2008.06.004.
[84] Tan J.Q., Hu R.N., Wang W.H., Dick J.,2020. Palynological analysis of the Late Ordovician-early Silurian black shales in South China provides new insights for the investigation of pore systems in shale gas reservoirs. Marine and Petroleum Geology, 116, 104145. https://doi.org/10.1016/j.marpetgeo.2019.104145.
[85] Tribovillard N., Algeo T.J., Baudin F., Riboulleau A.,2012. Analysis of marine environmental conditions based onmolybdenum-uranium covariation—Applications to Mesozoic paleoceanography. Chemical Geology, 324-325, 46-58. 10.1016/j.chemgeo.2011.09.009.
[86] Wang G.X., Zhan R.B., Percival I.G.,2019a. The end-Ordovician mass extinction: A single-pulse event? Earth-Science Reviews, 192, 15-33. https://doi.org/10.1016/j.earscirev.2019.01.023.
[87] Wang W.H., Feng H.Z., Vandenbroucke T.R.A., Li, L.X., Verniers, J., 2013. Chitinozoans from the Tremadocian graptolite shales of the Jiangnan Slope in South China. Review of Palaeobotany and Palynology, 198, 45-61. https://doi.org/10.1016/j.revpalbo.2012.02.003.
[88] Wang W.H., Tang P., Chen W.J., Tan J.Q.,2019c. Integrated Lower-Middle Ordovician graptolite and chitinozoan biostratigraphy of the Jiangnan Slope Region, South China. Palaeoworld, 28(1), 187-197. https://doi.org/10.1016/j.palwor.2018.06.001.
[89] Wang W.H., Zhang L.N., Liu H., Deng X., Tan J.Q.,2019b. The Early-Middle Ordovician graptolite genus Azygograptus in South China: New material and paleogeographic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 533, 109264. https://doi.org/10.1016/j.palaeo.2019.109264.
[90] Wang Y.M., Dong D.Z., Li X.J., Huang J.L., Wang S.F., Wu W.,2015. Stratigraphic sequence and sedimentary characteristics of lower Silurian Longmaxi Formation in Sichuan Basin and its peripheral areas. Natural Gas Industry B, 2(2), 222-232. https://doi.org/10.1016/j.ngib.2015.07.014.
[91] Wood R.,1998. The ecological evolution of reefs. Annual Review of Ecology and Systematics, 29, 179-206. https://doi.org/10.1146/annurev.ecolsys.29.1.179.
[92] Wu X.J., Botting J.P., Zhang Y.D., Muir L.A., Ma J.Y., 2022. Taphonomy of exceptional sponge preservation in the Hirnantian Anji Biota, China. Journal of the Geological Society, 179(5), jgs2021-112. https://doi.org/10.1144/jgs2021-112.
[93] Wyeth R.C., Leys S.P., Mackie G.O., 1996. Use of sandwich cultures for the study of feeding in the hexactinellid sponge Rhabdocalyptus dawsoni (Lambe, 1892). Acta Zoologica, 77, 227-232. https://doi.org/10.1111/j.1463-6395.1996.tb01266.x.
[94] Xiao S.H., Hu J., Yuan X.L., Parsley R.L., Cao R.J.,2005. Articulated sponges from the Lower Cambrian Hetang Formation in southern Anhui, South China: Their age and implications for the early evolution of sponges. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1-2), 89-117. https://doi.org/10.1016/j.palaeo.2002.02.001.
[95] Yang X.R., Yan D.T., Chen D.Z., Liu M., She X.H., Zhang B., Zhang L.W., Zhang J.F.,2021. Spatiotemporal variations of sedimentary carbon and nitrogen isotopic compositions in the Yangtze Shelf Sea across the Ordovician-Silurian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 567, 110257. https://doi.org/10.1016/j.palaeo.2021.110257.
[96] Yin Z.J., Zhu M.Y., Davidson E.H., Bottjer D.J., Zhao F.C., Tafforeau P., 2015. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proceedings of the National Academy of Sciences, 112(12), E1453-E1460. https://doi.org/10.1073/pnas.1414577112.
[97] Zhang L.N., Fan J.X., Chen Q., Wu S.Y.,2014. Reconstruction of the mid-Hirnantian palaeotopography in the Upper Yangtze region, South China. Estonian Journal of Earth Sciences, 63(4), 329-334. https://doi.org/10.3176/earth.2014.39.
[98] Zhou L., Algeo T.J., Shen J., Hu Z.F., Gong H.M., Xie S.C., Huang J.H., Gao S.,2015. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 420, 223-234. https://doi.org/10.1016/j.palaeo.2014.12.012.
[99] Zou C.N., Qiu Z., Poulton S.W., Dong D.Z., Wang H.Y., Chen D.Z., Lu B., Shi Z.S., Tao H.F., 2018. Ocean euxinia and climate change "double whammy" drove the Late Ordovician mass extinction. Geology, 46(6), 535-538. https://doi.org/10.1130/G40121.1. |