|
|
Characteristics and geological significance of carbon and oxygen isotopes of the Permian Lucaogou Formation dolomite in the southern Junggar Basin, northwestern China |
Gang Liua, Guo-Zhi Wanga,b,*, Na Lia, Hong-Ling Hec, Nan-Nan Lud, Qing Leia, Zi-Ang Wanga |
a College of Earth and Planetary Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan Province, China;
b National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, Sichuan Province, China;
c Hebei Survey Institute of Coal Geology, Xingtai 054000, Hebei Province, China;
d Sichuan Earthquake Agency, Chengdu 610041, Sichuan Province, China |
|
|
Abstract Anomalously positive δ13C values in ancient dolomites are very rare. Dark gray argillaceous rocks of the lacustrine sediments of the Permian Lucaogou Formation are important source rocks in the Junggar Basin, and dolomites of varying thicknesses from 10 cm to 150 cm are often interspersed in argillaceous rocks. Based on the study of petrographic sections, this paper systematically analyzes the carbon and oxygen isotopes of dolomite and discusses the causes of abnormally high carbon isotope values and their significance in reconstructing paleoenvironment and paleoclimate. The results show that carbon isotope values are abnormally high in the dolomite of Lucaogou Formation, and the δ13C value is between +3.2 ‰ PDB and +19.6‰ PDB, with an average of +9.7‰ PDB. The δ18O values range from -17.4‰ PDB to -1.7‰ PDB, with an average of -8.1‰ PDB. From the lower part to the upper part of the Lucaogou Formation, the carbon isotope value gradually increases and becomes increasingly positive, and the carbon isotope of the dolomite deposited near the shore is more positive than that of the dolomite deposited far from the shore. The anomalously positive δ13C of the dolomite is mainly caused by microbial methanogenesis, with some contribution from evaporation. Microorganisms are mainly distributed at the redox interface. Evaporation controls the salinity and fluctuation of the redox interface in sedimentary water. The positive deviation difference in carbon isotopes between nearshore and offshore sedimentary dolomites may be related to the location of the redox interface during deposition. Together, the petrographic features and carbon and oxygen isotope signatures of the sections reflect the gradual evolution of the paleolake from a hydrologically open environment to a hydrologically closed one and the possible transition of the paleoclimate from a relatively warm to an arid condition, which is possibly a geochemical response to global climate change in the Permian period.
|
Received: 08 November 2023
|
Corresponding Authors:
* College of Earth and Planetary Sciences, Chengdu University of Technology, Chengdu 610059, Sichuan Province, China. E-mail address: wangguozhi66@163.com (G.-Z. Wang).
|
|
|
|
F.R. Abrantes, A.C.R. Nogueira, J.L. Soares, 2016. Permian paleogeography of west-central Pangea: Reconstruction using sabkha-type gypsum-bearing deposits of Parnaíba Basin, Northern Brazil. Sedimentary Geology, 341, pp. 175-188, http://doi.org/10.1016/j.sedgeo.2016.06.004.
T.C. Adams, 1938. Recent deposition of salt from Great Salt Lake. The Journal of Geology, 46, pp. 637-646, http://doi.org/10.1086/624664.
R. Amundson, W. Dietrich, D. Bellugi, S. Ewing, K. Nishiizumi, G. Chong, J. Owen, R. Finkel, A. Heimsath, B. Stewart, M. Caffee, 2012. Geomorphologic evidence for the late Pliocene onset of hyperaridity in the Atacama Desert. Geological Society of America Bulletin, 124, pp. 1048-1070, http://doi.org/10.1130/B30445.1.
P. Anadón, E. Gliozzi, I. Mazzini, 2002. Paleoenvironmental reconstruction of marginal marine environments from combined paleoecological and geochemical analyses on ostracods. Geophysical Monograph Series, pp. 227-247, http://doi.org/10.1029/131GM12.
H. Bai, X. Pang, L. Kuang, H. Pang, X. Wang, X. Jia, L. Zhou, T. Hu, 2017. Hydrocarbon expulsion potential of source rocks and its influence on the distribution of lacustrine tight oil reservoir, Middle Permian Lucaogou Formation, Jimsar Sag, Junggar Basin, Northwest China. Journal of Petroleum Science and Engineering, 149, pp. 740-755, http://doi.org/10.1016/j.petrol.2016.09.053.
B. Beauchamp, A.E. Oldershaw, H.R. Krouse, 1987. Upper Carboniferous to Upper Permian 13C-enriched primary carbonates in the Sverdrup Basin, Canadian Arctic: Comparisons to coeval Western North American Ocean Margins. Chemical Geology (Isotope Geoscience Section), 65, pp. 391-413, http://doi.org/10.1016/0168-9622(87)90016-9.
A. Bechtel, C.J. Schubert, 2009. A biogeochemical study of sediments from the eutrophic Lake Lugano and the oligotrophic Lake Brienz, Switzerland. Organic Geochemistry, 40, pp. 1100-1114, http://doi.org/10.1016/j.orggeochem.2009.06.009.
C. Bédard, R. Knowles, 1997. Some properties of methane oxidation in a thermally stratified lake. Canadian Journal of Fisheries and Aquatic Sciences, 54, pp. 1639-1645, http://doi.org/10.1139/f97-072.
J.G. Bendoraitis, B.L. Brown, L.S. Hepner, 1962. Isoprenoid hydrocarbons in petroleum. Isolation of 2,6,10,14-tetramethylpentadecane by high temperature gas-liquid chromatography. Analytical Chemistry, 34, pp. 49-53, http://doi.org/10.1021/ac60181a011.
D. Birgel, P. Meister, R. Lundberg, T.D. Horath, T.R.R. Bontognali, A.M. Bahniuk, C.E. de Rezende, C. Vasconcelos, J.A. McKenzie, 2015. Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa Salgada, Brazil: A modern analogue for Palaeo-/Neoproterozoic stromatolites?. Geobiology, 13, pp. 245-266, http://doi.org/10.1111/gbi.12130.
S.C. Brassell, G. Eglinton, F.J. Mo, 1986. Biological marker compounds as indicators of the depositions! history of the Maoming oil shale. Organic Geochemistry, 10, pp. 927-941, http://doi.org/10.1016/S0146-6380(86)80030-4.
N.D. Bridgwater, T.H.E. Heaton, S.L. O'Hara, 1999. A late Holocene palaeolimnological record from central Mexico, based on faunal and stable-isotope analysis of ostracod shells. Journal of Paleolimnology, 22, pp. 383-397, http://doi.org/10.1023/A:1008058131159.
Z. Cao, G. Liu, Y. Kong, C. Wang, Z. Niu, J. Zhang, C. Geng, X. Shan, Z. Wei, 2016. Lacustrine tight oil accumulation characteristics: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin. International Journal of Coal Geology, 153, pp. 37-51, http://doi.org/10.1016/j.coal.2015.11.004.
Z. Cao, G. Liu, B. Xiang, P. Wang, G. Niu, Z. Niu, C. Li, C. Wang, 2017. Geochemical characteristics of crude oil from a tight oil reservoir in the Lucaogou Formation, Jimusar sag, Junggar Basin. AAPG Bulletin, 101, pp. 39-72, http://doi.org/10.1306/05241614182.
A.R. Carroll, 1998. Upper Permian lacustrine organic facies evolution, southern Junggar Basin, NW China. Organic Geochemistry, 28, pp. 649-667, http://doi.org/10.1016/S0146-6380(98)00040-0.
A.R. Carroll, S.C. Brassell, S. Graham, 1992. Upper Permian lacustrine oil shales, southern Junggar Basin, Northwest China. AAPG Bulletin, 76 (12), pp. 1874-1902, http://doi.org/10.1306/BDFF8B0A-1718-11D7-8645000102C1865D.
A.R. Carroll, S.A. Graham, M.S. Hendrix, D. Ying, D. Zhou, 1995. Late Paleozoic tectonic amalgamation of northwestern China: Sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar Basins. Geological Society of America Bulletin, 107, pp. 571-594, http://doi.org/10.1130/0016-7606(1995)107<0571:LPTAON>2.3.CO;2.
A.R. Carroll, S.A. Graham, M.E. Smith, 2010. Walled sedimentary basins of China. Basin Research, 22, pp. 17-32, http://doi.org/10.1111/j.1365-2117.2009.00458.x.
C.B. Cecil, 1990. Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks. Geology, 18, pp. 533-536, http://doi.org/10.1130/0091-7613(1990)018<0533:PCOSRO>2.3.CO;2.
H. Chen, X. Xie, K. Mao, J. Huang, 2014. Carbon and oxygen isotopes suggesting deep-water basin deposition associated with hydrothermal events (Shangsi Section, Northwest Sichuan Basin-South China). Chinese Journal of Geochemistry, 33, pp. 77-85, http://doi.org/10.1007/s11631-014-0661-7.
D. Cheng, C. Zhou, Z. Zhang, X. Yuan, Y. Liu, X. Chen, 2022. Paleo-environment reconstruction of the Middle Permian Lucaogou Formation, southeastern Junggar Basin, NW China: Implications for the mechanism of organic matter enrichment in ancient lake. Journal of Earth Sciences, 33, pp. 963-976, http://doi.org/10.1007/s12583-020-1073-8.
L.G. Costamagna, 2019. The carbonates of the post-Variscan basins of Sardinia: The evolution from Carboniferous–Permian humid-persistent to Permian arid-ephemeral lakes in a morphotectonic framework. Geological Magazine, 156, pp. 1892-1914, http://doi.org/10.1017/S0016756819000232.
J.A. Curiale, M.R. Gibling, 1994. Productivity control on oil shale formation—Mae Sot Basin, Thailand. Organic Geochemistry, 21, pp. 67-89, http://doi.org/10.1016/0146-6380(94)90088-4.
B.B. Curry, T.F. Anderson, K.C. Lohmann, 1997. Unusual carbon and oxygen isotopic ratios of ostracodal calcite from last interglacial (Sangamon episode) lacustrine sediment in Raymond Basin, Illinois, USA. Journal of Paleolimnology, 17, pp. 421-435, http://doi.org/10.1023/A:1007964917875.
C.D. Curtis, M.L. Coleman, L.G. Love, 1986. Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions. Geochimica et Cosmochimica Acta, 50, pp. 2321-2334, http://doi.org/10.1016/0016-7037(86)90085-2.
Z. Czochanska, T.D. Gilbert, R.P. Philp, C.M. Sheppard, R.J. Weston, T.A. Wood, A.D. Woolhouse, 1988. Geochemical application of sterane and triterpane biomarkers to a description of oils from the Taranaki Basin in New Zealand. Organic Geochemistry, 12, pp. 123-135, http://doi.org/10.1016/0146-6380(88)90249-5.
W. Dansgaard, 1964. Stable isotopes in precipitation. Tellus, 16 (4), pp. 436-446.
J.M. Dickins, 1993. Climate of the Late Devonian to Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 100, pp. 89-94, http://doi.org/10.1016/0031-0182(93)90034-G.
D. Dorritie, 2002. Consequences of Siberian Traps volcanism. Science, 297 (5588), pp. 1808-1809, http://doi.org/10.1126/science.297.5588.1808.
E.T. Degens, E.G. Williams, M.L. Keith, 1957. Environmental studies of Carboniferous sediments part I: Geochemical criteria for differentiating marine from fresh-water shales. AAPG Bulletin, 41 (11), http://doi.org/10.1306/0BDA59A5-16BD-11D7-8645000102C1865D.
H.P. Eugster, L.A. Hardie, 1978. Saline lakes. A. Lerman (Ed.), Lakes, Springer, New York, NY, pp. 237-293, http://doi.org/10.1007/978-1-4757-1152-3_8.
J.T. Eyong, N. Gabriel, B. Moïse, V.J. Hell, B.E. Eric, P. Wignall, J. Best, 2019. Sedimentologic and palaeoenvironmental evolution of the Mamfe Cretaceous Basin (SW Cameroon): Evidence from lithofacies analysis, tectonics and evaporite minerals suite. Journal of African Earth Sciences, 149, pp. 19-41, http://doi.org/10.1016/j.jafrearsci.2018.07.022.
C.R. Fielding, T.D. Frank, J.L. Isbell, 2008. The Late Paleozoic ice age—A review of current understanding and synthesis of global climate patterns. C.R. Fielding, T.D. Frank, J.L. Isbell (Eds.), Resolving the Late Paleozoic Ice Age in Time and Space, Geological Society of America, Special Paper, pp. 343-354441.
B.P. Finney, N.H. Bigelow, V.A. Barber, M.E. Edwards, 2012. Holocene climate change and carbon cycling in a groundwater-fed, boreal forest lake: Dune Lake, Alaska. Journal of Paleolimnology, 48, pp. 43-54, http://doi.org/10.1007/s10933-012-9617-2.
D. Ford, J. Golonka, 2003. Phanerozoic paleogeography, paleoenvironment and lithofacies maps of the circum-Atlantic margins. Marine and Petroleum Geology, 20, pp. 249-285, http://doi.org/10.1016/S0264-8172(03)00041-2.
P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, K.B. Averyt, 2007. Changes in atmospheric constituents in radiative forcing. 4th Assessment Report of the IPCC WG1: The Physical Science Basis (2007).
P.S. Freitas, L.J. Clarke, H. Kennedy, C.A. Richardson, F. Abrantes, 2006. Environmental and biological controls on elemental (Mg/Ca, Sr/Ca and Mn/Ca) ratios in shells of the king scallop Pecten maximus. Geochimica et Cosmochimica Acta, 70, pp. 5119-5133, http://doi.org/10.1016/j.gca.2006.07.029.
P. Fritz, A.V. Morgan, U. Eicher, J.H. McAndrews, 1987. Stable isotope, fossil coleoptera and pollen stratigraphy in Late Quaternary sediments from Ontario and New York state. Palaeogeography, Palaeoclimatology, Palaeoecology, 58, pp. 183-202, http://doi.org/10.1016/0031-0182(87)90059-9.
G. Gao, W. Zhang, B. Xiang, G. Liu, J. Ren, 2016. Geochemistry characteristics and hydrocarbon-generating potential of lacustrine source rock in Lucaogou Formation of the Jimusaer Sag, Junggar Basin. Journal of Petroleum Science and Engineering, 145, pp. 168-182, http://doi.org/10.1016/j.petrol.2016.03.023.
J.R. Gat, 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 24, pp. 225-262, http://doi.org/10.1146/annurev.earth.24.1.225.
E.L. Grossman, T.E. Yancey, T.E. Jones, P. Bruckschen, B. Chuvashov, S.J. Mazzullo, H. Mii, 2008. Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes. Palaeogeography, Palaeoclimatology, Palaeoecology, 268, pp. 222-233, http://doi.org/10.1016/j.palaeo.2008.03.053.
B. Gu, C.L. Schelske, D.A. Hodell, 2004. Extreme 13C enrichments in a shallow hypereutrophic lake: Implications for carbon cycling. Limnology and Oceanography, 49, pp. 1152-1159, http://doi.org/10.4319/lo.2004.49.4.1152.
P. Güngör Yeşilova, D. Gökmen, 2020. The paleodepositional environment, diagenetic and depositional conditions of the Middle-Late Miocene Koluz gypsum member (NE Van, Eastern Turkey). Carbonates and Evaporites, 35, p. 76, http://doi.org/10.1007/s13146-020-00614-4.
P.C. Hackley, R.T. Ryder, M.H. Trippi, H. Alimi, 2013. Thermal maturity of northern Appalachian Basin Devonian shales: Insights from sterane and terpane biomarkers. Fuel, 106, pp. 455-462, http://doi.org/10.1016/j.fuel.2012.12.032.
T.H.E. Heaton, J.A. Holmes, N.D. Bridgwater, 1995. Carbon and oxygen isotope variations among lacustrine ostracods: implications for palaeoclimatic studies. The Holocene, 5, pp. 428-434, http://doi.org/10.1177/095968369500500405.
A.L. Hillman, M.B. Abbott, M.S. Finkenbinder, J. Yu, 2017. An 8,600 year lacustrine record of summer monsoon variability from Yunnan, China. Quaternary Science Reviews, 174, pp. 120-132, http://doi.org/10.1016/j.quascirev.2017.09.005.
T.W. Horton, W.F. Defliese, A.K. Tripati, C. Oze, 2016. Evaporation induced 18O and 13C enrichment in lake systems: A global perspective on hydrologic balance effects. Quaternary Science Reviews, 131, pp. 365-379, http://doi.org/10.1016/j.quascirev.2015.06.030.
T. Hu, X. Pang, X. Wang, H. Pang, L. Tang, Z. Pan, Y. Wang, W. Shen, H. Jiang, Y. Pang, 2017. Source rock characteristics of Permian Lucaogou Formation in the Jimusar Sag, Junggar Basin, Northwest China, and its significance on tight oil source and occurrence. Geological Journal, 52, pp. 624-645, http://doi.org/10.1002/gj.2818.
H. Irwin, C. Curtis, M. Coleman, 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature, 269, pp. 209-213, http://doi.org/10.1038/269209a0.
R. Jia, M. Gao, X. Peng, D. Chen, H. Zhou, 2009. Microbial Mineralization. Science Press, Beijing (2009)(in Chinese).
Y.Q. Jiang, H.G. Wen, L.Q. Qi, X.X. Zhang, Y. Li, 2012. Salt minerals and their genesis of the permian fengcheng formation in Urho Area, Junggar Basin. Mineralogy and Petrology, 32, pp. 105-114(in Chinese).
Y. Jiao, L. Wu, M. He, M. Roger, M. Wang, Z. Xu, 2007. Occurrence, thermal evolution and primary migration processes derived from studies of organic matter in the Lucaogou source rock at the southern margin of the Junggar Basin, NW China. Science in China - Series D: Earth Sciences, 50, pp. 114-123, http://doi.org/10.1007/s11430-007-6027-9.
Q. Jin, M. Zha, 2000. Co-sedimentation of tertiary evaporites and oil source rocks in the western Qaidam Basin. Scientia Geologica Sinica, 35, pp. 465-473(in Chinese with English abstract).
Q. Jin, G. Zhu, J. Wang, 2008. Deposition and distribution of high-potential source rocks in saline lacustrine environments. Journal of China University of Petroleum, 32, pp. 19-23(in Chinese).
A.B. Jost, R. Mundil, B. He, S.T. Brown, D. Altiner, Y. Sun, D.J. DePaolo, J.L. Payne, 2014. Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes. Earth and Planetary Science Letters, 396, pp. 201-212, http://doi.org/10.1016/j.epsl.2014.04.014.
P. Kankaala, J. Huotari, E. Peltomaa, T. Saloranta, A. Ojala, 2006. Methanotrophic activity in relation to methane efflux and total heterotrophic bacterial production in a stratified, humic, boreal lake. Limnology and Oceanography, 51, pp. 1195-1204, http://doi.org/10.4319/lo.2006.51.2.1195.
M.L. Keith, J.N. Weber, 1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28, pp. 1787-1816, http://doi.org/10.1016/0016-7037(64)90022-5.
K. Kelts, K.J. Hsü, 1978. Freshwater carbonate sedimentation. A. Lerman (Ed.), Lakes-Chemistry, Geology, Physics, Springer, New York, pp. 295-323.
D.V. Kent, G. Muttoni, 2020. Pangea B and the Late Paleozoic Ice Age. Palaeogeography, Palaeoclimatology, Palaeoecology, 553, Article 109753, http://doi.org/10.1016/j.palaeo.2020.109753.
Ş. Keskin, M. Şener, M.F. Şener, M.Z. Öztürk, 2017. Depositional environment characteristics of Ulukışla evaporites, central Anatolia, Turkey. Carbonates and Evaporites, 32, pp. 231-241, http://doi.org/10.1007/s13146-016-0292-7.
D.L. Kidder, T.R. Worsley, 2004. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeography, Palaeoclimatology, Palaeoecology, 203, pp. 207-237, http://doi.org/10.1016/S0031-0182(03)00667-9.
M.E. Kirby, S.R.H. Zimmerman, W.P. Patterson, J.J. Rivera, 2012. A 9170-year record of decadal-to-multi-centennial scale pluvial episodes from the coastal Southwest United States: A role for atmospheric rivers?. Quaternary Science Reviews, 46, pp. 57-65, http://doi.org/10.1016/j.quascirev.2012.05.008.
K. Knittel, A. Boetius, 2009. Anaerobic oxidation of methane: Progress with an unknown process. Annual Review of Microbiology, 63, pp. 311-334, http://doi.org/10.1146/annurev.micro.61.080706.093130.
M. Kovačić, D. Tibljas, D. Pavelić, V. Hajek Tadesse, K. Bakrač, O. Mandic, I. Galović, L. Wacha, R. Filjak, 2017. Early–Middle Miocene Salina-type and open lake deposits. M. Kovačić, L. Wacha, M. Horvat (Eds.), Field Trip Guidebook. 7th International Workshop, Neogene of Central and South-Eastern Europe, Croatian Geological Society, Zagreb, pp. 11-15.
M.G. Lawrence, B.S. Kamber, 2006. The behaviour of the rare earth elements during estuarine mixing—revisited. Marine Chemistry, 100, pp. 147-161, http://doi.org/10.1016/j.marchem.2005.11.007.
M.J. Leng, J.D. Marshall, 2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23, pp. 811-831, http://doi.org/10.1016/j.quascirev.2003.06.012.
H.C. Li, T.L. Ku, 1997. δ13C–δ18O covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 133, pp. 69-80, http://doi.org/10.1016/S0031-0182(96)00153-8.
C. Liu, K. Liu, X. Wang, R. Zhu, L. Wu, X. Xu, 2019. Chemo-sedimentary facies analysis of fine-grained sediment formations: An example from the Lucaogou Fm in the Jimusaer sag, Junggar Basin, NW China. Marine and Petroleum Geology, 110, pp. 388-402, http://doi.org/10.1016/j.marpetgeo.2019.06.043.
D. Liu, Q. Fan, C. Zhang, Y. Gao, W. Du, Y. Song, Z. Zhang, Q. Luo, Z. Jiang, Z. Huang, 2022a. Paleoenvironment evolution of the Permian Lucaogou Formation in the southern Junggar Basin, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 603, Article 111198, http://doi.org/10.1016/j.palaeo.2022.111198.
D. Liu, X. Kong, C. Zhang, J. Wang, D. Yang, X. Liu, X. Wang, Y. Song, 2018. Provenance and geochemistry of Lower to Middle Permian strata in the southern Junggar and Turpan basins: A terrestrial record from mid-latitude NE Pangea. Palaeogeography, Palaeoclimatology, Palaeoecology, 495, pp. 259-277, http://doi.org/10.1016/j.palaeo.2018.01.020.
D. Liu, C. Zhang, E. Yao, Y. Song, Z. Jiang, Q. Luo, 2017. What generated the Late Permian to Triassic unconformities in the southern Junggar Basin and western Turpan Basin: Tectonic uplift, or increasing aridity?. Palaeogeography, Palaeoclimatology, Palaeoecology, 468, pp. 1-17, http://doi.org/10.1016/j.palaeo.2016.11.045.
S.J. Liu, G. Gao, J. Jin, W.Z. Gang, B.L. Xiang, 2022c. Source rock with high abundance of C28 regular sterane in typical brackish-saline lacustrine sediments: Biogenic source, depositional environment and hydrocarbon generation potential in Junggar Basin, China. Journal of Petroleum Science and Engineering, 208, Article 109670, http://doi.org/10.1016/j.petrol.2021.109670.
S.J. Liu, D. Misch, G. Gao, J. Jin, W.Z. Gang, Y.J. Duan, X.S. Wu, B.L. Xiang, M. Wang, Q.Y. Luo, 2022b. Physical properties of lacustrine shale oil: A case study on the lower member of the Lucaogou Formation (Jimusaer Sag, Junggar Basin, NW China). Marine and Petroleum Geology, 145, Article 105888, http://doi.org/10.1016/j.marpetgeo.2022.105888.
S.J. Liu, D. Misch, W.Z. Gang, J. Li, J. Jin, Y.J. Duan, B.L. Xiang, G. Gao, Y.J. Zhang, M. Wang, K.T. Fan, 2023. Evaluation of the tight oil “sweet spot” in the Middle Permian Lucaogou Formation (Jimusaer Sag, Junggar Basin, NW China): Insights from organic petrology and geochemistry. Organic Geochemistry, 177, Article 104570, http://doi.org/10.1016/j.orggeochem.2023.104570.
C. López-Blanco, J. Andrews, P. Dennis, M.R. Miracle, E. Vicente, 2016. North Atlantic Oscillation recorded in carbonate δ18O signature from Lagunillo del Tejo (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 441, pp. 882-889, http://doi.org/10.1016/j.palaeo.2015.10.037.
Q. Luo, L. Gong, Y. Qu, K. Zhang, G. Zhang, S. Wang, 2018. The tight oil potential of the Lucaogou Formation from the southern Junggar Basin, China. Fuel, 234, pp. 858-871, http://doi.org/10.1016/j.fuel.2018.07.002.
Y. Ma, M. Fan, Y. Lu, H. Liu, Y. Hao, Z. Xie, Z. Liu, L. Peng, X. Du, H. Hu, 2016. Climate-driven paleolimnological change controls lacustrine mudstone depositional process and organic matter accumulation: Constraints from lithofacies and geochemical studies in the Zhanhua Depression, eastern China. International Journal of Coal Geology, 167, pp. 103-118, http://doi.org/10.1016/j.coal.2016.09.014.
A.S. Mackenzie, S.C. Brassell, G. Eglinton, J.R. Maxwell, 1982. Chemical fossils: The geological fate of steroids. Science, 217, pp. 491-504, http://doi.org/10.1126/science.217.4559.491.
K.G. MacLeod, P.C. Quinton, D.J. Bassett, 2017. Warming and increased aridity during the earliest Triassic in the Karoo Basin, South Africa. Geology, 45, pp. 483-486, http://doi.org/10.1130/G38957.1.
L. Martin-Bello, C. Arenas, J.E. Andrews, A.M. Alonso-Zarza, A. Marca, 2019. Lacustrine stromatolites as multi-scale recorders of climate change: Insights from the Miocene Ebro Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 530, pp. 312-329, http://doi.org/10.1016/j.palaeo.2019.05.001.
S.J. Mazzullo, 2000. Organogenic dolomitization in peritidal to deep-sea sediments. Journal of Sedimentary Research, 70, pp. 10-23, http://doi.org/10.1306/2DC408F9-0E47-11D7-8643000102C1865D.
S. McLaren, M.W. Wallace, 2010. Plio-Pleistocene climate change and the onset of aridity in southeastern Australia. Global and Planetary Change, 71, pp. 55-72, http://doi.org/10.1016/j.gloplacha.2009.12.007.
P. Meister, M. Gutjahr, M. Frank, S.M. Bernasconi, C. Vasconcelos, J.A. McKenzie, 2011. Dolomite formation within the methanogenic zone induced by tectonically driven fluids in the Peru accretionary prism. Geology, 39, pp. 563-566, http://doi.org/10.1130/G31810.1.
V.A. Melezhik, A.E. Fallick, P.V. Medvedev, V.V. Makarikhin, 1999. Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite–stromatolite–dolomite–`red beds' association in a global context: A case for the world-wide signal enhanced by a local environment. Earth-Science Reviews, 48, pp. 71-120, http://doi.org/10.1016/S0012-8252(99)00044-6.
M. Mello, N. Telnaes, P. Gaglianone, M. Chicarelli, S. Brassell, J. Maxwell, 1988. Organic geochemical characterisation of depositional palaeoenvironments of source rocks and oils in Brazilian marginal basins. Organic Geochemistry, 13, pp. 31-45, http://doi.org/10.1016/0146-6380(88)90023-X.
I. Metcalfe, J.L. Crowley, R.S. Nicoll, M. Schmitz, 2015. High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Research, 28, pp. 61-81, http://doi.org/10.1016/j.gr.2014.09.002.
J.M. Moldowan, W.K. Seifert, E.J. Gallegos, 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bulletin, 69, http://doi.org/10.1306/AD462BC8-16F7-11D7-8645000102C1865D.
J.M. Moldowan, P. Sundararaman, M. Schoell, 1986. Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW-Germany. Organic Geochemistry, 10, pp. 915-926, http://doi.org/10.1016/S0146-6380(86)80029-8.
I.P. Montañez, N.J. Tabor, D. Niemeier, W.A. DiMichele, T.D. Frank, C.R. Fielding, J.L. Isbell, L.P. Birgenheier, M.C. Rygel, 2007. CO2-forced climate and vegetation instability during Late Paleozoic deglaciation. Science, 315, pp. 87-91, http://doi.org/10.1126/science.1134207.
S. Naeher, H. Niemann, F. Peterse, R.H. Smittenberg, P.K. Zigah, C.J. Schubert, 2014. Tracing the methane cycle with lipid biomarkers in Lake Rotsee (Switzerland). Organic Geochemistry, 66, pp. 174-181, http://doi.org/10.1016/j.orggeochem.2013.11.002.
T. Nakazawa, K. Ueno, N. Nonomura, M. Fujikawa, 2015. Microbial community from the Lower Permian (Artinskian–Kungurian) paleoclimatic transition, mid-Panthalassan Akiyoshi atoll, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 420, pp. 116-127, http://doi.org/10.1016/j.palaeo.2014.12.015.
D. Pavelić, M. Kovačić, D. Tibljaš, I. Galić, F. Marković, I. Pavičić, 2022. The transition from a closed to an open lake in the Pannonian Basin System (Croatia) during the Miocene Climatic Optimum: Sedimentological evidence of Early Miocene regional aridity. Palaeogeography, Palaeoclimatology, Palaeoecology, 586, Article 110786, http://doi.org/10.1016/j.palaeo.2021.110786.
K.E. Peters, J.M. Moldowan, 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall Inc., Englewood Cliffs, pp. 100-170.
R.T. Pierrehumbert, D.S. Abbot, A. Voigt, D. Koll, 2011. Climate of the Neoproterozoic. Annual Review of Earth and Planetary Sciences, 39, pp. 417-460, http://doi.org/10.1146/annurev-earth-040809-152447.
T.G. Powell, D.M. McKirdy, 1973. Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia. Nature Physical Science, 243, pp. 37-39, http://doi.org/10.1038/physci243037a0.
L. Qin, Z. Zhang, 2013. Organic petrology and hydrocarbon generation of potential source rocks in Permian formation of Junggar Basin, Northwest in China. Journal of Central South University, 20, pp. 1693-1702, http://doi.org/10.1007/s11771-013-1662-0.
Z. Qiu, Z. Shi, D. Dong, B. Lu, C. Zhang, J. Zhou, H. Wang, B. Xiong, Z. Pang, H. Guo, 2016a. Geological characteristics of source rock and reservoir of tight oil and its accumulation mechanism: A case study of Permian Lucaogou Formation in Jimusar sag, Junggar Basin. Petroleum Exploration and Development, 43, pp. 1013-1024, http://doi.org/10.1016/S1876-3804(16)30118-5.
Z. Qiu, H. Tao, C. Zou, H. Wang, H. Ji, S. Zhou, 2016b. Lithofacies and organic geochemistry of the Middle Permian Lucaogou Formation in the Jimusar Sag of the Junggar Basin, NW China. Journal of Petroleum Science and Engineering, 140, pp. 97-107, http://doi.org/10.1016/j.petrol.2016.01.014.
C.S. Qu, L.W. Qiu, Y.C. Cao, Y.Q. Yang, K.H. Yu, 2019a. Sedimentary environment and the controlling factors of organic-rich rocks in the Lucaogou Formation of the Jimusar Sag, Junggar Basin, NW China. Petroleum Science, 16, pp. 763-775, http://doi.org/10.1007/s12182-019-0353-3.
Y. Qu, H. Tao, D. Ma, T. Wu, J. Qiu, 2019b. Biomarker characteristics and geological significance of middle and upper Permian source rocks in the southeastern Junggar Basin. Petroleum Science and Technology, 37, pp. 2066-2080, http://doi.org/10.1080/10916466.2019.1615950.
S. Šćavničar, E. Krkalo, B. Šćavničar, R. Halle, D. Tibljaš, 1983. Analcime bearing deposits in Poljanska, Slavonia, Northern Croatia. Rad Jazu, Razred Za Prirodne Znanosti, 404, pp. 137-169.
M. Schidlowski, 2000. Carbon isotopes and microbial sediments. R.E. Riding, S.M. Awramik (Eds.), Microbial Sediments, Springer, Berlin Heidelberg, pp. 84-95, http://doi.org/10.1007/978-3-662-04036-2_11.
S. Schmid, 2017. Neoproterozoic evaporites and their role in carbon isotope chemostratigraphy (Amadeus Basin, Australia). Precambrian Research, 290, pp. 16-31, http://doi.org/10.1016/j.precamres.2016.12.004.
S.D. Schoepfer, C.M. Henderson, G.H. Garrison, P.D. Ward, 2012. Cessation of a productive coastal upwelling system in the Panthalassic Ocean at the Permian–Triassic Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 313–314, pp. 181-188, http://doi.org/10.1016/j.palaeo.2011.10.019.
C.J. Schubert, M.J.L. Coolen, L.N. Neretin, A. Schippers, B. Abbas, E. Durisch-Kaiser, B. Wehrli, E.C. Hopmans, J.S.S. Damsté, S. Wakeham, M.M.M. Kuypers, 2006. Aerobic and anaerobic methanotrophs in the Black Sea water column. Environmental Microbiology, 8, pp. 1844-1856, http://doi.org/10.1111/j.1462-2920.2006.01079.x.
J.S. Sinninghe Damsté, A.C.T. Van Duin, D. Hollander, M.E.L. Kohnen, J.W. De Leeuw, 1995. Early diagenesis of bacteriohopanepolyol derivatives: Formation of fossil homohopanoids. Geochimica et Cosmochimica Acta, 59, pp. 5141-5157, http://doi.org/10.1016/0016-7037(95)00338-X.
B.A. Steinman, M.B. Abbott, D.B. Nelson, N.D. Stansell, B.P. Finney, D.J. Bain, M.F. Rosenmeier, 2013. Isotopic and hydrologic responses of small, closed lakes to climate variability: Comparison of measured and modeled lake level and sediment core oxygen isotope records. Geochimica et Cosmochimica Acta, 105, pp. 455-471, http://doi.org/10.1016/j.gca.2012.11.026.
M. Stiller, J.S. Rounick, S. Shasha, 1985. Extreme carbon-isotope enrichments in evaporating brines. Nature, 316, pp. 434-435, http://doi.org/10.1038/316434a0.
J.R. Stone, S.C. Fritz, 2006. Multidecadal drought and Holocene climate instability in the Rocky Mountains. Geology, 34, p. 409, http://doi.org/10.1130/G22225.1.
F. Sun, W. Hu, J. Cao, X. Wang, Z. Zhang, J. Ramezani, S. Shen, 2022. Sustained and intensified lacustrine methane cycling during Early Permian climate warming. Nature Communications, 13, p. 4856, http://doi.org/10.1038/s41467-022-32438-2.
F. Sun, W. Hu, X. Wang, J. Cao, B. Fu, H. Wu, S. Yang, 2021. Methanogen microfossils and methanogenesis in Permian lake deposits. Geology, 49, pp. 13-18, http://doi.org/10.1130/G47857.1.
F. Sun, W. Hu, X. Wang, Z. Hu, H. Wu, Y. Guo, G. Wei, 2024. Methanogen-mediated dolomite precipitation in an early Permian lake in northwestern China. Geological Society of America Bulletin, 136 (7–8), pp. 2637-2645, http://doi.org/10.1130/B37156.1.
Y. Sun, M.M. Joachimski, P.B. Wignall, C. Yan, Y. Chen, H. Jiang, L. Wang, X. Lai, 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science, 338, pp. 366-370, http://doi.org/10.1126/science.1224126.
M.R. Talbot, 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology, 80, pp. 261-279, http://doi.org/10.1016/0168-9622(90)90009-2.
S. Tao, D. Tang, H. Xu, J. Liang, X. Shi, 2013a. Organic geochemistry and elements distribution in Dahuangshan oil shale, southern Junggar Basin: Origin of organic matter and depositional environment. International Journal of Coal Geology, 115, pp. 41-51, http://doi.org/10.1016/j.coal.2013.05.004.
S. Tao, D. Tang, H. Xu, J. Liang, X. Shi, 2013b. Organic geochemistry and elements distribution in Dahuangshan oil shale, southern Junggar Basin: Origin of organic matter and depositional environment. International Journal of Coal Geology, 115, pp. 41-51, http://doi.org/10.1016/j.coal.2013.05.004.
S. Tao, Y. Xu, D. Tang, H. Xu, S. Li, S. Chen, W. Liu, Y. Cui, M. Gou, 2017. Geochemistry of the Shitoumei oil shale in the Santanghu Basin, Northwest China: Implications for paleoclimate conditions, weathering, provenance and tectonic setting. International Journal of Coal Geology, 184, pp. 42-56, http://doi.org/10.1016/j.coal.2017.11.007.
H.L. ten Haven, J.W. de Leeuw, J. Rullkötter, J.S.S. Damsté, 1987. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature, 330, pp. 641-643, http://doi.org/10.1038/330641a0.
H. Ullah, Z. Jianhua, M. Kashif, S.A. e Room, Z. Zafar, S.U. Rehman, 2023. Characteristics and prediction of paleo-environment of Eocene Jatta Gypsum, Kohat Basin, Pakistan. Arabian Journal of Geosciences, 16, p. 364, http://doi.org/10.1007/s12517-023-11415-z.
B. Valero-Garcés, A. Delgado-Huertas, N. Ratto, A. Navas, L. Edwards, 2000. Paleohydrology of Andean saline lakes from sedimentological and isotopic records, Northwestern Argentina. Journal of Paleolimnology, 24, pp. 343-359, http://doi.org/10.1023/A:1008146122074.
I. Vanwonterghem, P.N. Evans, D.H. Parks, P.D. Jensen, B.J. Woodcroft, P. Hugenholtz, G.W. Tyson, 2016. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nature Microbiology, 1, Article 16170, http://doi.org/10.1038/nmicrobiol.2016.170.
M. Vazquez-Urbez, C. Arenas, G. Pardo, J. Perez-Rivares, 2013. The effect of drainage reorganization and climate on the sedimentologic evolution of intermontane lake systems: The final fill stage of the Tertiary Ebro Basin (Spain). Journal of Sedimentary Research, 83, pp. 562-590, http://doi.org/10.2110/jsr.2013.47.
J.K. Volkman, 1986. A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry, 9, pp. 83-99, http://doi.org/10.1016/0146-6380(86)90089-6.
J.K. Volkman, S.M. Barrett, S.I. Blackburn, M.P. Mansour, E.L. Sikes, F. Gelin, 1998. Microalgal biomarkers: A review of recent research developments. Organic Geochemistry, 29, pp. 1163-1179, http://doi.org/10.1016/S0146-6380(98)00062-X.
M.S. Wang, 2017. Minerals of the Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin and their indicating significance. Geological Review, 63, pp. 305-306.
W. Wang, H. Cui, J. Tan, J. Liu, X. Song, J. Wang, L. Chen, 2023. Permian cyanobacterial blooms resulted in enrichment of organic matter in the Lucaogou Formation in the Junggar Basin, NW China. Minerals, 13, p. 537, http://doi.org/10.3390/min13040537.
Y. Wang, S. Yang, S. Zhang, X. Huang, M. Sun, Z. Ding, 2022. Early–Middle Permian drying in the North China Block induced by large igneous provinces. Palaeogeography, Palaeoclimatology, Palaeoecology, 592, Article 110922, http://doi.org/10.1016/j.palaeo.2022.110922.
W. Wei, T.J. Algeo, 2020. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochimica et Cosmochimica Acta, 287, pp. 341-366, http://doi.org/10.1016/j.gca.2019.06.034.
W. Wei, T.J. Algeo, Y.B. Lu, Y.C. Lu, H. Liu, S. Zhang, L. Peng, J. Zhang, L. Chen, 2018. Identifying marine incursions into the Paleogene Bohai Bay Basin lake system in northeastern China. International Journal of Coal Geology, 200, pp. 1-17, http://doi.org/10.1016/j.coal.2018.10.001.
A. Wu, J. Cao, J. Zhang, T. Wu, Y. Wang, 2022. Origin of microbial–hydrothermal bedded dolomites in the Permian Lucaogou Formation lacustrine shales, Junggar Basin, NW China. Sedimentary Geology, 440, Article 106260, http://doi.org/10.1016/j.sedgeo.2022.106260.
H. Wu, W. Hu, J. Cao, Xiaolin Wang, Xulong Wang, Z. Liao, 2016. A unique lacustrine mixed dolomitic-clastic sequence for tight oil reservoir within the Middle Permian Lucaogou Formation of the Junggar Basin, NW China: Reservoir characteristics and origin. Marine and Petroleum Geology, 76, pp. 115-132, http://doi.org/10.1016/j.marpetgeo.2016.05.007.
L. Xia, J. Cao, E.E. Stüeken, D. Zhi, T. Wang, W. Li, 2020. Unsynchronized evolution of salinity and pH of a Permian alkaline lake influenced by hydrothermal fluids: A multi-proxy geochemical study. Chemical Geology, 541, Article 119581, http://doi.org/10.1016/j.chemgeo.2020.119581.
W. Xiao, C. Han, C. Yuan, M. Sun, S. Lin, H. Chen, Z. Li, J. Li, S. Sun, 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32, pp. 102-117, http://doi.org/10.1016/j.jseaes.2007.10.008.
W. Xiao, B. Huang, C. Han, S. Sun, J. Li, 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research, 18, pp. 253-273, http://doi.org/10.1016/j.gr.2010.01.007.
X. Xie, T. Borjigin, Q. Zhang, Z. Zhang, J. Qin, L. Bian, J.K. Volkman, 2015. Intact microbial fossils in the Permian Lucaogou Formation oil shale, Junggar Basin, NW China. International Journal of Coal Geology, 146, pp. 166-178, http://doi.org/10.1016/j.coal.2015.05.011.
Z. Xie, H. Tao, Y. Qu, T. Wu, D. Ma, T. Wang, Z. Qin, L. Su, Z. Li, 2023. Synergistic evolution of palaeoenvironment—Bionts and hydrocarbon generation of Permian saline lacustrine source rocks in Jimusar Sag, Junggar Basin. Energies, 16, p. 3797, http://doi.org/10.3390/en16093797.
Y. Yang, L. Qiu, M. Wan, X. Jia, Y. Cao, D. Lei, C. Qu, 2019. Depositional model for a salinized lacustrine basin: The Permian Lucaogou Formation, Jimsar Sag, Junggar Basin, NW China. Journal of Asian Earth Sciences, 178, pp. 81-95, http://doi.org/10.1016/j.jseaes.2018.08.021.
Z. Yang, X. Wang, H. Ge, J. Zhu, Y. Wen, 2022. Study on evaluation method of fracture forming ability of shale oil reservoirs in Fengcheng Formation, Mahu sag. Journal of Petroleum Science and Engineering, 215, Article 110576, http://doi.org/10.1016/j.petrol.2022.110576.
G. Yao, L. Li, M. Cai, Y. Liu, 2017. Mechanisms of salinization in a middle Eocene lake in the Tanggu area of the Huanghua Depression. Marine and Petroleum Geology, 86, pp. 155-167, http://doi.org/10.1016/j.marpetgeo.2017.05.028.
T. Yin, S. Li, 2022. Application of sulfur isotopes for analysing the sedimentary environment of evaporite in low-altitude intermountain basins: A case study on the Kumishi Basin, Northwest China. Carbonates and Evaporites, 37, p. 11, http://doi.org/10.1007/s13146-022-00758-5.
K. Yu, Y. Cao, L. Qiu, P. Sun, X. Jia, M. Wan, 2018. Geochemical characteristics and origin of sodium carbonates in a closed alkaline basin: The Lower Permian Fengcheng Formation in the Mahu Sag, northwestern Junggar Basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 511, pp. 506-531, http://doi.org/10.1016/j.palaeo.2018.09.015.
W. Zeng, Z. Zhang, B. Wang, X. Chen, R. Zheng, G. Fu, Y. Jin, 2023. Formation mechanism of organic-rich mixed sedimentary rocks in saline lacustrine basin, Permian Lucaogou Formation, Jimsar Sag, Junggar Basin, Northwest China. Marine and Petroleum Geology, 156, Article 106452, http://doi.org/10.1016/j.marpetgeo.2023.106452.
Y.F. Zeng, W.J. Xia, 1986. Sedimentary Petrology. Geological Publishing House, Beijing (1986)(in Chinese).
J. Zhang, J. Zhou, H. Wang, J. Mi, J. Cao, 2017. The discovery of light oil in the overlap-erosion zones of the northwestern Junggar Basin and its significance. Geological Bulletin of China, 36, pp. 493-502.
M. Zhang, Z. Li, J. Yin, 2018. Sedimentary and geochemical characteristics of oil shale in the Permian Lucaogou Formation in the southeastern Junggar Basin, Northwest China: Implications for sedimentary environments. Oil Shale, 35, p. 97, http://doi.org/10.3176/oil.2018.2.01.
M. Zhang, X. Liu, Z. Yu, Y. Wang, 2022. Paleolake evolution in response to climate change since middle MIS 3 inferred from Jilantai Salt Lake in the marginal regions of the ASM domain. Quaternary International, 607, pp. 48-57, http://doi.org/10.1016/j.quaint.2021.06.017.
X.B. Zhang, Z.Y. Wang, Y.C. Xu, 2000. Finding of the dolostones with special carbon isotopic composition and its significance. Acta Sedimentologica Sinica, 18, pp. 449-452(in Chinese with English abstract).
R. Zhao, J. Zhang, C. Zhou, Z. Zhang, S. Chen, D.F. Stockli, C. Olariu, R. Steel, H. Wang, 2020. Tectonic evolution of Tianshan-Bogda-Kelameili mountains, clastic wedge basin infill and chronostratigraphic divisions in the source-to-sink systems of Permian–Jurassic, southern Junggar Basin. Marine and Petroleum Geology, 114, Article 104200, http://doi.org/10.1016/j.marpetgeo.2019.104200.
Z. Zhu, J. Chen, Y. Zeng, 2013. Abnormal positive δ13C values of carbonate in Lake Caohai, Southwest China, and their possible relation to lower temperature. Quaternary International, 286, pp. 85-93, http://doi.org/10.1016/j.quaint.2012.06.004.
G. Zwart, B. Crump, M. Kamst-van Agterveld, F. Hagen, S. Han, 2002. Typical freshwater bacteria: An analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology, 28, pp. 141-155, http://doi.org/10.3354/ame028141. |
|
|
|