[1] Anand-Prakash, Srivastava, S.C.,1984. Miofloral studies of the lower Gondwana sediments in Johilla Coalfield, Madhya Pradesh, India. The Palaeobotanist, 32(3), 243-252. https://doi.org/10.54991/jop.1984.1382.
[2] Bannerjee M., Mendhe V.A., Kamble A.D., Varma A.K., Singh B.D., Kumar S.,2022. Facets of coalbed methane reservoir in East Bokaro Basin, India. Journal of Petroleum Science and Engineering, 208, 109255. https://doi.org/10.1016/j.petrol.2021.109255.
[3] Bechtel A., Gruber W., Sachsenhofer R.F., Gratzer R., Püttmann W., 2001. Organic geochemical and stable carbon isotopic investigation of coals formed in low-lying and raised mires within the Eastern Alps (Austria). Organic Geochemistry, 32(11), 1289-1310. https://doi.org/10.1016/S0146-6380(01)00101-2.
[4] Bhowmick T., Nayak B., Varma A.K.,2017. Chemical and mineralogical composition of Kathara Coal, East Bokaro Coalfield, India. Fuel, 208, 91-100. https://doi.org/10.1016/j.fuel.2017.07.013.
[5] Brassell S.C., Eglinton G., Maxwell J.R., Philp R.P., 1978. Natural background of alkanes in the aquatic environment. In: Hutzinger, O., Van Lelyveld, I.H., Zoeteman, B.C.J. (Eds.), Aquatic Pollutants: Transformation and Biological Effects. Elsevier B.V., pp. 69-86. https://doi.org/10.1016/B978-0-08-022059-8.50010-8.
[6] Bray E.E., Evans E.D., 1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 22(1), 2-15. https://doi.org/10.1016/0016-7037(61)90069-2.
[7] Casshyap S.M.,1961. Petrography of the productive coal seams of the Bokaro Coalfield, Bihar. Ph.D. thesis, Aligarh Muslim University, pp. 1-148. http://hdl.handle.net/10603/65263.
[8] Chandra S., Surange K.R., 1979. Revision of the Indian Species of Glossopteris. Birbal Sahni Institute of Palaeobotany, Lucknow, Monograph 2, pp. 1-291.
[9] Chen Y.Y., Mastalerz M., Schimmelmann A.,2012. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. International Journal of Coal Geology, 104, 22-33. https://doi.org/10.1016/j.coal.2012.09.001.
[10] Chetia R., Mathews R.P., Singh P.K., Sharma A.,2022. Conifer-mixed tropical rainforest in the Indian Paleogene: New evidences from terpenoid signatures. Palaeogeography, Palaeoclimatology, Palaeoecology, 596, 110980. https://doi.org/10.1016/j.palaeo.2022.110980.
[11] Ciesielczuk J., Górka M., Fabiańska M.J.,Misz-Kennan, M., Jura, D., 2021. The influence of heating on the carbon isotope composition, organic geochemistry and petrology of coal from the Upper Silesian Coal Basin (Poland): An experimental and field study. International Journal of Coal Geology, 241, 103749. https://doi.org/10.1016/j.coal.2021.103749.
[12] di Pasquo, M., Souza, P.A., Kavali, P.S., Felix, C., 2018. Seasonally warmer and humid climates in a lower paleolatitude position of southern Brazil (Paraná Basin): New findings of the Lueckisporites virkkiae zone (late Cisuralian-Guadalupian) in the Serra do Rio do Rastro and neighboring localities. Journal of South American Earth Sciences, 82, 143-164. https://doi.org/10.1016/j.jsames.2017.12.005.
[13] Ganz H., Kalkreuth W., 1987. Application of infrared spectroscopy to the classification of kerogen types and the evaluation of source rock and oil shale potentials. Fuel, 66(5), 708-711. https://doi.org/10.1016/0016-2361(87)90285-7.
[14] Gao L., Brassell S.C., Mastalerz M., Schimmelmann A.,2013. Microbial degradation of sedimentary organic matter associated with shale gas and coalbed methane in eastern Illinois Basin (Indiana), USA. International Journal of Coal Geology, 107, 152-164. https://doi.org/10.1016/j.coal.2012.09.002.
[15] Ghosh T.K.,1962. Study of the Gondwana rocks with notes on the coal and fireclay deposits of Kuju, West Bokaro coalfield, Dt. Hazaribagh, Bihar.Quarterly Journal of the Geological, Mining and Metallurgical Society of India, 34(2-3), 57-73.
[16] Goswami S., Das K., Sahoo M., Bal S., Pradhan S., Singh K.J., Saxena A., 2018b. Biostratigraphy and floristic evolution of coal swamp floras of a part of Talcher Basin, India: A window on a Permian temperate ecosystem. Arabian Journal of Geosciences, 11, 524. https://doi.org/10.1007/s12517-018-3886-7.
[17] Goswami S., Saxena A., Singh K.J., Chandra S., Cleal C.J., 2018a. An appraisal of the Permian palaeobiodiversity and geology of the Ib-River Basin, eastern coastal area, India.Journal of Asian Earth Sciences, 157, 283-301. https://doi.org/10.1016/j.jseaes.2017.09.006.Goswami, S., Singh, K.J., 2010. Occurrences of gymnosperms from Lower Gondwana formations of Ib-River Coalfield, Orissa with a clue on the palaeoecology and the palaeoenvironment of the area. Journal of the Palaeontological Society of India, 55, 121-135.
[18] Guo Y.T., Bustin R.M., 1998. Micro-FTIR spectroscopy of liptinite macerals in coal. International Journal of Coal Geology, 36(3), 259-275. https://doi.org/10.1016/S0166-5162(97)00044-X.
[19] Hughes T.W.H.,1867. The Bokaro coalfield.Memoirs of the Geological Survey of India, 6, 39-108.
[20] Ibarra J.V., Muñoz E., Moliner R., 1996. FTIR study of the evolution of coal structure during the coalification process. Organic Geochemistry, 24(6), 725-735. https://doi.org/10.1016/0146-6380(96)00063-0.
[21] Iglesias M.J., Jiménez A., Laggoun-Défarge F., Suárez-Ruiz I., 1995. FTIR study of pure vitrains and associated coals. Energy & Fuels, 9(3), 458-466. https://doi.org/10.1021/ef00051a010.
[22] ISO7404-2, 2009. Methods for the Petrographic Analysis of Coals—Part 2: Method of Preparing Coal Samples, Geneva. International Organization for Standardization, pp. 1-8.
[23] ISO7404-3, 2009. Methods for the Petrographic Analysis of Coals—Part 3: Method of Determining Maceral Group Composition, Geneva. International Organization for Standardization, pp. 1-4.
[24] ISO7404-5, 2009. Methods for the Petrographic Analysis of Coals—Part 5: Method of Determining Microscopically the Reflectance of Vitrinite, Geneva. International Organization for Standardization, pp. 1-11.
[25] Jasper A.,Guerra-Sommer, M., Abu Hamad, A.M.B., Bamford, M., Bernardes-de-Oliveira, M.E.C., Tewari, R., Uhl, D., 2013. The burning of Gondwana: Permian fires on the southern continent—A palaeobotanical approach. Gondwana Research, 24(1), 148-160. https://doi.org/10.1016/j.gr.2012.08.017.
[26] Khan Z.A., Casshyap S.M., 1982. Sedimentological synthesis of Permian fluviatile sediments of East Bokaro Basin, Bihar, India. Sedimentary Geology, 33(2), 111-128. https://doi.org/10.1016/0037-0738(82)90045-8.
[27] Kulkarni S.,1969. Glossopteris and Gangamopteris species from South Karanpura Coalfield. The Palaeobotanist, 18(3), 297-304. https://doi.org/10.54991/jop.1969.847.
[28] Kumar U., Sahay A.V., 2001. Prospects of coal bed methane in Jarangdih-Asnapani Graben, East Bokaro coalfields, Bihar, India. In: Proceedings of the International Seminar on “Coal Bed Methane-Prospects and Potentialities”. South Asian Association of Economic Geologist, pp. 49-56.
[29] Lawrence G.H.M.,1955. An Introduction to Plant Taxonomy. The Macmillan Company, New York, pp. 1-179.
[30] Lele K.M.,1966. Studies in the Talchir flora of India-4: Quest for the early traces and subsequent development of the Glossopteris flora in the Talchir Stage. In: Symposium on Floristics and Stratigraphy of Gondwanaland. Birbal Sahni Institute of Palaeobotany, Lucknow, pp. 85-97.
[31] Li W., Zhu Y.M., Hu C.Q., Han S.B., Wu J.S., 2020a. Hydrocarbon generation and chemical structure evolution from confined pyrolysis of bituminous coal. ACS Omega, 5(31), 19682-19694. https://doi.org/10.1021/acsomega.0c02352.
[32] Li Z., Ni G.H., Wang H., Sun Q., Wang G., Jiang B.Y., Zhang C.,2020b. Molecular structure characterization of lignite treated with ionic liquid via FTIR and XRD spectroscopy. Fuel, 272, 117705. https://doi.org/10.1016/j.fuel.2020.117705.
[33] Mathews, R.P., Pillai, S.S.K., Manoj, M.C., Agrawal, S., 2020b. Palaeoenvironmental reconstruction and evidence of marine influence in Permian coal-bearing sequence from Lalmatia Coal mine (Rajmahal Basin), Jharkhand, India: A multi-proxy approach. International Journal of Coal Geology, 224, 103485. https://doi.org/10.1016/j.coal.2020.103485.
[34] Mathews R.P., Singh B.D., Singh V.P., Singh A., Singh H., Shivanna M., Dutta S., Mendhe V.A., Chetia R.,2020a. Organo-petrographic and geochemical characteristics of Gurha lignite deposits, Rajasthan, India: Insights into the palaeovegetation, palaeoenvironment and hydrocarbon source rock potential. Geoscience Frontiers, 11(3), 965-988. https://doi.org/10.1016/j.gsf.2019.10.002.
[35] Murthy S.,2010. Palynostratigraphy of the Permian succession in borehole RJS-2, Raniganj coalfield, Damodar Basin, West Bengal.Journal of Indian Geological Congress, 2, 83-90.
[36] Murthy S., Mahesh S., Roy J.S., 2016. Palyno-petrographical facet and depositional account of Gondwana sediments from East Bokaro Coalfield, Jharkhand. Journal of the Geological Society of India, 88(5), 549-558. https://doi.org/10.1007/s12594-016-0520-8.
[37] Murthy S., Rajanikanth A.,2017. Palynology and palaeoenvironment of Late Permian Sawang OCM, East Bokaro Coalfield, Damodar Basin, India. Journal of Palaeosciences, 66(1-2), 61-70. https://doi.org/10.54991/jop.2017.279.
[38] Murthy S., Ram-Awatar, Gautam S., 2014. Palynostratigraphy of Permian succession in the Mand-Raigarh Coalfield, Chhattisgarh, India and phytogeographical provincialism. Journal of Earth System Science, 123(8), 1879-1893. https://doi.org/10.1007/s12040-014-0498-9.
[39] Naeher S., Cui X.Q., Summons R.E., 2022. Biomarkers: Molecular tools to study life, environment, and climate. Elements, 18(2), 79-85. https://doi.org/10.2138/gselements.18.2.79.
[40] Nyambe I.A., Utting J., 1997. Stratigraphy and palynostratigraphy, Karoo Supergroup (Permian and Triassic), mid-Zambezi Valley, southern Zambia. Journal of African Earth Sciences, 24(4), 563-583. https://doi.org/10.1016/S0899-5362(97)00081-X.
[41] Painter P.C., Coleman M.M., Jenkins R.G., Whang P.W., Walker Jr., P.L., 1978. Fourier Transform Infrared study of mineral matter in coal. A novel method for quantitative mineralogical analysis. Fuel, 57(6), 337-344. https://doi.org/10.1016/0016-2361(78)90170-9.
[42] Painter P.C., Snyder R.W., Starsinic M., Coleman M.M., Kuehn D.W., Davis A., 1981. Concerning the application of FT-IR to the study of coal: A critical assessment of band assignments and the application of spectral analysis programs.Applied Spectroscopy, 35(5), 475-485.
[43] Painter P.C., Starsinic M., Coleman M.M., 1985. Determination of functional groups in coal by Fourier transform interferometry. In: Ferraro, J.R., Basile, L.J. (Eds.), Fourier Transform Infrared Spectroscopy. Academic Press, New York, pp. 169-240.
[44] Pal P.K., Ghosh A., 1988. Platyphyllum bokaroensis sp. nov. from East Bokaro Coafield, India. Geophytology, 18(2), 219-220.
[45] Pal P.K., Ghosh A., 1994. Miofloral assemblage from Deoli member of Panchet Formation in the East Bokaro Coalfield, India.IX International Gondwana Symposium, Hyderabad, India: Abstract, pp. 22-23.
[46] Pareek H.S., Bardhan B., 1985. Trace elements and their variation along seam profiles of certain coal seams of Middle and Upper Barakar formations (Lower Permian) in East Bokaro Coalfield, district Hazaribagh, Bihar, India. International Journal of Coal Geology, 5(3), 281-314. https://doi.org/10.1016/0166-5162(85)90030-8.
[47] Patel R., Goswami S., Aggarwal N., Mathews R.P.,2022. Palaeofloristics of Lower Gondwana exposure in Hingula area, Talcher Basin, Odisha, India: An inclusive study on biomarkers, megafloral and palynofloral assemblages. Historical Biology, 34(9), 1877-1893. https://doi.org/10.1080/08912963.2021.1986039.
[48] Patra S., Dirghangi S.S., Rudra A., Dutta S., Ghosh S., Varma A.K., Shome D., Kalpana M.S.,2018. Effects of thermal maturity on biomarker distributions in Gondwana coals from the Satpura and Damodar Valley basins, India. International Journal of Coal Geology, 196, 63-81. https://doi.org/10.1016/j.coal.2018.07.002.
[49] Peters K.E., Walters C.C., Moldowan J.M., 2005. The Biomarker Guide. Cambridge University Press, New York.
[50] Phipps D., Playford G., 1984. Laboratory techniques for extraction of palynomorphs from sediments.Papers of the Department of Geology, University of Queensland, 11(1), 1-23.
[51] Pillai S.S.K., Manoj M.C., Mathews R.P., Murthy S., Sahoo M., Saxena A., Sharma A., Pradhan S., Kumar S., 2023. Lower Permian Gondwana sequence of Rajhara (Daltonganj Coalfield), Damodar Basin, India: Floristic and geochemical records and their implications on marine ingressions and depositional environment. Environmental Geochemistry and Health, 45(10), 6923-6953. https://doi.org/10.1007/s10653-023-01517-8.
[52] Raja Rao, C.S., 1987. Coalfields of India.Geological Survey of India, Bulletin Series A, 45(4), 1-335.
[53] Rohmer M., Bisseret P., Sutter B., 1991. The hopanoids, bacterial triterpenoids, and the biosynthesis of isoprenic units in prokaryotes. In: Jucker, E. (Ed.), Progress in Drug Research. Fortschritte der Arzneimittelforschung. Progrès des Recherches Pharmaceutiques, vol. 37. Birkhäuser Basel, pp. 271-285. https://doi.org/10.1007/978-3-0348-7139-6_6.
[54] Roy A.B., Purohit R., 2018. Chapter 14 - Geology of the Gondwana Supergroup. In: Indian Shield: Precambrian Evolution and Phanerozoic Reconstitution. Elsevier, pp. 273-285. https://doi.org/10.1016/B978-0-12-809839-4.00015-1.
[55] Sahoo M., Murthy S., Saxena A., Pillai S.S.K., Sahu, S.K., 2024. Significance of palynology in understanding age, palaeoclimate and correlation of Indian Gondwana sediments. In: Samant, B., Thakre, D. (Eds.), Application of Palynology in Stratigraphy and Climate Studies. Society of Earth Scientists Series, Springer, pp. 13-18. https://doi.org/10.1007/978-3-031-51877-5_2.
[56] Saxena A., Murthy S., Singh K.J., 2020. Floral diversity and environment during the Early Permian: A case study from Jarangdih Colliery, East Bokaro Coalfield, Damodar Basin, India. Palaeobiodiversity and Palaeoenvironments, 100(1), 33-50. https://doi.org/10.1007/s12549-019-00375-6.
[57] Scalan E.S., Smith J.E., 1970. An improved measure of the odd-even predominance in the normal alkanes of sediment extracts and petroleum. Geochimica et Cosmochimica Acta, 34(5), 611-620. https://doi.org/10.1016/0016-7037(70)90019-0.
[58] Semkiwa P., Kalkreuth W., Utting J., Mayagilo F., Mpanju F., Hagemann H., 1998. The geology, petrology, palynology and geochemistry of Permian coal basins in Tanzania. 1. Namwele-Mkomolo, Muze and Galula coalfields. International Journal of Coal Geology, 36(1), 63-110. https://doi.org/10.1016/S0166-5162(97)00020-7.
[59] Singh K.J., Murthy S., Saxena A., Shabbar H., 2017. Permian macro- and miofloral diversity, palynodating and palaeoclimate implications deduced from the coal-bearing sequences of Singrauli coalfield, Son-Mahanadi Basin, central India. Journal of Earth System Science, 126(2), 25. https://doi.org/10.1007/s12040-017-0809-z.
[60] Srivastava A.K.,1990. Plant fossil assemblages from the Barakar Formation of Raniganj Coalfield, India. The Palaeobotanist, 39(1-3), 281-302. https://doi.org/10.54991/jop.1990.1695.
[61] Srivastava S.C., Jha N.,1989. Palynostratigraphy of lower Gondwana sediments in Godavari Graben, Andhra Pradesh, India. The Palaeobotanist, 37(2), 199-209. https://doi.org/10.54991/jop.1988.1620.
[62] Stach E., Mackowsky M.Th., Teichmuller M., Taylor G.H., Chandra D., Teichmuller R., 1975. Stach's Textbook of Coal Petrology. Berlin, Stuttgart: Gebruder Borntraeger, pp. 1-428.
[63] Tewari R., Pandita S.K., Agnihotri D., Pillai S.S.K., Bernardes-de-Oliveira, M.E.C., 2012. An Early Permian Glossopteris flora from the Umrer Coalfield, Wardha Basin, Maharashtra, India. Alcheringa, 36(3), 355-371. https://doi.org/10.1080/03115518.2012.648416.
[64] Tewari R., Srivastava A.K., 1996. Plant fossils from the Barakar Formation, Jharia Coalfield, Bihar.Geophytology, 25, 35-39.
[65] Tiwari R.S., Tripathi A.,1987. Palynological zones and their climatic inference in the coal-bearing Gondwana of Peninsular India. The Palaeobotanist, 36, 87-101. https://doi.org/10.54991/jop.1987.1564.
[66] Tiwari R.S., Tripathi A.,1991. Marker assemblage-zones of spores and pollen species through Gondwana Palaeozoic and Mesozoic sequence in India. The Palaeobotanist, 40, 194-236. https://doi.org/10.54991/jop.1991.1773.
[67] Torsvik, T.H., Cocks, L.R.M., 2013. Gondwana from top to base in space and time. Gondwana Research, 24(3-4), 999-1030. https://doi.org/10.1016/j.gr.2013.06.012.
[68] Tripathi A., Vijaya, Murthy S., Chakarborty B., Das D.K., 2012. Stratigraphic status of coal horizon in Tatapani-Ramkola coalfield, Chhattisgarh, India. Journal of Earth System Science, 121(2), 537-557. https://doi.org/10.1007/s12040-012-0161-2.
[69] Veevers J.J., Tewari R.C., 1995. Gondwana master basin of Peninsular India between Tethys and the interior of the Gondwanaland Province of Pangea. Geological Society of America Memoirs, 187, 1-72. https://doi.org/10.1130/0-8137-1187-8.1.
[70] Vijaya, 1989. Evolutionary pattern of striations and taeniae in the Indian Gondwana saccate pollen. The Palaeobotanist, 38, 83-91. https://doi.org/10.54991/jop.1989.1642.
[71] Vijaya, Murthy S., Chakraborty B., Shanker Roy J., 2012. Palynological dating of a subsurface coal bearing horizon in East Bokaro Coalfield, Damodar Basin, Jharkhand, India. Palaeontographica Abteilung B, 288(1-4), 41-63. https://doi.org/10.1127/palb/288/2012/41.
[72] Wan M.L., Shi G.R., Luo M., Lee S.M., Wang J.,2020. First record of a petrified gymnospermous wood from the Kungurian (late Early Permian) of the southern Sydney Basin, southeastern Australia, and its paleoclimatic implications. Review of Palaeobotany and Palynology, 276, 104202. https://doi.org/10.1016/j.revpalbo.2020.104202.
[73] Williams D.H.,1846-1847. Lower Gondwana coalfields of India by Cyril S. Fox.Memoirs of the Geological Survey of India, 59, 1-119.
[74] Wood G.D., Gabriel A.M., Lawson J.C., 1996. Palynological techniques - processing and microscopy, Chapter 3. In: Jansonius, J., McGregor, D.C. (Eds.), Palynology: Principles and Applications, vol. 1. American Association of Stratigraphic Palynologists Foundation, pp. 29-50.
[75] Zhou H., Wu C.F., Pan J.N., Wang Z.Z., Niu Q.H., Du M.Y., 2021. Research on molecular structure characteristics of vitrinite and inertinite from bituminous coal with FTIR, Micro-Raman, and XRD spectroscopy. Energy and Fuels, 35(2), 1322-1335. https://doi.org/10.1021/acs.energyfuels.0c03586. |