[1] Alagaiah V.U., Velmayil P., 2021. Texture, mineralogy and geochemistry of Teri sediments from the Kuthiraimozhi deposit, Southern Tamilnadu, India: implications on provenance, weathering and palaeoclimate.Arabian Journal of Geosciences, 14, 1-15.
[2] Al-Kaaby L.F., Albadran B.N., 2020. Minerals and sedimentary characteristics of Quaternary sediments of different regions in Southern Iraq.Iraqi Geological Journal, 53, 68-89.
[3] Anaya-Gregorio A., Armstrong-Altrin J.S., Machain-Castillo M.L., Montiel-García P.C., Ramos-Vázquez M.A., 2018. Textural and geochemical characteristics of late Pleistocene to Holocene fine-grained deep-sea sediment cores (GM6 and GM7), recovered from southwestern Gulf of Mexico.Journal of Palaeogeography, 7(3), 253-271.
[4] Armienti P., Tamponi M., Pompilio M., 2001. Sand provenance from major and trace element analyses of bulk rock and sand grains from CRP-2/2A, Victoria Land Basin, Antarctica.Terra Antarctica, 8, 569-582.
[5] Armstrong-Altrin J. S.,2020. Detrital zircon U-Pb geochronology and geochemistry of the Riachuelos and Palma Sola beach sediments, Veracruz State, Gulf of Mexico: A new insight on palaeoenvironment.Journal of Palaeogeography, 9(1), 28.
[6] Armstrong‐Altrin J. S., Lee Y. I., Kasper‐Zubillaga J. J., Trejo‐Ramírez E., 2017. Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: implications for palaeoweathering, provenance and tectonic setting. Geological Journal, 52, 559-582.
[7] Armstrong-Altrin J. S., Machain-Castillo M. L., 2016. Mineralogy, geochemistry, and radiocarbon ages of deep sea sediments from the Gulf of Mexico, Mexico.Journal of South American Earth Sciences, 71, 182-200.
[8] Armstrong-Altrin J. S., Madhavaraju J., Ramasamy S., Asir N. G. G., 2005. Provenance and depositional history of sandstones from the Upper Miocene Kudankulam Formation, Tamil Nadu.Geological Society of India, 66, 59-65.
[9] Armstrong-Altrin, J. S., Madhavaraju, J., Vega-Bautista, F., Ramos-Vázquez, M. A., Pérez-Alvarado, B. Y., Kasper-Zubillaga, J. J., Bessa, A. Z. E., 2021. Mineralogy and geochemistry of Tecolutla and Coatzacoalcos beach sediments, SW Gulf of Mexico. Applied Geochemistry, 134, 105103.
[10] Armstrong-Altrin J. S., Nagarajan R., Balaram V., Natalhy-Pineda O., 2015. Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: constraints on provenance and tectonic setting. Journal of South American Earth Sciences, 64, 199-216.
[11] Armstrong-Altrin J. S., Natalhy-Pineda O., 2014. Microtextures of detrital sand grains from the Tecolutla, Nautla, and Veracruz beaches, western Gulf of Mexico, Mexico: implications for depositional environment and paleoclimate. Arabian Journal of Geosciences, 7, 4321-4333.
[12] Armstrong‐Altrin J. S., Ramos‐Vázquez M. A., Hermenegildo‐Ruiz N. Y., Madhavaraju J., 2021. Microtexture and U-Pb geochronology of detrital zircon grains in the Chachalacas beach, Veracruz State, Gulf of Mexico.Geological Journal, 56, 2418-2438.
[13] Armstrong-Altrin J. S., Ramos-Vázquez M. A., Madhavaraju J., Marca-Castillo M. E., Machain-Castillo M. L., Márquez-García A. Z., 2022. Geochemistry of marine sediments adjacent to the Los Tuxtlas Volcanic Complex, Gulf of Mexico: constraints on weathering and provenance.Applied Geochemistry, 141, 105321.
[14] Armstrong-Altrin J.S., Balaram V., Ramos-Vázquez M.A., Madhavaraju J., Verma S. K., James R.A., 2023. Microtextures and trapped diatoms on quartz grain surfaces in the Acapulco Beach, Mexican Pacific: An insight into palaeoenvironment.Journal of the Indian Association of Sedimentologists, 40(2), 49-56.
[15] Arribas J., Critelli S., Le Pera E., Tortosa A., 2000. Composition of modern stream sand derived from a mixture of sedimentary and metamorphic source rocks (Henares River, Central Spain). Sedimentary Geology, 133, 27-48.
[16] Awadh S.M., Al-Ankaz Z.S., Al-Owaidi M.R.A., Armstrong-Altrin J.S., 2023. Provenance and depositional setting of the Late Miocene-Pleistocene clastic sediments in the eastern Arabian Peninsula and western Iraq using rare earth elements geochemistry.Acta Geochimica, 46(6), 1-12
[17] Ayala-Pérez M. P., Armstrong-Altrin J. S., Machain-Castillo M. L., 2021. Heavy metal contamination and provenance of sediments recovered at the Grijalva River delta, southern Gulf of Mexico. Journal of Earth System Science, 130, 88.
[18] Banerjee S., Choudhury T. R., Saraswati P. K., Khanolkar S., 2020. The formation of authigenic deposits during Paleogene warm climatic intervals: a review.Journal of Palaeogeography, 9(1), 1-27.
[19] Banerji U. S., Dubey C. P., Goswami V., Joshi K. B., 2022. Geochemical indicators in provenance estimation. In: Geochemical Treasures and Petrogenetic Processes (pp. 95-121). Singapore: Springer Nature Singapore.
[20] Bankole O. M., El Albani A., Meunier A., Poujol M., Bekker A., 2020. Elemental geochemistry and Nd isotope constraints on the provenance of the basal siliciclastic succession of the middle Paleoproterozoic Francevillian Group, Gabon. Precambrian Research, 348, 105874.
[21] Bas M. L., Maitre R. L., Streckeisen A., Zanettin B., 1986. IUGS subcommission on the Systematics of igneous rocks. A chemical classification of volcanic rocks based on the total alkali-silica diagram.Journal of Petrology, 27, 745-750.
[22] Basu A.,2020. Chemical weathering, first cycle quartz sand, and its bearing on quartz arenite.Journal of The Indian Association of Sedimentologists, 37, 3-14.
[23] Bellanova P., Bahlburg H., Nentwig V., Spiske M., 2016. Microtextural analysis of quartz grains of tsunami and non-tsunami deposits: A case study from Tirúa (Chile).Sedimentary Geology, 343, 72-84.
[24] Bhatia M. R.,1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91, 611-627.
[25] Bokanda E. E., Fralick P., Ekomane E., Bisse S. B., Tata C. N., Ashukem E. N., Belinga B. C., 2021. Geochemical constraints on the provenance, paleoweathering and maturity of the Mamfe black shales, West Africa.Journal of African Earth Sciences, 175, 104078.
[26] Bónová K., Pańczyk M., Bóna J., 2020. Surface microtextures and new U-Pb dating of detrital zircons from the Eocene Strihovce sandstones in the Magura Nappe of the External Western Carpathians: implications for their provenance. International Journal of Earth Sciences, 109, 1565-1587.
[27] Cao J., Wu M., Chen Y., Hu K., Bian L., Wang L., Zhang Y., 2012. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China. Geochemistry, 72, 245-252.
[28] Carranza-Edwards A., Kasper-Zubillaga J. J., Rosales-Hoz L., Morales-de la Garza, E. A., Cruz L. S., 2009. Beach sand composition and provenance in a sector of the southwestern Mexican Pacific. Revista Mexicana de Ciencias Geológicas, 26, 433-447.
[29] Carranza-Edwards A., Rosales-Hoz L., Chávez M. C., de la Garza, E. M., 2004. Environmental geology of the coastal zone. Environmental Analysis of the Gulf of Mexico, 351-372.
[30] Chen Y., Liu X. Q., He L., Ye L., Chen H. F., Li K., 2016. Micro-area analysis and mechanism of varves from Lake Kusai in the Hoh Xil area, northern Tibetan Plateau. Acta Geologica Sinica, 90, 1006-1015.
[31] Cojan I., Renard M., 2021. Sédimentologie, 3e éd. Dunod.
[32] Cordoba-Saldaña L. P.,2011. Análisis granulométrico y geoquímico de arenas recientes en tres playas de México (Tecolutla, Bahia Kino y San Carlos): Implicación de procedencia. MSc thesis, Posgrado en Ciencias del Mar y Limnología, UNAM, Mexico.
[33] Costa P. J. M., Andrade C., Freitas M., Oliveira M., Lopes V., Dawson A., Moreno J., Fatela F., Jouanneau J. M., 2012. A tsunami record in the sedimentary archive of the central Algarve coast, Portugal: characterizing sediment, reconstructing sources and inundation paths.Holocene, 22, 899-914.
[34] Costa P.J.M., Andrade C., Mahaney W.C., Da Silva F.M., Freire P., Freitas M.C., Janardo C., Oliveira M.A., Silva T., Lopes V., 2013. Aeolian microtextures in silica spheres induced in a wind tunnel experiment: Comparison with aeolian quartz. Geomorphology, 180, 120-129.
[35] Cox R., Lowe D. R., Cullers R. L., 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States.Geochimica et Cosmochimica Acta, 59, 2919-2940.
[36] Cullers R.L.,2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies.Lithos, 51, 305-327.
[37] Cullers R.L., Basu A., Suttner L.J., 1988. Geochemical signature of provenance in sand-size material in soils and stream sediments near the tobacco root batholith, Montana, USA.Chemical Geology, 70, 335-348.
[38] Damian G., Iepure Z.S.G., Damian F., 2019. Distribution of heavy metals in granulometric fractions and on soil profiles.Carpathian Journal of Earth and Environmental Sciences, 14, 343-351.
[39] Darshan, M.S, Shivanna Ms., Rajuk S., Madesh P., 2022. Microtextures on quartz grains in the Estuary sediments of Gurupura River, Dakshina Kannada district, Karnataka State, West coast, India.Journal of Indian Association of Sedimentologists, 39(II),3-9.
[40] Demant A., Robin C., 1975. Las Fases del Vulcanismo en México. Una síntesis en relación con la Evolución Geodinámica desde el Cretácico. Revista Instituto de Geologia UNAM, 75, 70-83.
[41] Devi S.R., Mondal M.E.A., Armstrong-Altrin J.S., 2017. Geochemistry and the factors controlling on the weathering and erosion of the Barail Group of rocks, NW Manipur, India.Journal of the Indian Association of Sedimentologists, 34, 9-16.
[42] Doornkamp J. C., Krinsley D., 1971. Electron microscopy applied to quartz grains from a tropical environment.Sedimentology, 17, 89-101.
[43] Ekoa Bessa A.Z., Nguetchoua G., Janpou A.K., El-Amier Y.A., Nguetnga O.N.N.M., Kayou U.R., Bisse S.B., Mapuna E.C.N., Armstrong-Altrin J.S., 2021. Heavy metal contamination and its ecological risks in the beach sediments along the Atlantic Ocean (Limbe coastal fringes, Cameron).Earth Systems and Environment, 5, 433-444.
[44] El Houssainy, A., 2020. Apports de géochimie sédimentaire des éléments traces métalliques dans deux zones côtières méditerranéennes urbanisées: Beyrouth (Liban) et Toulon (France). Doctoral dissertation, Université de Toulon.
[45] Etemad-Saeed N., Hosseini-Barzi M., Adabi M. H., Sadeghi A., Houshmandzadeh A., 2015. Provenance of Neoproterozoic sedimentary basement of northern Iran, Kahar Formation. Journal of African Earth Sciences, 111, 54-75.
[46] Etemad-Saeed N., Najafi M., Vergés J., 2020. Provenance evolution of Oligocene-Pliocene foreland deposits in the Dezful embayment to constrain Central Zagros exhumation history.Journal of the Geological Society, 177, 799-817.
[47] Fedo C.M., Nesbitt H.W., Young G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921-924.
[48] Finzel E. S.,2017. Detrital zircon microtextures and U‐PB geochronology of Upper Jurassic to Paleocene strata in the distal North American Cordillera foreland basin. Tectonics, 36, 1295-1316.
[49] Folk R.L., Ward W.C., 1957. Brazos River bar, a study in the significance of grain-size parameters.Journal of Sedimentary Petrology, 27, 3-26.
[50] Gärtner A., Linnemann U., Sagawe A., Hofmann M., Ullrich B., Kleber A., 2013. Morphology of zircon crystal grains in sediments-characteristics, classifications, definitions.Geologica Saxonica, 59, 65-73
[51] Garzanti E., He J., Barbarano M., Resentini A., Li C., Yang L., Wang H., 2021. Provenance versus weathering control on sediment composition in tropical monsoonal climate (South China)-2. Sand petrology and heavy minerals.Chemical Geology, 564, 119997.
[52] Gómez, Torres S.A., Góngora, Flemate D., 2001. Geología y mineralización del terreno Guerrero en el Altiplano.Geomimet, 28-38.
[53] Harnois L.,1988. The CIW index: A new chemical index of weathering.Sedimentary Geology, 55, 319-322.
[54] Hayashi K. I., Fujisawa H., Holland H. D., Ohmoto H., 1997. Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada.Geochimica et Cosmochimica Acta, 61, 4115-4137.
[55] Helland P. E., Holmes M. A., 1997. Surface textural analysis of quartz sand grains from ODP Site 918 off the southeast coast of Greenland suggests glaciation of southern Greenland at 11 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 135, 109-121.
[56] Hernández-Hinojosa V., Montiel-García P.C., Armstrong-Altrin J.S., Nagarajan R., Kasper-Zubillaga J.J., 2018. Textural and geochemical characteristics of beach sands along the western Gulf of Mexico, Mexico.Carpathian Journal of Earth and Environmental Sciences, 13, 161-174.
[57] Higgs R.,1979. Quartz-grain surface features of Mesozoic-Cenozoic sands from the Labrador and western Greenland continental margins.Journal of Sedimentary Research, 49, 599-610.
[58] Hossain H. Z., Armstrong-Altrin J. S., Jamil A. H. M. N., Rahman M. M., Hernández-Coronado C. J., Ramos-Vázquez M. A., 2020. Microtextures on quartz grains in the Kuakata beach, Bangladesh: implications for provenance and depositional environment.Arabian Journal of Geosciences, 13, 1-12.
[59] Hossain H.M.Z.,2019. Major, trace, and REE geochemistry of the Meghna River sediments, Bangladesh: Constraints on weathering and provenance.Geological Journal, 55, 3321-3343.
[60] Hossain H.M.Z., Armstrong-Altrin J.S., Ramos-Vázquez M.A., 2023. Microtextures on quartz grains in the Bay of Bengal shoreline sediments, Bangladesh: Implications for sediment transport process and depositional environment.Catena, 237, 107770.
[61] Hubbard C. R., Snyder R. L., 1988. RIR-measurement and use in quantitative XRD.Powder Diffraction, 3, 74-77.
[62] Hudson P.F.,2003. Event sequence and sediment exhaustion in the lower Panuco Basin, eastern Mexico.Catena, 52, 57-76.
[63] Hussain S. H., Al-Juboury A. I., Al-Haj M. A., Armstrong-Altrin J. S., Al-Lhaebi S. F., 2021. Mineralogy and geochemistry of the Late Triassic Baluti Formation, Northern Iraq.Journal of African Earth Sciences, 181, 104243.
[64] Jian, X., Zhang, W., Yang, S., Kao, S. J., 2020. Climate‐dependent sediment composition and transport of mountainous rivers in tectonically stable, subtropical East Asia. Geophysical Research Letters, 47, e2019GL086150.
[65] Wu L. J.-, , Wei, Y., Zhang G.L., Zhu L.D., , Jiang Y. J., Gong Z.T., 2013. Grain size evidence of multiple origins of red clays in the Jinhua-Quzhou Basin, South China. Pedosphere, 23, 686-695.
[66] Karam R.,2019. Valorisation de sédiments marins non calcinés dans un liant alcali-activé à base de Laitier de Haut-Fourneau. Doctoral dissertation, École centrale de Nantes.
[67] Kasper-Zubillaga J. J., Faustinos-Morales R., 2007. Scanning electron microscopy analysis of quartz grains in desert and coastal dune sands (Altar Desert, NW Mexico). Ciencias Marinas, 33, 11-22.
[68] Kasper-Zubillaga J. J.,2009. Roundness in quartz grains from inland and coastal dune sands, Altar Desert, Sonora, México.Boletín de la Sociedad Geológica Mexicana, 61, 1-12.
[69] Kasper-Zubillaga J. J., Carranza-Edwards A., 2005. Grain size discrimination between sands of desert and coastal dunes from northwestern Mexico.Revista Mexicana de Ciencias Geológicas, 22, 383-390.
[70] Kasper‐Zubillaga J. J., Martínez‐Serrano R. G., Arellano‐Torres E., Alvarez Sanchez L. F., Patiño Andrade D., Gonzalez Bermudez A., Carlos‐Delgado L., 2021. Petrographic and geochemical analyses of dune sands from southeastern Mexico, Oaxaca, Mexico. Geological Journal, 56, 3012-3034.
[71] Kasper-Zubillaga J.J., Armstrong-Altrin J.S., Carranza-Edwards A., Morton-Bermea O., Lozano Santa Cruz R., 2013. Control in beach and dune sands of the Gulf of Mexico and the role of nearby rivers.International Journal of Geosciences, 4, 1157-1174.
[72] Kettanah Y. A., Armstrong‐Altrin J. S., Mohammad F. A., 2021. Petrography and geochemistry of siliciclastic rocks of the Middle Eocene Gercus Formation, northern Iraq: Implications for provenance and tectonic setting.Geological Journal, 56, 2528-2549.
[73] Krinsley D. H., Donahue J., 1968. Environmental interpretation of sand grain surface textures by electron microscopy.Geological Society of America Bulletin, 79, 743-748.
[74] Krinsley D. H., Funell B. M., 1965. Environmental history of quartz sand grains from the Lower and Middle Pleistocene of Norfolk, England.Quarterly Journal of the Geological Society, 121, 435-456.
[75] Krinsley D.H., Doornkamp J.C., 1973. Atlas of Quartz Sand Surface Textures. Cambridge University Press, Cambridge, England, p. 91.
[76] Lawton T. F., Juárez-Arriaga E., Stockli D. F., Fildani A., 2023. Modern sand provenance and transport across the western Gulf of Mexico margin.Geological Society of America Bulletin.
[77] Liu M., Hasi E., Sun Y., 2016. Variation in grain size and morphology of an inland parabolic dune during the incipient phase of stabilization in the Hobq Desert, China.Sedimentary Geology, 337, 100-112.
[78] Liyouck P.R., Ngueutchoua G., Armstrong-Altrin J.S., Sonfack A.N., Ngagoum Y.S.K., Bessa A.Z.E., Bela V.A., Tsanga D.A., Wouatong A.S.L., 2023. Petrography and geochemistry of the Sanaga river sediments, central Cameroon: Constraints on weathering, provenance, and tectonic setting.Journal of African Earth Sciences, 199, 104840.
[79] Lugo-Hubp J.,1990. El Relieve de la República Mexicana.Revista del Instituto de Geología, UNAM, 9, 82-111 (in Spanish).
[80] Machado G. M. V., Albino J., Leal A. P., Bastos A. C., 2016. Quartz grain assessment for reconstructing the coastal palaeoenvironment. Journal of South American Earth Sciences, 70, 353-367.
[81] Madhavaraju J.,2015. Geochemistry of Campanian-Maastrichtian sedimentary rocks in the Cauvery Basin. South India: Constrains on paleoweathering, provenance and Cretaceous environments. In: Ramkumar, M.(Ed.), Chemostratigraphy: Concepts, Techniques and Applications. Elsevier Special Volume, 185-214.
[82] Madhavaraju J.,2015. Geochemistry of late Cretaceous sedimentary rocks of the Cauvery Basin, south India: constraints on paleoweathering, provenance, and end Cretaceous environments. In: Chemostratigraphy, pp. 185-214. Elsevier Netherlands.
[83] Madhavaraju J., Armstrong-Altrin J. S., James R. A., Hussain S. M., 2021. Palaeoenvironment and provenance signatures inferred from quartz grain surface features: A case study from Huatabampo and Altata beaches, Gulf of California, Mexico.Journal of South American Earth Sciences, 111, 103441.
[84] Madhavaraju J., Armstrong‐Altrin J. S., Pillai R. B., Pi‐Puig T., 2021. Geochemistry of sands from the Huatabampo and Altata beaches, Gulf of California, Mexico.Geological Journal, 56, 2398-2417.
[85] Madhavaraju J., García y Barragán, J. C., Mohammad Hussain S., Pachaiveedu Mohan S.2009. Microtexturas de granos de cuarzo de los sedimentos de playa de Puerto Peñasco y Bahía Kino, Golfo de California, Sonora, México. Revista Mexicana de Ciencias Geológicas, 26, 367-379.
[86] Madhavaraju J., Lee Y. I., Armstrong-Altrin J. S., Hussain S. M., 2006. Microtextures on detrital quartz grains of upper Maastrichtian-Danian rocks of the Cauvery Basin, Southeastern India: implications for provenance and depositional environments.Geosciences Journal, 10, 23-34.
[87] Madhavaraju J., Tom M., Lee Y. I., Balaram V., Ramasamy S., Carranza-Edwards A., Ramachandran A., 2016. Provenance and tectonic settings of sands from Puerto Peñasco, Desemboque and Bahia Kino beaches, gulf of California, Sonora, México. Journal of South American Earth Sciences, 71, 262-275.
[88] Maftei A. E., Buzgar N., Buzatu A., Apopei A. I., 2019. Distribution and minor elements contamination in urban and Peri-Uban soils area of Slănic Moldova, Romania. Carpathian Journal of Earth and Environmental Sciences, 14, 335-342.
[89] Magno M. C., Venti F., Bergamin L., Gaglianone G., Pierfranceschi G., Romano E.2018. A comparison between Laser Granulometer and Sedigraph in grain size analysis of marine sediments.Measurement, 128, 231-236.
[90] Mahaney W. C.,1998. Scanning electron microscopy of Pleistocene sands from Yamal and Taz peninsulas, Ob River estuary, northwestern Siberia.Quaternary International, 45, 49-58.
[91] Mahaney W. C.,2002. Atlas of Sand Grain Surface Textures and Applications. Oxford University Press, USA.
[92] Mahaney W. C., Dohm J. M., Costa P., Krinsley D. H., 2010. Tsunamis on Mars: Earth analogues of projected Martian sediment. Planetary and Space Science, 58, 1823-1831.
[93] Mahaney W. C., Stewart A., Kalm V., 2001. Quantification of SEM microtextures useful in sedimentary environmental discrimination.Boreas, 30, 165-171.
[94] Margolis S. V., Kennett J. P., 1971. Cenozoic paleoglacial history of Antarctica recorded in subantarctic deep-sea cores.American Journal of Science, 271, 1-36.
[95] Margolis S. V., Krinsley D. H., 1974. Processes of formation and environmental occurrence of microfeatures on detrital quartz grains.American Journal of Science, 274, 449-464.
[96] Martizzi P., Chiyonobu S., Hibi Y., Yamato H., Arato H., 2021. Middle-late Miocene paleoenvironment of the Japan sea inferred by sedimentological and geochemical characterization of coeval sedimentary rocks.Marine and Petroleum Geology, 128, 105059.
[97] Mendieta-Lora M., Mejía-Ledezma R. O., Kasper-Zubillaga J. J., Arellano-Torres E., Sánchez L. Á., 2018. Mineralogical and geochemical implications of weathering rates in coastal dunes and beach sands close to a volcanic rock source in the western Gulf of Mexico, Mexico. Geochemistry, 78, 323-339.
[98] Moral-Cardona J. P., Bellón A. S., López-Aguayo F., Caballero M. A., 1996. The analysis of quartz grain surface features as a complementary method for studying their provenance: the Guadalete River Basin (Cadiz, SW Spain).Sedimentary Geology, 106, 155-164.
[99] Nesbitt H., Young G. M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites.Nature, 299, 715-717.
[100] Patra A., Shukla A. D., 2020. Geochemical signatures of Late Paleocene sandstones from the Sanu Formation, Jaisalmer basin, western India: Implication for provenance, weathering and tectonic setting.Journal of Earth System Science, 129, 1-12.
[101] Punia A., Bharti R., Kumar P., 2021. Provenance identification of soil at the confluence of Thar desert, Aravalli hills, and alluvial plain based on trace and rare earth elements geochemistry.Arabian Journal of Geosciences,14, 118.
[102] Ramírez-Montoya, E., Madhavaraju, J., González-León, C. M., Armstrong-Altrin, J. S., Monreal, R., 2022. Detrital zircon geochemistry in the Morita Formation, Northern Sonora, Mexico: implications for origin and source rock type. In: Geochemical Treasures and Petrogenetic Processes, pp. 315-351. Singapore: Springer Nature Singapore.
[103] Ramirez-Montoya E., Madhavaraju J., Monreal R., 2021. Geochemistry of the sedimentary rocks from the Antimonio and Río Asunción formations, Sonora, Mexico: implications for weathering, provenance and chemostratigraphy.Journal of South American Earth Sciences, 106, 103035.
[104] Ramos-Vázquez M. A., Armstrong-Altrin J. S., 2019. Sediment chemistry and detrital zircon record in the Bosque and Paseo del Mar coastal areas from the southwestern Gulf of Mexico. Marine and Petroleum Geology, 110, 650-675.
[105] Ramos-Vázquez M. A., Armstrong-Altrin J. S., 2020. Provenance and palaeoenvironmental significance of microtextures in quartz and zircon grains from the Paseo del Mar and Bosque beaches, Gulf of Mexico.Journal of Earth System Science, 129, 1-16.
[106] Ramos-Vázquez, M.A. and Armstrong-Altrin, J.S., 2021a. Microtextures on quartz and zircon grain surfaces in the Barra del Tordo and Tesoro beaches, northwestern Gulf of Mexico.Arabian Journal of Geosciences, 14, 949.
[107] Ramos-Vázquez M. A., Armstrong-Altrin J. S., 2021b. Provenance of sediments from Barra del Tordo and Tesoro beaches, Tamaulipas State, northwestern Gulf of Mexico.Journal of Palaeogeography, 10(1), 20.
[108] Říha K., Křupka A., Costa P. J., 2019. Image analysis applied to quartz grain microtextural provenance studies. Computers & Geosciences, 125, 98-108.
[109] Roser B. P., Korsch R. J., 1986. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology, 94, 635-650.
[110] Roser B. P., Korsch R. J., 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data.Chemical Geology, 67, 119-139.
[111] Rubio-Cisneros I. I., Lawton T. F., 2011. Detrital zircon U-Pb ages of sandstones in continental red beds at Valle de Huizachal, Tamaulipas, NE Mexico: Record of Early-Middle Jurassic arc volcanism and transition to crustal extension.Geosphere, 7, 159-170.
[112] Schneider G.,2001. Boue de curage des cours d’eau.Le courrier de l’environnement de l’INRA., 43, 146-147.
[113] Song Z., Yuan X., Gao L., Li J., Liu X., Tang W., 2019. Quartz sand surface morphology of granitic tafoni at Laoshan, China.Indian Journal of Geo Marine Sciences, 48, 43-48.
[114] Strand K., Immonen N., 2010. Dynamics of the Barents-Kara ice sheet as revealed by quartz sand grain microtextures of the late Pleistocene Arctic Ocean sediments.Quaternary Science Reviews, 29(25-26), 3583-3589.
[115] Tapia-Fernandez H. J., Armstrong-Altrin J. S., Selvaraj K., 2017. Geochemistry and U-Pb geochronology of detrital zircons in the Brujas beach sands, Campeche, Southwestern Gulf of Mexico, Mexico. Journal of South American Earth Sciences, 76, 346-361.
[116] Taylor S.R., McLennan S.M., 1985. The Continental Crust: its Composition and Evolution. Blackwell, Oxford, UK.
[117] Tejan-Kella M. S., Fitzpatrick R. W., Chittleborough D. J., 1991. Scanning electron microscope study of zircons and rutiles from a podzol chronosequence at Cooloola, Queensland, Australia. Catena, 18, 11-30.
[118] Tobia F.H., Shangola S.S., 2019. Geochemistry of sandstones from Beduh Formation in northern thrust zone, Kurdistan region, northern Iraq: Provenance and tectonic setting.Iraqi Geological Journal, 52, 1-25.
[119] Torres-Sánchez D., Verma S. K., Barry T. L., Verma S. P., Torres-Hernández J. R., 2020. 40Ar/39Ar geochronology and petrogenesis of the sierra de San Miguelito volcanic complex, Mesa central, Mexico.Lithos, 370, 105613.
[120] Torres-Sánchez D., Verma S.K., Verma S.P., Velasco-Tapia F., Torres-Hernández J.R., 2019. Petrogenetic and tectonic implications of Oligocene-Miocene volcanic rocks from the Sierra de San Miguelito complex, central Mexico.Journal of South American Earth Sciences, 95, 102311.
[121] Udayaganesan P., Angusamy N., Gujar A. R., Rajamanickam G. V., 2011. Surface microtextures of quartz grains from the central coast of Tamil Nadu. Journal of the Geological Society of India, 77, 26-34.
[122] Verlekar P., Kotha M., 2020. Provenance, tectonics and palaeoenvironment of Mesoproterozoic Saundatti quartzite member of Kaladgi Basin, India: A petrographic view.Journal of the Indian Association of Sedimentologists, 37, 91-102.
[123] Verma S. K., Fimbres K. G. A., Torres-Sánchez D., Hernández J. R. T., Torres-Sánchez S. A., López-Loera H., 2020. Geochemistry and petrogenesis of Oligocene felsic volcanic rocks from the Pinos Volcanic Complex, Mesa Central, Mexico.Journal of South American Earth Sciences, 102, 102704.
[124] Verma S. K., Torres E. E. M., Malviya V. P., Torres-Hernández J. R., Torres-Sánchez D., Rivera-Escoto B. A., Mehta P., 2019. Geochemistry of Mesozoic volcanic rocks from the Fresnillo area (Chilitos Formation), Zacatecas, Mexico: Implications for the magma source and tectonic setting.Journal of South American Earth Sciences, 96, 102351.
[125] Verma S. K., Torres‐Sánchez D., Hernández‐Martínez K. R., Malviya V. P., Singh P. K., Torres‐Hernández J. R., Rivera‐Escoto B. A., 2021. Geochemistry of Eocene felsic volcanic rocks from the Mesa Virgen‐Calerilla, Zacatecas, Mexico: Implications for the magma source and tectonic setting. Geological Journal, 56, 3771-3790.
[126] Verma S. P., Armstrong-Altrin J. S., 2016. Geochemical discrimination of siliciclastic sediments from active and passive margin settings.Sedimentary Geology, 332, 1-12.
[127] Verma S.K., Torres-Sánchez D., Sandoval-Espinel L.C., Hernández-Martínez K.R., Shukla M., Torres-Sánchez S.A., Hernández J.R.T., Lopéz-Loera H., Zandomeni P.S., 2023. Geochemistry, petrogenesis, and tectonic setting of the Cúcamo mafic and intermediate volcanic rocks from the Ahualulco Volcanic Complex, San Luis Potosí, Mexico. Geochemistry, 126015.
[128] Verma S.P., Verma S.K., Rivera-Gomez M.A., Torres-Sánchez D., Díaz-González L., Amezcua-Valdez A., Rivera-Escoto B.A., Rosales-Rivera M., Armstrong-Altrin J.S., Lopez-Loera H., Velasco-Tapia F., 2018. Statistically coherent calibration of X-ray fluorescence spectrometry for major elements in rocks and minerals. Journal of Spectroscopy, 1-13.
[129] Vos K., Vandenberghe N., Elsen J., 2014. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation. Earth-Science Reviews, 128, 93-104.
[130] Wang Z., Wang J., Fu X., Zhan W., Armstrong-Altrin J.S., Yu F., Feng X., Song C. and Zeng S., 2018. Geochemistry of the Upper Triassic black mudstones in the Qiangtang Basin, Tibet: Implications for paleoenvironment, provenance, and tectonic setting. Journal of Asian Earth Sciences, 160, 118-135..
[131] Warrier A. K., Pednekar H., Mahesh B. S., Mohan R., Gazi S., 2016. Sediment grain size and surface textural observations of quartz grains in late quaternary lacustrine sediments from Schirmacher Oasis, East Antarctica: Paleoenvironmental significance.Polar Science, 10, 89-100.
[132] Wentworth C. K.,1922. A scale of grade and class terms for clastic sediments.The journal of geology, 30, 377-392.
[133] Woronko B., Dłużewski M., Woronko D., 2017. Sand-grain micromorphology used as a sediment-source indicator for Kharga Depression dunes (Western Desert, S Egypt). Aeolian Research, 29, 42-54.
[134] Xiong S., Sun D., Ding Z., 2002. Aeolian origin of the red earth in southeast China. Journal of Quaternary Science: Published for the Quaternary Research Association, 17, 181-191.
[135] Yáñez Arancibia A., Day J., Currie Alder B., 2009. Functioning of the Grijalva-Usumacinta river delta, Mexico: Challenges for coastal management.Ocean Yearbook, 23(1), 473-501.
[136] Yáñez-Arancibia A., Day J. W., 2004. Environmental sub-regions in the Gulf of Mexico coastal zone: the ecosystem approach as an integrated management tool.Ocean & Coastal Management, 47, 727-757.
[137] Yu L., Zou S., Cai J., Xu D., Zou F., Wang Z., Wu C., Liu M., 2016. Geochemical and Nd isotopic constraints on provenance and depositional setting of the Shihuiding Formation in the Shilu Fe-Co-Cu ore district, Hainan Province, South China.Journal of Asian Earth Sciences, 119, 100-117.
[138] Zeng S.,J. Wang,W. Chen,X. Fu,X. Feng,C. Song,D. Wang,S. W.,2019. Geochemical characteristics of Early Cretaceous marine oil shale from the Changshe Mountain area in the northern Qiangtang Basin, Tibet: Implications for palaeoweathering, provenance, tectonic setting, and organic matter accumulation.Geological Journal, 55, 3229-3246. |