|
|
Girvanella fossils from the Phanerozoic: Distribution, evolution and controlling factors |
Hua-Shan Zhanga, Ming-Yue Daib,*, Yong-An Qib, Lan-Lan Hanb, Zhong-Lei Yinb, Song-Hua Chenb, Liang-Biao Lina |
a Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, Sichuan Province, China;
b School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454003, Henan Province, China |
|
|
Abstract Girvanella is one of the common genera of cyanobacteria that plays a monumental role in the evolution of life on Earth and the formation of microbialites. Based on a detailed search in the literature of Girvanella fossils, we have compiled a global database of Girvanella fossils and revealed the evolution of Girvanella fossils throughout the Phanerozoic. Four species, Girvanella kasakiensis, Girvanella problematica, Girvanella wetheredii, and Girvanella staminea, are recognized and described. These data show that Girvanella fossils have well-defined temporal distribution during the Paleozoic Era, have a significant temporal gap in the Mesozoic Era, and have only been recorded sporadically in the Cenozoic Era. They were relatively abundant during the Cambrian Epoch 2-Early Ordovician, Late Ordovician, Late Devonian-Mississippian, and tended to lesser degrees during the Silurian-Early Devonian, Lopingian Epoch-Middle Jurassic, and Cretaceous-Present day. Furthermore, the evolution of the abundance and diversity of Girvanella fossils was fundamentally consistent and showed episodical declining during the Phanerozoic. To further explore these relationships, we thoroughly compared them with environmental factors such as seawater carbonate saturation state, Ca2+ concentration, pH values, and atmospheric partial pressure of carbon dioxide (pCO2). This study indicates that seawater carbonate saturation state and Ca2+ concentration are major controls on secular patterns of the abundance and diversity of Girvanella fossils, together with the secondary factors of pH values and pCO2. Considering the long history of Girvanella fossils, their abundance and diversity offer the potential to assist the interpretation of the long-term evolution of marine and atmosphere components during the Phanerozoic.
|
Received: 26 September 2023
|
Corresponding Authors:
* E-mail address: daimy@hpu.edu.cn (M.-Y. Dai).
|
|
|
|
G. Arp, A. Reimer, J. Reitner, 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science, 292, pp. 1701-1704.
M.R. Badger, H. David, G.P. Dean, 2002. Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Functional Plant Biology, 29, pp. 161-173, http://doi.org/10.1071/PP01213.
M. Badger, D. Price, 2003. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany, 54, pp. 609-622, http://doi.org/10.1093/jxb/erg076.
M.R. Banks, H.J. Johnson, 1957. Maclurites and Girvanella in the Gordon River Limestone (Ordovician) of Tasmania. Journal of Paleontology, 31, pp. 632-640.
R.A. Berner, 1991. A model for atmospheric CO2 over Phanerozoic time. American Journal of Science, 291, pp. 339-376.
R.A. Berner, 1998. The carbon cycle and carbon dioxide over Phanerozoic time: The role of land plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 353, pp. 75-81, http://doi.org/10.1098/rstb.1998.0192.
R.A. Berner, 2009. Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model. American Journal of Science, 309, pp. 603-606, http://doi.org/10.2475/07.2009.03.
R.A. Berner, A.C. Lasaga, R.M. Garrels, 1983. The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science, 288, pp. 641-683.
J.D. Bornemann, 1886. Die Versteinerungen des Cambrischen Schichten-systems der Insel Sardinien, nebst vergleichenden Untersuchungen über analoge Vorkomnnisse aus andern Ländern, 51, Nova Acta der Kaiserslichen Leopoldinisch–Carolinischen Deutschen Akademie der Naturforscher, pp. 1-147.
P.A. Bourque, B. Mamet, A. Roux, 1981. Algues siluriennes du Synclinorium de la Baie des Chaleurs, Québec, Canada. Revue de Micropaléontologie, 24, pp. 83-126.
F. Chapman, 1908. On the relationship of the genus Girvanella, and its occurrence in the Silurian limestones of Victoria. Report of the Australasian Association for the Advancement of Science, Adelaide, 11, pp. 377-386.
B.I. Chuvashov, 1965. Foraminifera and algae from the Upper Devonian deposits of the western slope of the central and southern Urals. Devonian and Permian Foraminifera of the Urals: Institute of Geology, Ural Branch of the USSR, Sverdlovsk, Sbornik po stratigrafii, 8, pp. 3-154.
M.Y. Dai, 2017. Oncoids and their Biogenic and Depositional Features from Cambrian Carbonates of Henan ProvinceDoctoral Dissertation, Henan Polytechnic University (2017)(in Chinese with English Abstract).
M.C. Danielli, 1981. The fossil alga Girvanella Nicholson and Etheridge. Bulletin of the Natural History Museum: Geology Series, 35, pp. 79-107.
C.T. Edwards, M.R. Saltzman, D.L. Royer, D.A. Fike, 2017. Oxygenation as a driver of the Great Ordovician Biodiversification Event. Nature Geoscience, 10, pp. 925-929, http://doi.org/10.1038/s41561-017-0006-3.
D.D. Ekart, T.E. Cerling, I.P. Montanez, N.J. Tabor, 1999. A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide. American Journal of Science, 299, pp. 805-827, http://doi.org/10.2475/ajs.299.10.805.
A.A. Elenkin, 1949. Monographie algarum Cyanophycearum aquidulcium et terrestrium infinibus URSS inventarum: Izdatelstvo AN SSSR, Moscow, II, Pars specialis (Systematica), Fascicie, pp. 985-1908.
S.J. Fan, Y.S. Wu, 2004. Palaeoenvironmental analyses of Ordovician rocks in the northern uplift of Tarim Basin in terms of calcareous algae and cyanobacteria. Acta Micropalaeontologica Sinica, 21, pp. 251-266(in Chinese with English Abstract).
Q. Feng, Y.M. Gong, R. Riding, 2010. Mid-late Devonian calcified marine algae and cyanobacteria, South China. Journal of Paleontology, 84, pp. 569-587, http://doi.org/10.1666/09-108.1.
E.J. Garwood, 1931. The Tuedian beds of northern Cumberland and Roxburghshire east of the Liddel Water. Journal of the Geological Society, 87, pp. 97-157.
J.P. Grotzinger, J.F. Kasting, 1993. New constraints on Precambrian ocean composition. The Journal of Geology, 101, pp. 235-243.
O.A. Høeg, 1932. Ordovician algae from the Trondheim area. J. Kiær (Ed.), The Hovin Group in the Tronodheim area. Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo, 4, I. Mathematisk-Naturvidenskabelig Klasse, pp. 63-96.
H. Hua, Y.P. Cai, X. Min, S. Chai, Q.K. Dai, Z.H. Cui, 2020. Ecological diversity in the terminal Ediacaran Gaojiashan biota. Earth Science Frontiers, 27, pp. 28-46.
H.M. Johnson, 1966. Silurian Girvanella from the Welsh Borderland. Palaeontology, 9, pp. 48-63.
L.C. Kah, R. Riding, 2007. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria. Geology, 35, pp. 799-802, http://doi.org/10.1130/G23680A.1.
S. Kempe, J. Kazmiercazk, 1994. The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes. Bulletin de la Institut Océanographique (Monaco), 13, pp. 61-117.
A.H. Knoll, K. Swett, J. Mark, 1991. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: The Draken Conglomerate Formation, Spitsbergen. Journal of Paleontology, 65, pp. 531-570, http://doi.org/10.1017/S0022336000030663.
J. Kuss, 1990. Middle Jurassic calcareous algae from the circum-Arabian area. Facies, 22, pp. 59-85.
T.M. Lenton, S.J. Daines, B.J.W. Mills, 2018. COPSE reloaded: An improved model of biogeochemical cycling over Phanerozoic time. Earth-Science Reviews, 178, pp. 1-28, http://doi.org/10.1016/j.earscirev.2017.12.004.
L.J. Liu, Z.L. Yang, Y.S. Wu, 2011. Calcified cyanobacteria from the Upper Ordovician Lianglitage Formation, Central Tarim Basin, Xinjiang. Acta Palaeontologica Sinica, 50, pp. 492-510(in Chinese with English Abstract).
L.J. Liu, 2014. Taxonomy, stratigraphic and ecological distribution of the calcified cyanobacterial flora from Ordovician, Tarim Basin and their diversification analysis of globalDoctoral Dissertation, University of Chinese Academy of Sciences (2014)(in Chinese with English Abstract).
L.J. Liu, Y.S. Wu, H.J. Yang, R. Riding, 2016. Ordovician calcified cyanobacteria and associated microfossils from the Tarim Basin, Northwest China: Systematics and significance. Journal of Systematic Palaeontology, 14, pp. 183-210, http://doi.org/10.1080/14772019.2015.1030128.
L.J. Liu, L.Y. Liang, Y.S. Wu, X.Q. Zhou, L.Q. Jia, R. Riding, 2020. Ordovician cyanobacterial calcification: A marine fossil proxy for atmospheric CO2. Earth and Planetary Science Letters, 530, Article 115950, http://doi.org/10.1016/j.epsl.2019.115950.
L.J. Liu, Y.S. Wu, H.P. Bao, H.X. Jiang, L.J. Zheng, Y.L. Chen, 2021. Diversity and systematics of Middle–Late Ordovician calcified cyanobacteria and associated microfossils from Ordos Basin, North China. Journal of Paleontology, 95, pp. 1-23, http://doi.org/10.1017/jpa.2020.82.
B. Mamet, A. Roux, 1974. Sur quelques algues tubulaires scalariformes de la Téthys paléozoïque. Revue de Micropaléontologie, 17, pp. 134-156.
B. Mamet, A. Roux, 1975. Algues dévoniennes et Carboniféres de la Téthys occidentale. Revue de Micropaléontologie, 18, pp. 134-187.
B. Mamet, H. Shalaby, 1995. Algues benthiques Ordoviciennes de la plateforme du Saint–Laurent. Revue de Micropaléontologie, 38, pp. 229-244.
V.P. Maslov, 1949. The Alga Girvanlla, its ecology and stratigraphic significance: Byoll. Moskov. Obshchstva Ispytatelei Prirody (NS), 54, pp. 89-100.
V.P. Maslov, 1956. The fossil calcareous algae of the USSR. Transactions of the USSR Academy of Sciences: Geological Science Sections, 160, pp. 1-301.
M. Merz-Preiß, R. Riding, 1999. Cyanobacterial tufa calcification in freshwater streams: Ambient environment, chemical thresholds and biological processes. Sedimentary Geology, 126, pp. 103-124.
X. Min, H. Hua, L.J. Liu, B. Sun, Z.H. Cui, Q.K. Dai, 2020. A diverse calcified cyanobacteria assemblage in the Latest Ediacaran. Precambrian Research, 342, Article 105669, http://doi.org/10.1016/j.precamres.2020.105669.
X. Min, 2019. Microproblematica fossils from the Gaojiashan biotaDoctoral Dissertation, Northwest University (2019)(in Chinese with English Abstract).
H.A. Nicholson, R. Etheridge, 1878. A monograph of the Silurian fossils of the Girvan District in Ayrshire with special reference to those contained in the ‘Gray Collection’. Nature, 20, pp. 26-27.
A. Pentecost, R. Riding, 1986. Calcification in cyanobacteria. B.S.C. Leadbeater, R. Riding (Eds.), Biomineralization in Lower Plants and Animals, Clarendon Press, Oxford, pp. 73-90.
B.R. Pratt, 2000. Microbial Contribution to Reefal Mud-Mounds in Ancient Deep-Water Settings: Evidence from the Cambrian. Springer, Berlin Heidelberg, pp. 282-288.
B.R. Pratt, 2001. Calcification of cyanobacterial filaments: Girvanella and the origin of Lower Paleozoic lime mud. Geology, 29, pp. 763-766, http://doi.org/10.1130/0091-7613(2001)029<0763:COCFGA>2.0.CO;2.
G.D. Price, M.R. Badger, F.J. Woodger, 2008. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): Functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. Journal of Experimental Botany, 59, pp. 1441-1461, http://doi.org/10.1093/jxb/erm112.
J.A. Raven, C.S. Cockell, C.L. De La Rocha, 2008. The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, pp. 2641-2650, http://doi.org/10.1098/rstb.2008.0020.
J.A. Raven, M. Giordano, J. Beardall, S.C. Maberly, 2012. Algal evolution in relation to atmospheric CO2: Carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical Transactions: Biological Sciences, 367, pp. 493-507, http://doi.org/10.1098/rstb.2011.0212.
J.A. Raven, B. John, S.B. Patricia, 2017. The possible evolution, and future, of CO2-concentrating mechanisms. Journal of Experimental Botany, 68, pp. 3701-3716, http://doi.org/10.1093/jxb/erx110.
M. Rich, 1974. Upper Mississippian (Carboniferous) calcareous algae from Northeastern Alabama, South–Central Tennessee, and Northwestern Georgia. Journal of Paleontology, 48, pp. 360-374.
A. Ridgwell, 2005. A Mid Mesozoic revolution in the regulation of ocean chemistry. Marine Geology, 217, pp. 339-357, http://doi.org/10.1016/j.margeo.2004.10.036.
R. Riding, 1977. Calcified Plectonema (blue-green algae), a recent example of Girvanella from Aldabra Atoll. Palaeontology, 20, pp. 33-46.
R. Riding, 1991. Calcified cyanobacteria. R. Riding (Ed.), Calcareous Algae and Stromatolites, Springer-Verlag, Berlin, pp. 55-87.
R. Riding, 2000. Microbial carbonates: The geological record of calcified bacterial–algal mats and biofilm. Sedimentology, 47, pp. 179-214, http://doi.org/10.1046/j.1365-3091.2000.00003.x.
R. Riding, 2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition. Geobiology, 4, pp. 299-316, http://doi.org/10.1111/j.1472-4669.2006.00087.x.
R. Riding, 2011. Calcified cyanobacteria. J. Reitner, V. Thiel (Eds.), Encyclopedia of Geobiology. Encyclopedia of Earth Science Series, Springer, Heidelberg, pp. 211-223.
R. Riding, J. Fan, 2001. Ordovician calcified algae and cyanobacteria, northern Tarim Basin subsurface, China. Palaeontology, 44, pp. 783-810.
R. Riding, L. Liang, 2005. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, pp. 101-115, http://doi.org/10.1016/j.palaeo.2004.11.018.
R. Riding, C.M. Soja, 1993. Silurian calcareous algae, cyanobacteria, and microproblematica from the Alexander terrane, Alaska. Journal of Paleontology, 67, pp. 710-728.
D.L. Royer, 2014. Atmospheric CO2 and O2 during the Phanerozoic: Tools, Patterns, and Impacts. H.D. Holland, K.K. Turekian (Eds.), Treatise on Geochemistry (second ed.), Elsevier, Oxford, pp. 251-267.
R.Y. Stanier, 1974. Division I. The Cyanobacteria. R.E. Buchanan, N.E. Gibbons (Eds.), Bergey's Manual of Determinative Bacteriology (eighth ed.), Williams & Wilkins, Baltimore, pp. 1-22.
S.M. Stanley, L.A. Hardie, 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144, pp. 3-19, http://doi.org/10.1016/S0031-0182(98)00109-6.
K. Swett, A.H. Knoll, 1985. Stromatolitic bioherms and microphytolites from the Late Proterozoic Draken Conglomerate Formation, Spitsbergen. Precambrian Research, 28, pp. 327-347, http://doi.org/10.1016/0301-9268(85)90037-3.
X.W. Tao, X.Q. Pu, H.Q. Wang, Z. Yuan, B. Zhou, 2011. Research on dissolution kinetics of calcite and aragonite in seawater with very low saturation state and near saturation. Deep-Sea Research, 33, pp. 63-73(in Chinese with English Abstract).
J.B. Thompson, F.G. Ferris, 1990. Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology, 18, pp. 995-998, http://doi.org/10.1130/0091-7613(1990)018<0995:CPOGCA>2.3.CO;2.
E.C. Turner, G.M. Narbonne, N.P. James, 1993. Neoproterozoic reef microstructures from the Little Dal Group, northwestern Canada. Geology, 21, pp. 259-262.
E.C. Turner, N.P. James, G.M. Narbonne, 2000. Taphonomic control on microstructure in Early Neoproterozoic reefal stromatolites and thrombolites. Palaios, 15, pp. 87-111, http://doi.org/10.1669/0883-1351(2000)015<0087:TCOMIE>2.0.CO;2.
P.T. Visscher, J.F. Stolz, 2005. Microbial mats as bioreactors: Populations, processes and products. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, pp. 87-100, http://doi.org/10.1016/j.palaeo.2004.10.016.
A.G. Vologdin, 1939. Archaeocyaths and algae of the Middle Cambrian of the southern Urals. Problems of Paleontology, 5, pp. 210-245.
A.G. Vologdin, 1962. The oldest algae of the USSR. Reports of USSR Academy of Science, 120, pp. 405-408.
L. Wang, 2019. Cambrian Bioherms Dominated by Microbial Carbonates in the South–Central Taihang Mountains and Their Adjacent Areas of North ChinaDoctoral Dissertation, China University of Geosciences, Beijing (2019)(in Chinese with English Abstract).
E. Wethered, 1890. On the occurrence of the genus Girvanella in oolitic rocks, and remarks in oolitic structure. Quarterly Journal of the Geological Society of London, 46, pp. 270-283.
C.R. Witkowski, J.W.H. Weijers, B. Blais, S. Schouten, J.S. Sinninghe Damsté, 2018. Molecular fossils from phytoplankton reveal secular pCO2 trend over the Phanerozoic. Science Advances, 4, p. 4556, http://doi.org/10.1126/sciadv.aat4556.
K.H. Wolf, E. Flügel, K.J. Keméys, 1968. Ordovician calcareous algae from a bioherm, Blathery Creek Volcanics, New South Wales (Australia). Review of Palaeobotany and Palynology, 6, pp. 147-153, http://doi.org/10.1016/0034-6667(68)90042-0.
A. Wood, 1957. The type-species of the genus Girvanella (calcareous algae). Palaeontology, 1, pp. 22-28.
A. Wood, 1963. The British Carbonifeous species of Girvanella (calcareous alage). Palaeontology, 6, pp. 264-273.
J.L. Wray, 1967. Upper Devonian calcareous algae from the Canning Basin. Colorado School of Mines, Western Australia (1967)Professional Contributions.
Y.S. Wu, X.F. Sun, G.C. Zhang, Y.A. Qi, H.P. Bao, J.F. Ren, Z.L. Huang, 2020. Calcified cyanobacteria from the coral biostrome of the Upper Ordovician Xiazhen Formation of Zhuzhai, Yushan, Jiangxi Province, and their paleoenvironmental implications. Acta Micropalaeontologica Sinica, 37, pp. 35-47(in Chinese with English Abstract).
X.G. Yang, 2018. Microbial Fossils and Micro Structures from the Early Cambrian Kuanchuanpu BiotaDoctoral Dissertation, Northwest University (2018)(in Chinese with English Abstract).
H.S. Zhang, 2023. Morphological Structure, Calcification and Geohistorical Distribution of Cyanobacteria GirvanellaMater Dissertation, Henan Polytechnic University (2023)(in Chinese with English Abstract).
X.Y. Zhang, 2016. The Calcification of Cyanobacteria from Microbial Carbonates in the CambrianMater Dissertation, Henan Polytechnic University (2016)(in Chinese with English Abstract).
Y.G. Zhang, B.J. Mills, T.C. He, T. Yang, M.Y. Zhu, 2023. Simulating the long-term carbon cycle in the Phanerozoic: Current status and future developments. Chinese Science Bulletin, 68, pp. 1580-1592(in Chinese with English Abstract). |
|
|
|