[1] Arnold M., Merchel S., Bourlès D.L., Braucher R., Benedetti L., Finkel R.C., Aumaître G., Gottdang A., Klein M.,2010. The French accelerator mass spectrometry facility ASTER: Improved performance and developments. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(11), 1954-1959. https://doi.org/10.1016/j.nimb.2010.02.107.
[2] Bada G., Horváth F., Dövényi P., Szafián P., Windhoffer G., Cloetingh S.,2007. Present-day stress field and tectonic inversion in the Pannonian Basin. Global and Planetary Change, 58, 165-180. https://doi.org/10.1016/j.gloplacha.2007.01.007.
[3] Bakrač K., Koch G., Sremac J., 2012. Middle and Late Miocene palynological biozonation of the south-western part of Central Paratethys (Croatia).Geologia Croatica, 65(2), 207-222.
[4] Báldi T.,1980. A korai Paratethys törtánete.Földtani Közlöny, 110, 456-472.
[5] Banak A., Đuras M., Avanić R., Grizelj A., Posilović H.2015. Neogene marine mammals from Vranić sand deposit[Poster]. Horvat, M., Wacha, L.(Eds.), Book of Abstracts. Zagreb: Hrvatski geološki institut, p. 24.
[6] Basch O., Pavelić D., Bakrač K., 1995. Gornjopontski facijesi sjevernog krila Konjšćinske sinklinale kod Huma Zabočkog (Hrvatsko zagorje). In: Vlahović, I., Velić, I., Šparica, M. (Eds.), First Croatian Geological Congress, Proceedings. pp. 57-61.
[7] Blair T.C.,1999. Sedimentology of the debris-flow-dominated Warm Spring Canyon alluvial fan, Death Valley, California. Sedimentology, 46(5), 941-965. https://doi.org/10.1046/j.1365-3091.1999.00260.x.
[8] Blikra L.H., Nemec W., 1998. Postglacial colluvium in western Norway: Depositional processes, facies and palaeoclimatic record. Sedimentology, 45(5), 909-959. https://doi.org/10.1046/j.1365-3091.1998.00200.x.
[9] Botfalvai G., Kocsis L., Szabó M., Király E., Sebe K.,2023. Preliminarily report on rare earth element taphonomy of a Miocene mixed age fossil vertebrate assemblage (Pécs-Danitzpuszta, Mecsek Mts., Hungary): Uptake mechanism and possible separation of palaeocommunities. Historical Biology, 35(4), 498-517. https://doi.org/10.1080/08912963.2022.2049771.
[10] Brown E.T., Brook E.J., Raisbeck G.M., Yiou F., Kurz M.D., 1992. Effective attenuation lengths of cosmic rays producing 10Be and 26Al in quartz: Implications for exposure age dating. Geophysical Research Letters, 19(4), 369-372. https://doi.org/10.1029/92GL00266.
[11] Bull W.B.,1972. Recognition of alluvial-fan deposits in the stratigraphic record. In: Rigby, K.J., Hamblin, W.K. (Eds.), Recognition of Ancient Sedimentary Environments. SEPM Special Publications, 16, 63-83.
[12] CGS, 2009. Geological Map of Republic of Croatia, M 1:300.000. Croatian Geological Survey, Department for Geology, Zagreb.
[13] Cicha I., Rögl F., Rupp C., Ctyroka J.1998. Oligocene-Miocene Foraminifera of the Central Paratethys.Abhandlungen Der Senckenbergischen Naturforschenden Gesellschaft, 549, 1-15.
[14] Clark P.U., Archer D., Pollard D., Blum J.D., Rial J.A., Brovkin V., Mix A.C., Pisias N.G., Roy M.,2006. The middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews, 25(23), 3150-3184. https://doi.org/10.1016/j.quascirev.2006.07.008.
[15] Codrea V., Seretan V., 2004. A middle Miocene dolphin from Domasnea (Caransebeş-Mehadia Miocene basin). Studia Universitatis Babeş-Bolyai: Geologia, 49(2), 3-10. https://doi.org/10.5038/1937-8602.49.2.1.
[16] Cruden D.M.,1991. A simple definition of a landslide. Bulletin of the International Association of Engineering Geology, 43(1), 27-29. https://doi.org/10.1007/BF02590167.
[17] DeCelles P.G., Gray M.B., Ridgway K.D., Cole R.B., Pivnik D.A., Pequera N., Srivastava P., 1991. Controls on synorogenic alluvial-fan architecture, Beartooth Conglomerate (Palaeocene), Wyoming and Montana. Sedimentology, 38(4), 567-590. https://doi.org/10.1111/j.1365-3091.1991.tb01009.x.
[18] Dodonov A.E.,2005. The stratigraphic transition and suggested boundary between the early and middle Pleistocene in the loess record of northern Eurasia. In: Head, M.J., Gibbard, P.L. (Eds.), Early-Middle Pleistocene Transitions: The Land-Ocean Evidence. Geological Society of London, Special Publication, 247, 209-219. https://doi.org/10.1144/GSL.SP.2005.247.01.11.
[19] Dott Jr, R.H., 1963. Dynamics of subaqueous gravity depositional processes.AAPG Bulletin, 47(1), 104-128.
[20] Ehlers J., Gibbard P.L.,2007. The extent and chronology of Cenozoic Global Glaciation. Quaternary International, 164-165, 6-20. https://doi.org/10.1016/j.quaint.2006.10.008.
[21] Elderfield H., Ferretti P., Greaves M., Crowhurst S., McCave I.N., Hodell D., Piotrowski A.M., 2012. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science, 337(6095), 704-709. https://doi.org/10.1126/science.1221294.
[22] Ellen S.D., Fleming R.W., 1987. Mobilization of debris flows from soil slips, San Francisco Bayregion, California. In: Costa, J.E., Wieczorek, G.F. (Eds.), Debris Flows/Avalanches: Process, Recognition and Mitigation. GSA Reviews in Engineering Geology, 7, 31-40. https://doi.org/10.1130/REG7-p31.
[23] Fodor L., Bada G., Csillag G., Horváth E.,Ruszkiczay-Rüdiger, Z., Palotás, K., Síkhegyi, F., Timár, G., Cloetingh, S., Horváth, F., 2005. An outline of neotectonic structures and morphotectonics of the western and central Pannonian Basin. Tectonophysics, 410(1), 15-41. https://doi.org/10.1016/j.tecto.2005.06.008.
[24] Galloway W.E., Hobday D.K., 1996. Terrigenous Clastic Depositional Systems: Applications to Fossifuel and Groundwater Resources (2nd Edition). Springer, New York, pp. 1-485.
[25] Granger D.E.,2006. A review of burial dating methods using 26Al and 10Be.GSA Special Papers, 415, 1-16.
[26] Granger D.E., Riebe C.S., 2014. Cosmogenic nuclides in weathering and erosion. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, Volume 5: Surface and Ground Water, Weathering, and Soils (2nd edition). Elsevier Science Ltd., Amsterdam, pp. 401-436.
[27] Grigorescu D., Kazár E., 2006. A new Middle Miocene odontocete (Mammalia: cetacea) locality and the Sarmatian marine mammal event in the Central Paratethys.Oryctos, 6, 53-68.
[28] Hawley J.W., Wilson W.E., 1965. Quaternary geology of the Winnemucca area, Nevada.University of Nevada Desert Research Institute Technical Report, 5.
[29] Hernández-Almeida I., Sierro F.J., Cacho I., Flores J.A., 2012. Impact of suborbital climate changes in the North Atlantic on ice sheet dynamics at the Mid-Pleistocene Transition. Paleoceanography, 27(3), PA3214. https://doi.org/10.1029/2011PA002209.
[30] Heward A.P.,1978. Alluvial fan sequence and megasequence models: With example from Westphalian D - Stephanian B coalfields, Northern Spain. In: Miall., A.D. (Ed.), Fluvial Sedimentology. Memoir of Canadian Society of Petroleum Geologists, 5, 669-702.
[31] Holmes A.,1965. Principles of Physical Geology. Ronald, New York, pp. 1-1288.
[32] Hooke R.L.,1967. Processes on arid-region alluvial fans. Journal of Geology, 75(4), 438-460. https://doi.org/10.1086/627271.
[33] Horváth F.,1995. Phases of compression during the evolution of the Pannonian Basin and its bearing on hydrocarbon exploration. Marine and Petroleum Geology, 12(8), 837-844. https://doi.org/10.1016/0264-8172(95)98851-U.
[34] Ivković Ž., Matej S., Škoko M., 2000. Seismostratigraphic interpretation of Upper Miocene and Pliocene sediments of the Sava depression. In: Vlahović, I., Biondić, R. (Eds.), Proceedings of the Second Croatian Geological Congress, pp. 219-222. Cavtat, May 17-20, 2000.
[35] Jamičić D.,1983. Strukturni sklop metamorfnih stijena Krndije i južnih padina Papuka (Structural fabric of the metamorphosed rocks of Mt. Krndija and the eastern part of Mt. Papuk).Geološki Vjesnik, Zagreb, 36, 51-72 (in Croatian).
[36] Jamičić D.,1995. The role of sinistral strike-slip faults in the formation of the structural fabric of the Slavonian Mts.(Eastern Croatia). Geologia Croatica, 48(2), 155-160. https://doi.org/10.4154/GC.1995.12.
[37] Jamičić D., Brkić M., Crnko J., Vragović M., 1987. Basic Geological Map of Yugoslavia, Scale 1:100 000, Sheet Orahovica. Geološki Institut Zagreb, Federalni Geološki Institut Beograd.
[38] Japundžić S., Vrsaljko D., Bortek Ž., Japundžić D., Sremac J., Bošnjak M., 2017. Dolphin remains (Cetacea: Odontoceti) from the Middle Miocene (Sarmatian) deposits near Našice, Croatia. In: Abstracts Book: 7th International Workshop Neogene of Central and South-Eastern Europe. Horvat, Marija; Wacha, Lara (ur.). Zagreb: Hrvatsko geološko društvo, pp. 27-28 (poster).
[39] Kazár E.,2005. A new kentriodontid (Cetacea: Delphinoidea) from the Middle Miocene of Hungary. Fossil Record, 8(1), 53-73. https://doi.org/10.5194/fr-8-53-2005.
[40] Kazár E.,2006. Sophianaecetus, a replacement name for Mediocris (Cetacea: Delphinoidea: Kentriodontidae). Fossil Record, 9(2), 260-260. https://doi.org/10.5194/fr-9-260-2006.
[41] Kazár E., Venczel M., 2003. Kentriodontid remains (Cetacea: Odontoceti) from the Middle Miocene of Bihor County, Romania.Nymphaea, 39-66.
[42] Kováč M., Halásová E., Hudáčková N., Holcová K., Hyžný M., Jamrich M., Ruman A., 2018. Towards better correlation of the Central Paratethys regional time scale with the standard geological time scale of the Miocene Epoch. Geologica Carpathica, 69(3), 283-300. https://doi.org/10.1515/geoca-2018-0017.
[43] Kováč M., Márton E., Oszczypko N., Vojtko R., Hók J., Králiková S., Plašienka D., Klučiar T., Hudáčková N.,Oszczypko-Clowes, M., 2017. Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Global and Planetary Change, 155, 133-154. https://doi.org/10.1016/j.gloplacha.2017.07.004.
[44] Kovačić M., Grizelj A., 2006. Provenance of the Upper Miocene clastic material in the southwestern part of the Pannonian Basin.Geologica Carpathica, 57(6), 495-510.
[45] Kovačić M., Zupanič J., Babić L., Vrsaljko D., Miknić M., Bakrač K., Hećimović I., Avanić R., Brkić M., 2004. Lacustrine basin to delta evolution in the Zagorje Basin, a Pannonian sub-basin (Late Miocene: Pontian, NW Croatia). Facies, 50(1), 19-33. https://doi.org/10.1007/s10347-003-0001-6.
[46] Krkalo E.,1998. Ležišta neogenskih kvarcnih pijesaka u rubnim područjima slavonskih planina (Hrvatska). Pamić, J. (editor). Institut za geološka istraživanja, Zagreb, pp. 1-174.
[47] Kuhle A.J., Smith G.A., 2001. Alluvial-slope deposition of the Skull Ridge Member of the Tesuque Formation, Española Basin, New Mexico. New Mexico Geology, 23(2), 30-37. https://doi.org/10.58799/NMG-v23n2.30.
[48] Kurečić T., Kovačić M., Grizelj A.,2021. Mineral assemblage and provenance of the Pliocene Viviparus beds from the area of Vukomeričke Gorice, Central Croatia. Geologia Croatica, 74(3), 253-271. https://doi.org/10.415/gc.2021.16.
[49] Lewis D.W., McConchie D., 2012. Analytical Sedimentology. Springer, Dordrecht.
[50] Magyar I.,1995. Late Miocene mollusc biostratigraphy in the eastern part of the Pannonian Basin (Tiszantul, Hungary).Geologica Carpathica, 46(1), 29-36.
[51] Magyar I., Radivojević D., Sztanó O., Synak R., Ujszászi K., Pócsik M.,2013. Progradation of the paleo-Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Global and Planetary Change, 103, 168-173. https://doi.org/10.1016/j.gloplacha.2012.06.007.
[52] Mahaney W.C.,2002. Atlas of Sand Grain Surface Textures and Applications. Oxford University Press, New York, pp. 1-237.
[53] Mahaney W.C., Vaikmae R., Vares K., 1991. Scanning electron microscopy of quartz grains in supraglacial debris, Adishy Glacier, Caucasus Mountains,U.S.S.R. Boreas, 20, 395-404.
[54] Mandic O., Kurečić T., Neubauer T.A., Harzhauser M.,2015. Stratigraphic and palaeogeographic significance of lacustrine molluscs from the Pliocene Viviparus beds in central Croatia. Geologia Croatica, 68(3), 179-207. https://doi.org/10.4154/gc.2015.15.
[55] Mange, M.A., Maurer, H.F.W., 1992. Heavy mineral descriptions and colour plates. In: Heavy Minerals in Colour. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2308-2_7.
[56] Márton E., Pavelić D., Tomljenović B., Pamić J., Márton P., 1999. First paleomagnetic results on Tertiary rocks from the Slavonian Mountains in the southern Pannonian Basin, Croatia.Geologica Carpathica, 50(3), 273-279.
[57] Marx F.G., Lambert O., Uhen M.D., 2016. Cetacean Paleobiology. John Wiley and Sons, Chichester, U.K., pp. 1-319.
[58] Maslin M.A., Brierley C.M.,2015. The role of orbital forcing in the Early Middle Pleistocene Transition. Quaternary International, 389, 47-55. https://doi.org/10.1016/j.quaint.2015.01.047.
[59] Matošević M., Marković F., Bigunac D., Šuica S., Krizmanić K., Perković A., Kovačić M., Pavelić D.,2023. Petrography of the Upper Miocene sandstones from the North Croatian Basin: Understanding the genesis of the largest reservoirs in the southwestern part of the Pannonian Basin System. Geologica Carpathica, 74(2), 155-179. https://doi.org/10.31577/GeolCarp.2023.06.
[60] McKenna J.P., Santi P.M., Amblard X., Negri J., 2012. Effects of soil-engineering properties on the failure mode of shallow landslides. Landslides, 9(2), 215-228. https://doi.org/10.1007/s10346-011-0295-3.
[61] Merchel S., Beutner S., Opel T., Rugel G., Scharf A., Tiessen C., Weiß S., Wetterich S.,2019. Attempts to understand potential deficiencies in chemical procedures for AMS. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 456, 186-192. https://doi.org/10.1016/j.nimb.2019.05.005.
[62] Merchel S., Herpers U., 1999. An update on radiochemical separation techniques for the determination of long-lived radionuclides via accelerator mass spectrometry. Radiochimica Acta, 84(4), 215-219. https://doi.org/10.1524/ract.1999.84.4.215.
[63] Miall A.D.,1996. The Geology of Fluvial Deposits. Springer-Verlag, Berlin, Heidelberg, New York, pp. 1-582.
[64] Mikuž V.,1999. The great-teeth shark Carcharocles megalodon (Agassiz) also fron Middle Miocene-Badenian beds above Trbovlje, Slovenia. Geologija, 42(1), 141-150. https://doi.org/10.5474/geologija.1999.008.
[65] Müller, J., 1855. Über die Gattungen der Seeigellarven. Siebte Abhandlung über die Metamorphose der Echinodermen. Berlin, Druckerei der Königl: Akademie der Wissenschaften. https://doi.org/10.5962/bhl.title.11344.
[66] Mutti E., Davoli G., Tinterri R., Zavala C., 1996. The importance of fluvio-deltaic systems dominated by catastrophic flooding in tectonically active basins.Memorie di Scienze Geologiche, 48, 233-291.
[67] Muttoni G., Ravazzi C., Breda M., Pini R., Laj C., Kissel C., Mazaud A., Garzanti E.,2007. Magnetostratigraphic dating of an intensification of glacial activity in the southern Italian Alps during Marine Isotope Stage 22. Quaternary Research, 67(1), 161-173. https://doi.org/10.1016/j.yqres.2006.07.006.
[68] Nemec W., Kazanci N., 1999. Quaternary colluvium in west-central Anatolia: Sedimentary facies and palaeoclimatic significance. Sedimentology, 46(1), 139-170. https://doi.org/10.1046/j.1365-3091.1999.00210.x.
[69] Nemec W., Postma G., 1993. Quaternary alluvial fans in southwestern Crete: Sedimentation processes and geomorphic evolution. In: Marzo, M., Puigdefábregas, C. (Eds.), Alluvial Sedimentation. IAS Special Publications, 17, 235-276.
[70] Nemec W., Steel R.J., 1984. Alluvial and coastal conglomerates: Their significant features and some comments on gravelly mass-flow deposits. In: Coster, E.H., Steel, R.J. (Eds.), Sedimentology of Gravels and Conglomerates. Canadian Society of Petroleum Geologists Memoir, 10, 1-31.
[71] Pavelić D.,2001. Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System. Basin Research, 13(3), 359-376. https://doi.org/10.1046/j.0950-091x.2001.00155.x.
[72] Pavelić D., Kovačić M.,2018. Sedimentology and stratigraphy of the Neogene rift-type North Croatian Basin (Pannonian Basin System, Croatia): A review. Marine and Petroleum Geology, 91, 455-469. https://doi.org/10.1016/j.marpetgeo.2018.01.026.
[73] Pavelić D., Kovačić M., Tibljaš D., Galić I., Marković F., Pavičić I.,2022. The transition from a closed to an open lake in the Pannonian Basin System (Croatia) during the Miocene Climatic Optimum: Sedimentological evidence of Early Miocene regional aridity. Palaeogeography, Palaeoclimatology, Palaeoecology, 586, 110786. https://doi.org/10.1016/j.palaeo.2021.110786.
[74] Pavelić D., Miknić M., Šlat M.S., 1998. Early to Middle Miocene facies succession in lacustrine and marine environments on the southwestern margin of the Pannonian Basin System (Croatia).Geologica Carpathica, 49(6), 433-443.
[75] Piller W.E., Harzhauser M., Mandic O., 2007. Miocene central Paratethys stratigraphy — Current status and future directions.Stratigraphy, 4(2-3), 151-168.
[76] Platt N.H., Keller B., 1992. Distal alluvial deposits in a foreland basin setting — The Lower Freshwater Molasse (Lower Miocene), Switzerland: Sedimentology, architecture and palaeosols. Sedimentology, 39(4), 545-565. https://doi.org/10.1111/j.1365-3091.1992.tb02136.x.
[77] Rögl F., Steininger F.F., 1981. Vom Zerfall der Tethys zu Mediterran und Paratethys. Die neogene Paläogeographie und Palinspastik des zirkum-mediterranen Raumes.Annalen des Naturhistorischen Museums in Wien. Serie A für Mineralogie und Petrographie, Geologie und Paläontologie, Anthropologie und Prähistorie, 85, 135-163.
[78] Royden L.H.,1988. Late Cenozoic tectonics of the Pannonian Basin System. In: Royden, L.H., Horváth, F. (Eds.), The Pannonian Basin: A Study in Basin Evolution. AAPG Memoir, 45, 27-48.
[79] Ruszkiczay-Rüdiger Zs., Neuhuber S., Braucher R., Lachner J., Steier P., Wieser A., Braun M., ASTER Team2021. Comparison and performance of two cosmogenic nuclide sample preparation procedures of in situ produced 10Be and 26Al.Journal of Radioanalytical and Nuclear Chemistry, 329(3), 1523-1536.
[80] Sabol M., Joniak P., Bilgin M., Bonilla-Solomón I., Cailleaux F., Čerňanský A., Malíková V., Šedivá M., Tóth C., 2021. Updated Miocene mammal biochronology of Slovakia.Geologica Carpathica, 72(5), 425-443.
[81] Saftić B., Velić J., Sztanó O., Juhász G., Ivković Z., 2003. Tertiary subsurface facies, source rocks and hydrocarbon reservoirs in the SW part of the Pannonian Basin (northern Croatia and south-western Hungary). Geologia Croatica, 56(1), 101-122. https://doi.org/10.4154/232.
[82] Sebe K., Kovačić M., Magyar I., Krizmanić K., Špelić M., Bigunac D.,Sütő-Szentai, M., Kovács, Á., Szuromi-Korecz, A., Bakrač, K., Hajek-Tadesse, V., Troskot-Čorbić, T., Sztanó, O., 2020. Correlation of Upper Miocene-Pliocene Lake Pannon deposits across the Drava Basin, Croatia and Hungary. Geologia Croatica, 73(3), 177-195. https://doi.org/10.4154/gc.2020.12.
[83] Shanmugam G.,1996. High-density turbidity currents: Are they sandy debris flows?Journal of Sedimentary Research, 66(1), 2-10.
[84] Smith G.A.,2000. Recognition and significance of streamflow-dominated piedmont facies in extensional basins. Basin Research, 12(3-4), 399-411. https://doi.org/10.1111/j.1365-2117.2000.00125.x.
[85] Smoot J.P.,1983. Depositional subenvironments in an arid closed basin; the Wilkins Peak Member of the Green River Formation (Eocene), Wyoming, U.S.A. Sedimentology, 30(6), 801-827. https://doi.org/10.1111/j.1365-3091.1983.tb00712.x.
[86] Song Y., Guo Z.T., Marković S., Hambach U., Deng C.L., Chang L., Wu J.Y., Hao Q.Z.,2018. Magnetic stratigraphy of the Danube loess: A composite Titel-Stari Slankamen loess section over the last one million years in Vojvodina, Serbia. Journal of Asian Earth Sciences, 155, 68-80. https://doi.org/10.1016/j.jseaes.2017.11.012.
[87] Steier P., Martschini M., Buchriegler J., Feige J., Lachner J., Merchel S., Michlmayr L., Priller A., Rugel G., Schmidt E., Wallner A., Wild E.M., Golser R.,2019. Comparison of methods for the detection of 10Be with AMS and a new approach based on a silicon nitride foil stack. International Journal of Mass Spectrometry, 444, 116175. https://doi.org/10.1016/j.ijms.2019.116175.
[88] Šujan M., Braucher R., Mandic O., Fordinál K., Brixová B., Pipík R.K., Šimo V., Jamrich M., Rybár S., Klučiar T., ASTER Team, Ruman A., Zvara I., Kováč M., 2021b. Lake Pannon transgression on the westernmost tip of the Carpathians constrained by biostratigraphy and authigenic 10Be/9Be dating (central Europe). Rivista Italiana di Paleontologia e Stratigrafia, 127(3), 627-653. https://doi.org/10.13130/2039-4942/16620.
[89] Šujan M., Braucher R., Šujan M., Hók J., Povinec P.P., Šipka F., ASTER Team,Rugel, G., Scharf, A., 2019. The tectono-sedimentary evolution of a major seismogenic zone with low slip rate activity: A geochronological and sedimentological investigation of the Dobrá Voda Depression (Western Carpathians). Sedimentary Geology, 383, 248-267. https://doi.org/10.1016/j.sedgeo.2019.02.003.
[90] Šujan M., Rybár S., Kováč M., Bielik M., Majcin D., Minár J., Plašienka D., Nováková P., Kotulová J.,2021a. The polyphase rifting and inversion of the Danube Basin revised. Global and Planetary Change, 196, 103375. https://doi.org/10.1016/j.gloplacha.2020.103375.
[91] Šujan M., Rybár S.,Thamó-Bozsó, E., Klučiar, T., Tibenský, M., Sebe, K., 2022. Collapse wedges in periglacial eolian sands evidence Late Pleistocene paleoseismic activity of the Vienna Basin Transfer Fault (western Slovakia). Sedimentary Geology, 431, 106103. https://doi.org/10.1016/j.sedgeo.2022.106103.
[92] Tomljenović B., Csontos L., 2001. Neogene-Quaternary structures in the border zone between Alps, Dinarides and Pannonian Basin (Hrvatsko Zagorje and Karlovac basins, Croatia). International Journal of Earth Sciences, 90(3), 560-578. https://doi.org/10.1007/s005310000176.
[93] Vos K., Vandenberghe N., Elsen J.,2014. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation. Earth-Science Reviews, 128, 93-104. https://doi.org/10.1016/j.earscirev.2013.10.013.
[94] Vrbanac B.,2002. Facies and facies architecture of the Ivanic Grad Formation (upper Pannonian) — Sava Depression, NW Croatia. Geologia Croatica, 55(1), 57-77. https://doi.org/10.4154/GC.2002.06.
[95] Vrsaljko, D. Japundžić, S., Kovačić, M., Grganić-Vrdoljak, Z., Pleše, P., 2010. Vranić: Najznačajnije nalazište fosilnih kitova u Sjevernoj Hrvatskoj. In: Horvat, M. (Ed.), Abstracts Book. Zagreb, Hrvatski geološki institut, str., p. 118 (poster).
[96] Wentworth C.K.,1922. A scale of grade and class terms for clastic sediments. The Journal of Geology, 30(5), 377-392. https://doi.org/10.1086/622910.
[97] Wetzel K.F., Sass O., Restorff C., 2006. Mass movement processes in unconsolidated Pleistocene sediments — A multi-method investigation at the "hochgraben" (Jenbach/Upper Bavaria) (Massenbewegungen in pleistozänen Lockersedimenten — eine Untersuchung mit verschiedenen Methoden am Hochgraben (Jenbach/Oberbayern).Erdkunde, 60, 246-250. |