|
|
Sedimentary dynamics and depositional model for mud accumulation in deep lake basins: A case study in the Upper Triassic Chang-7 Member, Ordos Basin, northern China |
Wei Yua,b, c, Feng Wangb,c,*, Jing-Chun Tianb,c,**, Jiao Wanga, Benjamin Knellerd, Tian Yangb,c, Wei-Zhen Chenb,c |
a College of Petroleum Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, Shandong Province, China;
b Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources, Chengdu University of Technology, Chengdu 610059, Sichuan Province, China;
c Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, Sichuan Province, China;
d University of Aberdeen, School of Geoscience, Aberdeen AB24 3UE, Scotland, UK |
|
|
Abstract Shales in deep lake basins have become the main focus of continental shale oil and gas exploration. In order to highlight the sedimentary dynamics of mud deposition in deep lake basins, a combination of core observation, thin section examination, X-ray diffraction, and QEMSCAN (quantitative evaluation of minerals by scanning electron microscopy) was used to analyze the depositional characteristics of mudrocks in the Chang-7 Member from the Yanchang Formation (Upper Triassic) in Ordos Basin, and to establish a depositional model for mud accumulation in deep lake basins. This study recognizes four mudrock lithofacies in the Chang-7 Member: (1) the laminated silt-bearing mudstone, which generally develops a binary composition of “silt-clay” or a ternary composition of “silt-clay-organic matter”; (2) the graded mudstone, mainly composed of dark gray and gray-black mudstone sandwiched by silt-bearing mudstone; (3) the massive mudstone, internally showing a uniform distribution of quartz, clay, and carbonate minerals, with also a small amount of organic detritus; and (4) the laminated shale, which is generally composed of clay laminae, and organic laminae of the former two. Sediment supply, topographic slope, and flood intensity combine to control the evolution of gravity flows and the transport and deposition of the mudrock in the Chang-7 Member. The influence of orogeny provides terrain gradient, water depth, abundant sediments at source areas, and triggering mechanism for the formation of gravity flows. Floods triggered by wetting events provide the impetus for sediment transport. Mud deposition in the Chang-7 Member was mainly related to the transport and sedimentation of mud by hyperpycnal flows and rapid sedimentation by buoyant plume flocculation. A comprehensive evolutionary model for shale accumulation in the deep lake basin is established by integrating various triggering mechanisms and mud transport sedimentary processes.
|
Received: 18 August 2023
|
Corresponding Authors:
* Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, Sichuan Province, China; ** Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, Sichuan Province, China E-mail addresses: wangfeng07@cdut.cn (F. Wang), tjc@cdut.edu.cn (J.-C. Tian).
|
|
|
|
J.R.L. Allen, 1968. Current Ripples: Their Relation to Patterns of Water and Sediment Motion. North Holland Publishing Company, Amsterdam, pp. 1-433.
A. Alnahwi, R.G. Loucks, 2019. Mineralogical composition and total organic carbon quantification using X-ray fluorescence data from the Upper Cretaceous Eagle Ford Group in southern Texas. AAPG Bulletin, 103 (12), pp. 2891-2907, http://doi.org/10.1306/04151918090.
J.H. Baas, J.L. Best, J. Peakall, 2016. Predicting bedforms and primary current stratification in cohesive mixtures of mud and sand. Journal of the Geological Society, London, 173 (1), pp. 12-45, http://doi.org/10.1144/jgs2015-024.
V. Baranyi, Á. Rostási, B. Raucsik, W.M. Kürschner, 2019. Palynological and X-ray fluorescence (XRF) data of Carnian (Late Triassic) formations from western Hungary. Data in Brief, 23, Article 103858, http://doi.org/10.1016/j.dib.2019.103858.
J.F. Barrenechea, J. López-Gómez, R. De La Horra, 2018. Sedimentology, clay mineralogy and palaeosols of the Mid-Carnian Pluvial Episode in eastern Spain: Insights into humidity and sea-level variations. Journal of the Geological Society, London, 175 (6), pp. 993-1003, http://doi.org/10.1144/jgs2018-024.
K. Boulesteix, M. Poyatos-Moré, S.S. Flint, K.G. Taylor, D.M. Hodgson, S.T. Hasiotis, 2019. Transport and deposition of mud in deep-water environments: Processes and stratigraphic implications. Sedimentology, 66 (7), pp. 2894-2925, http://doi.org/10.1111/sed.12614.
X.D. Chen, C.K. Zhang, D.M. Paterson, C.E.L. Thompson, I.H. Townend, Z. Gong, Z. Zhou, Q. Feng, 2017. Hindered erosion: The biological mediation of noncohesive sediment behavior. Water Resources Research, 53 (6), pp. 4787-4801, http://doi.org/10.1002/2016WR020105.
J. Dal Corso, P. Gianolla, R.J. Newton, M. Franceschi, G. Roghi, M. Caggiati, B. Raucsik, T. Budai, J. Haas, N. Preto, 2015. Carbon isotope records reveal synchronicity between carbon cycle perturbation and the “Carnian Pluvial Event” in the Tethys realm (Late Triassic). Global and Planetary Change, 127, pp. 79-90, http://doi.org/10.1016/j.gloplacha.2015.01.013.
S. Davarpanah Jazi, M.G. Wells, 2020. Dynamics of settling-driven convection beneath a sediment-laden buoyant overflow: Implications for the length-scale of deposition in lakes and the coastal ocean. Sedimentology, 67 (1), pp. 699-720, http://doi.org/10.1111/sed.12660.
E. Erba, F. Tremolada, 2004. Nannofossil carbonate fluxes during the Early Cretaceous: Phytoplankton response to nutrification episodes, atmospheric CO2, and anoxia. Paleoceanography, 19 (1), Article PA1008, http://doi.org/10.1029/2003PA000884.
J.H. Fu, S.X. Li, L.M. Xu, X.B. Niu, 2018. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 45 (6), pp. 936-946, http://doi.org/10.11698/PED.2018.06.02(in Chinese with English abstract).
M.T. Gibbs, P.M. Rees, J.E. Kutzbach, A.M. Ziegler, P.J. Behling, D.B. Rowley, 2002. Simulations of Permian climate and comparisons with climate-sensitive sediments. The Journal of Geology, 110 (1), pp. 33-55, http://doi.org/10.1086/324204.
B.U. Haq, A.M. Al-Qahtani, 2005. Phanerozoic cycles of sea-level change on the Arabian Platform. GeoArabia, 10 (2), pp. 127-160, http://doi.org/10.2113/geoarabia1002127.
S. Hillier, 2003. Quantitative analysis of clay and other minerals in sandstones by X-ray powder diffraction (XRPD). R. Worden, S. Morad (Eds.), Clay Mineral Cements in Sandstones. International Association of Sedimentologist, Special Publication, Oxford, International, pp. 213-251, http://doi.org/10.1002/9781444304336.ch11/summary.
K.R. Hodder, 2009. Flocculation: A key process in the sediment flux of a large, glacier-fed lake. Earth Surface Processes and Landforms, 34 (8), pp. 1151-1163, http://doi.org/10.1002/esp.1807.
A.A. Ichaso, R.W. Dalrymple, 2009. Tide- and wave-generated fluid mud deposits in the Tilje Formation (Jurassic), offshore Norway. Geology, 37 (6), pp. 539-542, http://doi.org/10.1130/G25481A.1.
Z.X. Jiang, C. Liang, J. Wu, J.G. Zhang, W.Z. Zhang, Y.S. Wang, H.M. Liu, X. Chen, 2013. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks. Acta Petrolei Sinica, 34 (6), pp. 1031-1039, http://doi.org/10.7623/syxb201306001(in Chinese with English abstract).
X. Jin, Z.Q. Shi, Y.Y. Wang, X. Duan, M. Cheng, 2015. Mid-Carnian (Late Triassic) extreme climate event: Advances and unsolved problems. Acta Sedimentologica Sinica, 33 (1), pp. 105-115, http://doi.org/10.14027/j.cnki.cjxb.2015.01.011(in Chinese with English abstract).
B. Kneller, M.M. Nasr-Azadani, S. Radhakrishnan, E. Meiburg, 2016. Long-range sediment transport in the world's oceans by stably stratified turbidity currents. Journal of Geophysical Research: Oceans, 121 (12), pp. 8608-8620, http://doi.org/10.1002/2016JC011978.
H.W. Kozur, G.H. Bachmann, 2010. The Middle Carnian Wet Intermezzo of the Stuttgart Formation (Schilfsandstein), Germanic Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, pp. 107-119, http://doi.org/10.1016/j.palaeo.2009.11.004.
K. Kranck, P.C. Smith, T.G. Milligan, 1996. Grain-size characteristics of fine-grained unflocculated sediments I: ‘One-round’ distributions. Sedimentology, 43 (3), pp. 589-594, http://doi.org/10.1046/j.1365-3091.1996.d01-27.x.
Q. Li, S.H. Wu, D.L. Xia, X.L. You, H.M. Zhang, H. Lu, 2020. Major and trace element geochemistry of the lacustrine organic-rich shales from the Upper Triassic Chang 7 Member in the southwestern Ordos Basin, China: Implications for paleoenvironment and organic matter accumulation. Marine and Petroleum Geology, 111, pp. 852-867, http://doi.org/10.1016/j.marpetgeo.2019.09.003.
Q.S. Liang, 2020. Characteristics of Event Deposition and Coupling Relationship in the Chang 7 Oil Member of Triassic Yanchang Formation, Ordos Basin. Chengdu University of Technology, Chengdu (2020)(in Chinese with English abstract).
B. Liu, J.X. Shi, X.F. Fu, Y.F. Lyu, X.D. Sun, L. Gong, Y.F. Bai, 2018. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in first member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China. Petroleum Exploration and Development, 45 (5), pp. 884-894, http://doi.org/10.1016/S1876-3804(18)30091-0.
C.L. Liu, X.X. Shu, Z.W. Liu, 2001. Micro-characteristics of Paleogene lacustrine petroleum source rocks in Jiyang Depression. Acta Sedimentologica Sinica, 19 (2), pp. 293-298, http://doi.org/10.3969/j.issn.1000-0550.2001.02.022(in Chinese with English abstract).
R. Liu, K. Zhang, Z.J. Liu, X. Yan, J.Q. Yu, 2021. Oil shale mineralization and geological events in China. Acta Sedimentologica Sinica, 39 (1), pp. 10-28, http://doi.org/10.14027/j.issn.1000-0550.2020.104(in Chinese with English abstract).
J.H.S. Macquaker, S.J. Bentley, K.M. Bohacs, 2010. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions. Geology, 38 (10), pp. 947-950, http://doi.org/10.1130/G31093.1.
J. Malarkey, J.H. Baas, J.A. Hope, R.J. Aspden, D.R. Parsons, J. Peakall, D.M. Paterson, R.J. Schindler, L. Ye, I.D. Lichtman, S.J. Bass, A.G. Davies, A.J. Manning, P.D. Thorne, 2015. The pervasive role of biological cohesion in bedform development. Nature Communications, 6, p. 6257, http://doi.org/10.1038/ncomms7257.
W.H. McAnally, C. Friedrichs, D. Hamilton, E. Hayter, P. Shrestha, H. Rodriguez, A. Sheremet, A. Teeter, 2007. Management of fluid mud in estuaries, bays, and lakes. I: Present state of understanding on character and behavior. Journal of Hydraulic Engineering, 133 (1), pp. 9-22, http://doi.org/10.1061/(ASCE)0733-9429(2007)133:1(9).
I.N. McCave, K.P.N. Jones, 1988. Deposition of ungraded muds from high-density non-turbulent turbidity currents. Nature, 333 (6170), pp. 250-252, http://doi.org/10.1038/333250a0.
D.M. Moore, R.C. Reynolds, 1997. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford (1997).
T. Mulder, J.P.M. Syvitski, S. Migeon, J.C. Faugères, B. Savoye, 2003. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review. Marine and Petroleum Geology, 20 (6–8), pp. 861-882, http://doi.org/10.1016/j.marpetgeo.2003.01.003.
W.R. Normark, D.J.W. Piper, H. Posamentier, C. Pirmez, S. Migeon, 2002. Variability in form and growth of sediment waves on turbidite channel levees. Marine Geology, 192 (1–3), pp. 23-58, http://doi.org/10.1016/S0025-3227(02)00548-0.
M.M. Omand, R. Govindarajan, J. He, A. Mahadevan, 2020. Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics. Scientific Reports, 10 (1), p. 5582, http://doi.org/10.1038/s41598-020-60424-5.
J.T. Parrish, R.L. Curtis, 1982. Atmospheric circulation, upwelling, and organic-rich rocks in the Mesozoic and Cenozoic eras. Palaeogeography, Palaeoclimatology, Palaeoecology, 40 (1–3), pp. 31-66, http://doi.org/10.1016/0031-0182(82)90084-0.
J.D. Parsons, J.W.M. Bush, J.P.M. Syvitski, 2001. Hyperpycnal plume formation from riverine outflows with small sediment concentrations. Sedimentology, 48 (2), pp. 465-478, http://doi.org/10.1046/j.1365-3091.2001.00384.x.
E. Partheniades, 2009. Cohesive Sediments in Open Channels: Properties, Transport, and Applications. Butter worth Heinemann, Burlington, pp. 1-384.
J.W. Peng, 2021. Sedimentology of the Upper Pennsylvanian organic-rich Cline Shale, Midland Basin: From gravity flows to pelagic suspension fallout. Sedimentology, 68 (2), pp. 805-833, http://doi.org/10.1111/sed.12811.
S.H. Qiao, Y.H. Li, W. Guo, Y.P. Zhang, Y. Wang, 2019. Inorganic geochemical characteristics and paleoenvironment of Chang 7 oil shale in Yanchang Formation, Tongchuan area, Shaanxi Province. Petroleum Geology and Experiment, 41 (1), pp. 121-126, http://doi.org/10.11781/sysydz201901121(in Chinese with English abstract).
J. Schieber, 2016. Mud re-distribution in epicontinental basins — Exploring likely processes. Marine and Petroleum Geology, 71, pp. 119-133, http://doi.org/10.1016/j.marpetgeo.2015.12.014.
J. Schieber, J. Southard, K. Thaisen, 2007. Accretion of mudstone beds from migrating floccule ripples. Science, 318 (5857), pp. 1760-1763, http://doi.org/10.1126/science.1147001.
J. Schieber, J.B. Southard, 2009. Bedload transport of mud by floccule ripples — Direct observation of ripple migration processes and their implications. Geology, 37 (6), pp. 483-486, http://doi.org/10.1130/G25319A.1.
K. Selvaraj, B.Z. Lin, J.Y. Lou, W.L. Xia, X.T. Huang, C.T.A. Chen, 2016. Lacustrine sedimentological and geochemical records for the last 170 years of climate and environmental changes in southeastern China. Boreas, 45 (1), pp. 165-179, http://doi.org/10.1111/bor.12143.
W. Shi, S.W. Dong, J.M. Hu, 2020. Neotectonics around the Ordos Block, North China: A review and new insights. Earth-Science Reviews, 200, Article 102969, http://doi.org/10.1016/j.earscirev.2019.102969.
M.S. Song, K. Xiang, Y. Zhang, P. Cai, J.L. Liu, R.C. Yang, 2017. Research progresses on muddy gravity flow deposits and their significances on shale oil and gas: A case study from the 3rd oil-member of the Paleogene Shahejie Formation in the Dongying Sag. Acta Sedimentologica Sinica, 35 (4), pp. 740-751, http://doi.org/10.14027/j.cnki.cjxb.2017.04.008(in Chinese with English abstract).
D.J. Stanley, A. Maldonado, 1981. Depositional models for fine-grained sediment in the western Hellenic Trench, Eastern Mediterranean. Sedimentology, 28 (2), pp. 273-290, http://doi.org/10.1111/j.1365-3091.1981.tb01680.x.
E. Steel, J. Buttles, A.R. Simms, D. Mohrig, E. Meiburg, 2017. The role of buoyancy reversal in turbidite deposition and submarine fan geometry. Geology, 45 (1), pp. 35-38, http://doi.org/10.1130/G38446.1.
D.A.V. Stow, 1981. Fine-grained sediments: Terminology. Quarterly Journal of Engineering Geology and Hydrogeology, 14 (4), pp. 243-244, http://doi.org/10.1144/GSL.QJEG.1981.014.04.02.
D.A.V. Stow, A.J. Bowen, 1978. Origin of lamination in deep sea, fine-grained sediments. Nature, 274 (5669), pp. 324-328, http://doi.org/10.1038/274324a0.
D.A.V. Stow, A.J. Bowen, 1980. A physical model for the transport and sorting of fine-grained sediment by turbidity currents. Sedimentology, 27 (1), pp. 31-46, http://doi.org/10.1111/j.1365-3091.1980.tb01156.x.
D.A.V. Stow, G. Shanmugam, 1980. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments. Sedimentary Geology, 25 (1–2), pp. 23-42, http://doi.org/10.1016/0037-0738(80)90052-4.
J.P. Sun, Y.P. Dong, 2019. Middle–Late Triassic sedimentation in the Helanshan tectonic belt: Constrain on the tectono-sedimentary evolution of the Ordos Basin, North China. Geoscience Frontiers, 10 (1), pp. 213-227, http://doi.org/10.1016/j.gsf.2018.05.017.
P.J. Talling, 2013. Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models. Geosphere, 9 (3), pp. 460-488, http://doi.org/10.1130/GES00793.1.
P.J. Talling, D.G. Masson, E.J. Sumner, G. Malgesini, 2012. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59 (7), pp. 1937-2003, http://doi.org/10.1111/j.1365-3091.2012.01353.x.
J. Tourney, B.T. Ngwenya, 2014. The role of bacterial extracellular polymeric substances in geomicrobiology. Chemical Geology, 386, pp. 115-132, http://doi.org/10.1016/j.chemgeo.2014.08.011.
J.A. Trotter, I.S. Williams, A. Nicora, M. Mazza, M. Rigo, 2015. Long-term cycles of Triassic climate change: A new δ18O record from conodont apatite. Earth and Planetary Science Letters, 415, pp. 165-174, http://doi.org/10.1016/j.epsl.2015.01.038.
D.Y. Wang, B.S. Xin, H. Yang, J.H. Fu, J.L. Yao, Y. Zhang, 2014. Zircon SHRIMP U–Pb age and geological implications of tuff at the bottom of Chang-7 Member of Yanchang Formation in the Ordos Basin. Scientia Sinica, 44 (10), pp. 2160-2171, http://doi.org/10.1007/s11430-014-4979-0(in Chinese with English abstract).
R.W.R. Weight, J.B. Anderson, R. Fernandez, 2011. Rapid mud accumulation on the central Texas shelf linked to climate change and sea-level rise. Journal of Sedimentary Research, 81 (10), pp. 743-764, http://doi.org/10.2110/jsr.2011.57.
R.T. Wilkin, H.L. Barnes, 1997. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61 (2), pp. 323-339, http://doi.org/10.1016/S0016-7037(96)00320-1.
R.D. Wilson, J. Schieber, 2014. Muddy prodeltaic hyperpycnites in the lower Genesee Group of central New York, USA: Implications for mud transport in epicontinental seas. Journal of Sedimentary Research, 84 (10), pp. 866-874, http://doi.org/10.2110/jsr.2014.70.
R.B. Wynn, D.G. Masson, D.A.V. Stow, P.P.E. Weaver, 2000. Turbidity current sediment waves on the submarine slopes of the western Canary Islands. Marine Geology, 163, pp. 185-198, http://doi.org/10.1016/S0025-3227(99)00101-2.
K.L. Xi, K. Li, Y.C. Cao, M.R. Lin, X.B. Niu, R.K. Zhu, X.Z. Wei, Y. You, X.W. Liang, S.B. Feng, 2020. Laminae combination and shale oil enrichment patterns of Chang 73 sub-member organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 47 (6), pp. 1342-1353, http://doi.org/10.1016/S1876-3804(20)60142-8.
R.C. Yang, A.P. Fan, Z.Z. Han, A.J. van Loon, 2017. Lithofacies and origin of the Late Triassic muddy gravity-flow deposits in the Ordos Basin, central China. Marine and Petroleum Geology, 85, pp. 194-219, http://doi.org/10.1016/j.marpetgeo.2017.05.005.
W. Yu, J.C. Tian, F. Wang, Q.S. Liang, T. Yang, B. Kneller, X.W. Liang, 2022. Sedimentary environment and organic matter enrichment of black mudstones from the Upper Triassic Chang-7 member in the Ordos Basin, Northern China. Journal of Asian Earth Sciences, 224, Article 105009, http://doi.org/10.1016/j.jseaes.2021.105009.
C. Zavala, 2020. Hyperpycnal (over density) flows and deposits. Journal of Palaeogeography, 9 (3), pp. 267-287, http://doi.org/10.1186/s42501-020-00065-x.
C. Zavala, M. Arcuri, 2016. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics. Sedimentary Geology, 337, pp. 36-54, http://doi.org/10.1016/j.sedgeo.2016.03.008.
C. Zavala, S.X. Pan, 2018. Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics. Lithologic Reservoirs, 30 (1), pp. 1-18, http://doi.org/10.3969/j.issn.1673-8926.2018.01.001(in Chinese with English abstract).
H. Zhang, P.A. Peng, W.Z. Zhang, 2014. Zircon U–Pb ages and Hf isotope characterization and their geological significance of Chang 7 tuff of Yanchang Formation in Ordos Basin. Acta Petrologica Sinica, 30 (2), pp. 565-575(in Chinese with English abstract).
C.M. Zhou, Z.J. Zhang, Z. Qiu, D.W. Cheng, X.J. Yuan, Y.H. Liu, X. Huang, 2021. Laboratory experiments on sedimentation of fine-grained sediment: A prospect review. Acta Sedimentologica Sinica, 39 (1), pp. 253-267, http://doi.org/10.14027/j.issn.1000-0550.2020.130(in Chinese with English abstract).
C.N. Zou, L. Wang, Y. Li, S.Z. Tao, L.H. Hou, 2012. Deep-lacustrine transformation of sandy debrites into turbidites, Upper Triassic, central China. Sedimentary Geology, 265–266, pp. 143-155, http://doi.org/10.1016/j.sedgeo.2012.04.004.
C.N. Zou, Z. Yang, G.S. Zhang, S.Z. Tao, R.K. Zhu, X.J. Yuan, L.H. Hou, D.Z. Dong, Q.L. Guo, Y. Song, Q.Q. Ran, S.T. Wu, B. Bai, L. Wang, Z.P. Wang, Z.M. Yang, B. Cai, 2019. Establishment and practice of unconventional oil and gas geology. Acta Geologica Sinica, 93 (1), pp. 12-23, http://doi.org/10.3969/j.issn.0001-5717.2019.01.003(in Chinese with English abstract). |
|
|
|