Restrictions to the application of 'diagnostic' criteria for recognizing ancient seismites
Massimo Moretti1, *, A. J. (Tom) van Loon2
1. Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari, via E. Orabona 4, 70125 Bari, Italy;
2. Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznan, Poland*
Soft-sediment deformation structures induced by seismic liquefaction and/or fluidization receive much attention in sedimentological, structural and palaeoseismic studies. The direct record of larger earthquakes is restricted to instrumental and historical data; the recognition of prehistoric earthquakes requires criteria to recognize seismites in the geological record. The areal distribution of seismites can sometimes be related to active faults since distances to the epicenter (for a given magnitude) tend to be related to the liquefaction effects of seismic shocks.
The use of soft-sediment deformation structures for palaeoseismic studies has limitations, however. Hardly anything is known, for instance, about the effects that modern seismic events have on the sediments in most environments. Moreover, criteria for the recognition of seismites are still under discussion. The following characteristics seem, particularly in combination, the most reliable: (1) Soft-sediment deformation structures should occur in laterally continuous, preferably recurring horizons, separated by undeformed beds; (2) These deformation structures should be comparable with structures known to have been triggered by modern seismic activity; (3) The sedimentary basin should have experienced tectonic activity at the time when the deformations were formed; and (4) The intensity or abundance of the soft-sediment deformation structures in a presumed seismite should change laterally, depending on the distance to the epicenter. It turns out that all of these four criteria have important exceptions. (1) Soft-sediment deformation structures occurring over large lateral distances in a specific layer can be triggered also by other processes. Moreover, in environments with a low sedimentation rate, the time between successive earthquakes is often too short to allow accumulation of beds that remain undisturbed. Furthermore, total liquefaction of a sandy bed may result in the absence of deformation features. (2) No truly diagnostic soft-sediment deformation structures exist to prove seismic activity. Moreover, the final configuration of a soft-sediment deformation structure is independent of the type of trigger. (3) Seismites occur frequently in areas where seismic activity is low today. (4) The lateral changes in the intensity of soft-sediment deformation structures in seismites as a factor presumed to depend on the distances to the epicenter, pose a complicated problem. The 2012 Emilia earthquakes, for instance, affected sandy fluvial channels but not the fine-grained floodplains.
It must thus be deduced that specific soft-sediment deformation structures cannot be used without additional evidence to identify seismites. In particular, the magnitude of seismic shocks and the recurrence time of main events (the most important features that allow recognition of seismites) seem to be sedimentological in nature: facies changes in space and time seem the parameters that most strongly control the occurrence, morphology, lateral extent and the vertical repetition of seismites.
Massimo Moretti,A. J. (Tom) van Loon. Restrictions to the application of 'diagnostic' criteria for recognizing ancient seismites[J]. Journal of Palaeogeography, 2014, 3(2): 162-173.
Massimo Moretti,A. J. (Tom) van Loon. Restrictions to the application of 'diagnostic' criteria for recognizing ancient seismites[J]. Journal of Palaeogeography, 2014, 3(2): 162-173.
Alfaro, P., Delgado, J., Estévez, A., Molina, J. M., Moretti, M., Soria, J. -M., 2002. Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain). International Journal of Earth Sciences, 91: 505-513.
Alfaro, P., Estévez, A., Moretti, M., Soria, J. -M., 1999. Structures sédimentaires de déformation interprétées comme séismites dans le Quaternaire du Bassin du Bas Segura (Cordillère Bétique orientale). Comptes Rendues de l'Académie de Sciences de Paris, 328: 17-22.
Alfaro, P., Gibert, L., Moretti, M., García-Tortosa, F. J., Sanz de Galdeano, C., Jesús Galindo-Zaldívar, J., López-Garrido, A. C., 2010. The significance of giant seismites in the Plio-Pleistocene Baza palaeo-lake (South Spain). Terra Nova, 22: 172-179.
Alfaro, P., Moretti, M., Soria, J. M., 1997. Soft-sediment deformation structures induced by earthquakes (seismites) in Pliocene lacustrine deposits (Guadix-Baza Basin, central Betic Cordillera). Eclogae Geologicae Helvetiae, 90: 531-540.
Allen, J. R. L., 1982. Sedimentary structures: Their character and physical basis. Vol. II. New York: Elsevier, 663.
Allen, J. R. L., Banks, N. L., 1986. An interpretation and analysis of recumbent-folded deformed cross-bedding. Sedimentology, 19: 257-283.
Carter, D. P., Seed, H. B., 1988. Liquefaction potential of sand deposits under low levels of excitation. Internal Report UCB/EERC-81/11, College of Engineering, University of California, Berkeley, 119.
Cisne, J. L., 1986. Earthquake recorded stratigraphically on carbonate platform. Nature, 323: 320-322.
Cita, M. B., 2008. Deep-sea homogenites: Sedimentary expression of a prehistoric megatsunami in the eastern Mediterranean. In: Shiki, T., Minora, K., Tsuji, Y., Yamazaki, T., (eds). Tsunamiites-features and implication. Amsterdam: Elsevier, 185-202.
Davenport, C. A., Ringrose, P. S., 1987. Deformation of Scottish Quaternary sediment sequences by strong earthquake motion. In: Jones, M. E., Preston, R. M. F., (eds). Deformation of sediments and sedimentary rocks. Geological Society, London, Special Publications, 29: 299-314.
De Alba, P. A., Chan, C. K., Seed, H. B., 1976. Sand liquefaction in large scale simple shear tests. Journal of Geotechnical Engineering (ASCE), 102: 628-644.
Emergeo Working Group, 2012. A photographic dataset of the coseismic geological effects induced on the environment by the 2012 Emilia (northern Italy) earthquake sequence. Miscellanea INGV, 16: 74.
Emergeo Working Group, 2013. Liquefaction phenomena associated with the Emilia earthquake sequence of May-June 2012 (Northern Italy). Natural Hazards and Earth System Sciences, 13: 935-947.
Finn, W. D. L., 2001. State of the art for the evaluation of seismic lique-
faction potential. Computers and Geotechnics, 29: 329-341.
Galli, P., 2000. New empirical relationships between magnitude and distance for liquefaction. Tectonophysics, 324: 169-187.
Gibert, L., Alfaro, P., García-Tortosa, F. J., Scott, G., 2011. Superposed deformed beds produced by single earthquakes (Tecopa Basin, California): Insights into paleoseismology. Sedimentary Geology, 235: 148-159.
Greb, S. F., Archer, A. W., 2007. Soft-sediment deformation produced by tides in a meizoseismic area, Turnagain Arm, Alaska. Geology, 35: 435-438.
Gruszka, B., Van Loon, A. J., 2007. Pleistocene glaciolacustrine breccias of seismic origin in an active graben (central Poland). In: Gruszka, B., Van Loon, A. J., Zielinski, T., (eds). Quaternary Geology — Bridging the gap between East and West. Sedimentary Geology, 193: 93-104.
Guhman, A. I., Pederson, D. T., 1992. Boiling sand springs, Dismal River, Nebraska: Agents for formation of vertical cylindrical structures and geomorphic change. Geology, 20: 8-10.
2.3.CO;2 target="_blank">
Guiraud, M., Plaziat, J. -C., 1993. Seismites in the fluviatile Bima sandstones: Identification of paleoseisms and discussion of their magnitudes in a Cretaceous synsedimentary strike-slip basin (Upper Benue, Nigeria). Tectonophysics, 225: 493-522.
Haczewski, G., 1986. Long-distance correlation of laminae and their seismic deformation in pelagic interbeds in flysch. 7th International Association of Sedimentologists Regional Meeting on Sedimentology (Kraków, 1986), 74.
Hilbert-Wolf, H. L., Simpson, E. L., Simpson, W. S., Tindall, S. E., Wizevich, M. C., 2009. Insights into syndepositional fault movement in a foreland basin; trends in seismites of Upper Cretaceous Wahweap Formation, Kaiparowits Basin, Utah, USA. Basin Research, 21: 856-871.
Holzer, T. M., Clark, M. M., 1993. Sand boils without earthquakes. Geology, 21: 873-876.
2.3.CO;2 target="_blank">
Horowitz, D. H., 1982. Geometry and origin of large-scale deformation structures in some ancient wind-blown sand deposits. Sedimentology, 29: 155-180.
Jackson, C. A. L., Gawthorpe, R. L., Carr, I. D., Sharp, I. R., 2005. Normal faulting as a control on the stratigraphic development of shallow marine syn-rift sequences: The Nukhul and Lower Rudeis Formations, Hammam Faraun fault block, Suez Rift, Egypt. Sedimentology, 52: 313-338.
Jones, G. P., 1962. Deformed cross-stratification in Cretaceous Bima Sandstone, Nigeria. Journal of Sedimentary Petrology, 32: 231-239.
Kos, A. M., 2001. Stratigraphy, sedimentary development and palaeoenvironmental context of a naturally accumulated pitfall cave deposit from southeastern Australia. Australian Journal of Earth Sciences, 48: 621-632.
Long, D. G. F., 2004. The tectonostatigraphic evolution of the Huronian basement and the subsequent basin fill: Geological constraints on impact models of the Sudbury event. Precambrian Research, 129: 203-223.
Mastrogiacomo, G., Moretti, M., Owen, G., Spalluto, L., 2012. Tectonic triggering of slump sheets in the Upper Cretaceous carbonate succession of the Porto Selvaggio area (Salento peninsula, southern Italy): Synsedimentary tectonics in the Apulian Carbonate Platform. Sedimentary Geology, 269/270: 15-27.
Mazumder, R., Van Loon, A. J., Arima, M., 2006. Soft-sediment deformation structures in the Earth's oldest seismites. Sedimentary Geology, 186: 19-26.
Metz, J., Grotzinger, J., Okubo, C., Milliken, R., 2010. Thin-skinned deformation of sedimentary rocks in Valles Marineris, Mars. Journal of Geophysical Research, 115: E11004, doi: 10.1029/2010JE003593.
Molina, J. M., Alfaro, P., Moretti, M., 1998. Soft-sediment deformation structures induced by cyclic stress of storm-waves in tempestites (Miocene, Guadalquivir Basin, Spain). Terra Nova, 10: 145-150.
Montenat, C., 1980. Relation entre déformations synsédimentaires et paléoséismicité dans le Messiniènne de San Miguel de Salinas (Cordillères Bétiques orientales, Espagne). Bulletin de la Société de Géologie de France, 7: 501-509.
Montenat, C., Barrier, P., Ott d'Estevou, P., Hibsch, C., 2007. Seismites: An attempt at critical analysis and classification. Sedimentary Geology, 196: 5-30.
Moretti, M., 2000. Soft-sediment deformation structures interpreted as seismites in Middle-Late Pleistocene aeolian deposits (Apulian foreland, southern Italy). Sedimentary Geology, 135: 167-179.
Moretti, M., Alfaro, P., Caselles, O., Canas, J. A., 1999. Modelling seismites with a digital shaking table. Tectonophysics, 304: 369-383.
Moretti, M., Owen, G., Tropeano, M., 2011. Soft-sediment deformation induced by sinkhole activity in shallow marine environments: A fossil example in the Apulian foreland (southern Italy). Sedimentary Geology, 235: 331-342.
Moretti, M., Pieri, P., Tropeano, M., 2002. Late Pleistocene soft-sediment deformation structures interpreted as seismites in paralic deposits in the City of Bari (Apulian foreland, southern Italy). Geological Society of America Special Paper, 359: 75-85.
Moretti, M., Ronchi, A., 2011. Liquefaction features interpreted as seismites in the Pleistocene fluvio-lacustrine deposits of the Neuquén Basin (Northern Patagonia). Sedimentary Geology, 235: 200-209.
Moretti, M., Sabato, L., 2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant'Arcangelo Basin (southern Italy): Seismic shock vs. overloading. Sedimentary Geology, 196: 31-45.
Moretti, M., Soria, J. M., Alfaro, P., Walsh, N., 2001. Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits. Facies, 44: 283-294.
Mountney, N. P., Jagger, A., 2004. Stratigraphic evolution of an aeolian erg margin system: The Permian Cedar Mesa Sandstone, SE Utah, USA. Sedimentology, 51: 713-743.
Muir-Wood, R., 2000. Deglaciation seismotectonics: A principal influence on intraplate seismogenesis at high latitudes? Quaternary Science Reviews, 19: 1399-1411.
Netoff, D., 2002. Seismogenically induced fluidization of Jurassic erg sands, south-central Utah. Sedimentology, 49: 65-80.
Neuendorf, K. K. E., Mehl Jr., J. P., Jackson, J. A., 2005. Glossary of geology(5th Edition). Alexandria: American Geological Institute, 779.
Ninfo, A., Zizioli, D., Meisina, C., Castaldini, D., Zucca, F., Luzi, L., Mattia De Amicis, M., 2012. The survey and mapping of sand-boil landforms related to the Emilia 2012 earthquakes: Preliminary results. Annals of Geophysics, 55(4): 727-733.
Obermeier, S. F., 1996. Use of liquefaction-induced features for paleo-seismic analysis — An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology, 44: 1-76.
Obermeier, S. F., Jacobson, R. B., Smoot, J. P., Weems, R. E., Gohn, G. S., Monroe, J. E., Powars, D. S., 1990. Earthquake-induced liquefaction features in the coastal setting of South Carolina and in the fluvial setting of the New Madrid seismic zone. United States Geological Survey Professional Paper, 1504: 44.
Oliveira, C. M. M., Hodgson, D. M., Flint, S., 2011. Distribution of soft-sediment deformation structures in clinoform successions of the Permian Ecca Group, Karoo Basin, South Africa. Sedimentary Geology, 235: 314-330.
Owen, G., 1992. A shaking table for experiments on soft-sediment deformation. Journal of Sedimentary Petrology, 62: 733-734.
Owen, G., 1995. Soft-sediment deformation in Upper Proterozoic Torridonian sandstones (Applecross Formation) at Torridon, northwest Scotland. Journal of Sedimentary Research, A65: 495-504.
Owen, G., Moretti, M., 2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology, 235: 141-147.
Owen, G., Moretti, M., Alfaro, P., 2011. Recognising triggers for soft-sediment deformation: Current understanding and future directions. Sedimentary Geology, 235: 133-140.
Plint, A. G., 1983. Liquefaction, fluidization and erosional structures associated with bituminous sands of the Bracklesham Formation (Middle Eocene) of Dorset, England. Sedimentology, 30: 525-535.
Pope, M. C., Read, J. F., Bambach, R., Hofmann, H. J., 1997. Late Middle to Late Ordovician seismites of Kentucky, southwest Ohio and Virginia: Sedimentary recorders of earthquakes in the Appalachian basin. GSA Bulletin, 109: 489-503.
2.3.CO;2 target="_blank">
Pratt, B. R., 1994. Seismites in the Mesoproterozoic Altyn Formation (Belt Supergroup), Montana: A test for tectonic control of peritidal carbonate cyclicity. Geology, 22: 1091-1094.
2.3.CO;2 target="_blank">
Rascoe Jr., B., 1975. Tectonic origin of preconsolidation deformation in Upper Pennsylvanian rocks near Bartlesville, Oklahoma. AAPG Bulletin, 59: 1626-1638.
Ricci-Lucchi, F., Amorosi, A., 2003. Bedding and internal structures. In: Middletron, G. V., (ed). Encyclopedia of Sediments and Sedimentary Rocks. Dordrecht: Kluwer Academic Publishers, 53-59.
Ridente, D., Trincardi, F., 2006. Active foreland deformation evidenced by shallow folds and faults affecting Late Quaternary shelf-slope deposits (Adriatic Sea, Italy). Basin Research, 18: 171-188.
Rodríguez Pascua, M. A., Calvo, J. P., De Vicente, G., Gomez Gras, D., 2000. Seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology, 135: 117-135.
Rodríguez-Lopez, J. P., Merléndez, N., Soria, A. R., Liesa, C. L., Van Loon, A. J., 2007. Lateral variability of ancient seismites related to differences in sedimentary facies (the syn-rift Escucha Formation, mid-Cretaceous, Spain). Sedimentary Geology, 201: 461-484.
Roep, T. B., Everts, A. J., 1992. Pillow-beds: A new type of seismites? An example from an Oligocene turbidite fan complex Alicante, Spain. Sedimentology, 39: 711-724.
Rossetti, D. F., 1999. Soft-sediment deformation structures in late Albian to Cenomanian deposits, San Luìs Basin, northern Brazil: Evidence for paleoseismicity. Sedimentology, 46: 1065-1081.
Seilacher, A., 1969. Fault-graded beds interpreted as seismites. Sedimentology, 13: 155-159.
Seilacher, A., 1984. Sedimentary structures tentatively attributed to seismic events. Marine Geology, 55: 1-12.
Sims, J. D., 1973. Earthquake-induced structures in sediments of Van Norman Lake, San Fernando, California. Science, 182: 161-163.
Sims, J. D., 1975. Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics, 29: 141-152.
Spalluto, L., Moretti, M., Festa, V., Tropeano, M., 2007. Seismically-induced slumps in Lower Maastrichtian peritidal carbonates of the Apulian Platform (southern Italy). Sedimentary Geology, 196: 81-98.
Van Loon, A. J., 2009. Soft-sediment deformation structures in siliciclastic sediments: An overview. Geologos, 15: 3-55.
Van Loon, A. J., Mazumder, R., Rodríguez-López, J. P., Arima, M., 2008. Soft-sediment deformation structures in Paleoproterozoic offshore seismites from E India. In: Kunkel, C., Hahn, S., Ten Veen, J., Rameil, N., Immenhauser, A., (eds). Abstract Volume 26th Regional Meeting of the International Association of Sedimentologists (IAS) / SEPM-CES Sediment 2008 Meeting / 23. Sedimentologen-Treffen (Bochum, September 1-3, 2008). Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 58: 285.
Van Loon, A. J., Su, D. C., 2013. Deformed stromatolites in marbles of the Mesoproterozoic Wumishan Formation as evidence for synsedimentary seismic activity. Journal of Palaeogeography, 2 (4): 390-401.
Van Vliet-Lano?, B., Gudmundsson, A., Guillou, H., Guégan, S, Van Loon, A. J., De Vleeschouwer, F., 2010. Glacial Terminations II and I as recorded in NE Iceland. Geologos, 16: 201-222.
Wheeler, R. L., 2002. Distinguishing seismic from nonseismic soft-sediment structures: Criteria from seismic-hazard analysis. In: Ettensohn, F. R., Rast, N., Brett, C. E. (eds). Ancient seismites. The Geological Society of America Special Paper, 359: 1-11.