|
|
Extensive carbon cycle between peatland and vegetation: Insights from high net primary productivity of the Middle Jurassic in northwestern China |
Yang-Yang Huanga,b, Hao Liangc, Long-Yi Shaoa,b,*, Bin Yangd, Baruch Spiroe,f, Jia-Min Zhoua,b, Jing Lua,b, Tan-Guang Fanc |
a State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Beijing 100083, China;
b College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;
c Research Institute of Exploration & Development, PetroChina Tuha Oilfield Company, Hami 839009, China;
d Exploration Company, PetroChina Tuha Oilfield Company, Hami 839009, China;
e Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK;
f School of Marine Sciences University of Haifa, Mount Carmel Haifa, Israel |
|
|
Abstract Peatlands have obvious carbon storage capacity and are crucial in mitigating global climate change. As the end-product of peatlands, coals have preserved a large amount of palaeoenvironmental information. The carbon accumulation rate and the net primary productivity (NPP) of coal-forming peatlands can be used as proxies for recovering palaeoenvironments. A super-thick coal seam (42○350N, 91○250E) was developed in the Middle Jurassic Xishanyao Formation in the Shaerhu coalfield in the southern margin of the Tuha (Turpan-Hami) Basin, northwestern China. In this study, we use the time series analysis to identify the periods of Milankovitch orbital cycles in the Gamma-ray curve of this super-thick (124.85 m) coal and then use the obtained cycle periods of 405 ka, 173 ka, 44 ka, 37.6 ka, 22.5 ka to calculate the timeframe of the coal- forming peatlands which ranges from 2703.44 to 2975.11 ka. Considering that the carbon content of the coal seam is 78.32% and the carbon loss during the coalification is about 25.80%, the carbon accumulation rate of the targeted coal seam is estimated to be 58.47-64.34 g C/m2·a, and the NPP is estimated to be 252.28-277.63 g C/m2·a. The main palaeoenvironmental factors controlling the NPP of peatlands are CO2 content, palaeolatitude and palaeotemperature. The reduced NPP values of the palaeo-peatlands in the Shaerhu coalfield can be attributed to the mid-palaeolatitude and/or too low atmospheric CO2 contents. To a certain extent, the NPP of palaeo-peatlands re?ects the changes in atmospheric CO2, which can further reveal the dynamic response of the global carbon cycle to climate change. Therefore, predicting the level of NPP in the Middle Jurassic and studying the final destination of carbon in the ecosystem are beneficial to under- standing the coal-forming process and palaeoenvironment.
|
Received: 04 March 2024
|
Corresponding Authors:
* College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), China. E-mail address: ShaoL@cumtb.edu.cn (L.-Y. Shao).
|
|
|
|
X.J. Bao, Y.Y. Hu, C.R. Scotese, X. Li, J.Q. Guo, J.J. Lan, Q.F. Lin, S. Yuan, M.Y. Wei, Z.B. Li, K. Man, Z. Yin, J. Han, J. Zhang, Q. Wei, Y.G. Liu, J. Yang, J. Nie, 2023. Quantifying climate conditions for the formation of coals and evaporites. National Science Review, 10 (6), http://doi.org/10.1093/nsr/nwad051, 051.
D.J. Beerling, F.I. Woodward, 2001. Vegetation and the Terrestrial Carbon Cycle: The First 400 Million Years. Cambridge University Press, Cambridge (2001)0–416.
A. Berger, M.F. Loutre, V. Dehant, 1989. Pre-Quaternary Milankovitch frequencies. Nature, 342 (6246), http://doi.org/10.1038/342133b0133–133.
A.F. Bouwman, 1990. Soils and the Greenhouse Effect. John Wiley & Sons Inc, United States (1990)0–596.
M.K. Cao, F.I. Woodward, 1998a. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Global Change Biology, 4 (2), pp. 185-198, http://doi.org/10.1046/j.1365-2486.1998.00125.x.
M.K. Cao, F.I. Woodward, 1998b. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393 (6682), pp. 249-252, http://doi.org/10.1038/30460.
H. Cheng, H.Y. Li, L.J. Sha, A. Sinha, Z.G. Shi, Q.Z. Yin, Z.Y. Lu, D.B. Zhao, Y.J. Cai, Y.Y. Hu, Q.Z. Hao, J. Tian, G. Kathayat, X.Y. Dong, J.Y. Zhao, H.W. Zhang, 2022. Milankovitch theory and monsoon. The Innovation, 3 (6), Article 100338, http://doi.org/10.1016/j.xinn.2022.100338.
K.M. Cohen, S.M. Finney, P.L. Gibbard, J. Fan, 2013. updated. The ICS International Chronostratigraphic Chart. Episodes Journal of International Geoscience, 36, pp. 199-204, http://doi.org/10.18814/epiiugs/2013/v36i3/002.
E.A. Davidson, I.A. Janssens, 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440 (7081), pp. 165-173, http://doi.org/10.1038/nature04514.
S.H. Deng, 2003. Jurassic in Northern China. Ⅰ Stratigraphic Summary. Petroleum Industry Press, Beijing (2003)0–201 pp (in Chinese).
N.M. Denson, G.O. Bachman, H.D. Zeller, 1954. Uranium-bearing lignite and its relation to the White River and Arikaree formations in northwestern South Dakota and adjacent states. Trace Elements Investigations, United States Department of The Interior Geological Survey, United States, http://doi.org/10.3133/tei4670–91.
G. Dera, B. Brigaud, F. Monna, R. Laffont, E. Pucéat, J.-F. Deconinck, P. Pellenard, M.M. Joachimski, C. Durlet, 2011. Climatic ups and downs in a disturbed Jurassic world. Geology, 39 (3), pp. 215-218, http://doi.org/10.1130/G31579.1.
C. Diessel, R. Boyd, J. Wadsworth, D. Leckie, G. Chalmers, 2000. On balanced and unbalanced accommodation/peat accumulation ratios in the Cretaceous coals from Gates Formation, Western Canada, and their sequence-stratigraphic significance. International Journal of Coal Geology, 43 (1), pp. 143-186, http://doi.org/10.1016/S0166-5162(99)00058-0.
C.F.K. Diessel, 1992. Coal-Producing Sedimentary Environments. Springer, Berlin, pp. 349-459, http://doi.org/10.1007/978-3-642-75668-9_7.
S.H. Dong, F.W. Zhang, L.Y. Wang, 2012. Coalfield Logging Methods and Principles. China University of Mining and Technology Press, Nanjing (2012)0–199 pp (in Chinese).
J.Y. Fang, J.H. Ke, Z.Y. Tang, A.P. Chen, 2001. Implications and estimations of four terrestrial productivity parameters. Acta Phytoecologica Sinica, 25 (4), pp. 414-419(in Chinese with English abstract).
S.F. Greb, W.A. DiMichele, R.A. Gastaldo, 2006. Evolution and importance of wetlands in Earth history. S.F. Greb, W.A. DiMichele (Eds.), Wetlands through Time, Geological Society of America, America, http://doi.org/10.1130/2006.2399(010–304.
C.J. Huang, 2014. The current status of cyclostratigraphy and astrochronology in the Mesozoic. Earth Science Frontiers, 21 (2), pp. 48-66, http://doi.org/10.13745/j.esf.2014.02.005(in Chinese with English abstract).
Z.J. Jin, Y.W. Zhang, S.P. Chen, 2005. Tectonic-sedimentary fluctuation processes in the Tarim Basin. Science China Earth Sciences, 35 (6), pp. 530-539, http://doi.org/10.1360/zd2005-35-6-530(in Chinese with English abstract).
Z.J. Jin, Y.W. Zhang, G.C. Liu, J.C. Li, G.P. Miansnigova, B.I. Shbilman, 1996. Physical analysis method for sedimentary basin——wave analysis. Geological Review, 42 (S1), pp. 170-179, http://doi.org/10.16509/j.georeview.1996.s1.027(in Chinese with English abstract).
K. Kodama, L. Hinnov, 2014. Rock Magnetic Cyclostratigraphy. John Wiley & Sons, Ltd, America, pp. 52-89, http://doi.org/10.1002/9781118561294.ch4.
D.J. Large, T. Jones, J. Briggs, J. Macquaker, B. Spiro, 2004. Orbital tuning and correlation of 1.7 m.y. of continuous carbon storage in an early Miocene peatland. Geology, 32 (10), pp. 873-876, http://doi.org/10.1130/G20824.1.
D.J. Large, 2007. A 1.16 Ma record of carbon accumulation in western European peatland during the Oligocene from the Ballymoney lignite, Northern Ireland. Journal of the Geological Society, 164 (6), pp. 1233-1240, http://doi.org/10.1144/0016-76492006-148.
D.J. Large, C. Marshall, 2015. Use of carbon accumulation rates to estimate the duration of coal seams and the influence of atmospheric dust deposition on coal composition. Geological Society of London Special Publications, 404 (1), pp. 303-315, http://doi.org/10.1144/SP404.15.
J. Laskar, P. Robutel, F. Joutel, M. Gastineau, A.C.M. Correia, B. Levrard, 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428 (1), pp. 261-285, http://doi.org/10.1051/0004-6361:20041335.
L.H. Li, Y. Zhang, T.J. Zhou, K.C. Wang, C. Wang, T. Wang, L.W. Yuan, K.X. An, C.H. Zhou, G.N. Lü, 2022. Mitigation of China's carbon neutrality to global warming. Nature Communications, 13, p. 5315, http://doi.org/10.1038/s41467-022-33047-9.
M.S. Li, L. Hinnov, L. Kump, 2019a. Acycle: Time-series analysis software for paleoclimate research and education. Computers & Geosciences, 127 (C), pp. 12-22, http://doi.org/10.1016/j.cageo.2019.02.011.
M.S. Li, C.J. Huang, J. Ogg, Y. Zhang, L. Hinnov, H.C. Wu, Z.Q. Chen, Z.Y. Zou, 2019b. Paleoclimate proxies for cyclostratigraphy: comparative analysis using a Lower Triassic marine section in South China. Earth-Science Reviews, 189, pp. 125-146, http://doi.org/10.1016/j.earscirev.2019.01.011.
Y.N. Li, L.Y. Shao, Z.M. Yan, H.H. Hou, Y. Tang, D.J. Large, 2018. Net primary productivity and its control of the Middle Jurassic peatlands: An example from the southern Junggar coalfield. Science China Earth Sciences, 48 (10), pp. 1324-1334, http://doi.org/10.1360/N072017-00407(in Chinese with English abstract).
Z. Liu, Z. Deng, G. He, H.L. Wang, X. Zhang, J. Lin, Y. Qi, X. Liang, 2022. Challenges and opportunities for carbon neutrality in China. Nature Reviews Earth & Environment, 3 (2), pp. 141-155, http://doi.org/10.1038/s43017-021-00244-x.
Y.Q. Luo, E.S. Weng, 2011. Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends in Ecology & Evolution, 26 (2), pp. 96-104, http://doi.org/10.1016/j.tree.2010.11.003.
P.D. Moore, 1987. Ecological and hydrological aspects of peat formation. Geological Society, 32 (1), pp. 7-15, http://doi.org/10.1144/GSL.SP.1987.032.01.02.
National Stratigraphic Commission, 2018. Chinese Stratigraphic Table (2014) Description. Geological Press, Beijing (2018)0–488 pp (in Chinese).
L. Nordt, D. Breecker, J. White, 2022. Jurassic greenhouse ice-sheet fluctuations sensitive to atmospheric CO2 dynamics. Nature Geoscience, 15 (1), pp. 54-59, http://doi.org/10.1038/s41561-021-00858-2.
J.G. Ogg, G.M. Ogg, F.M. Gradstein, 2016. 12 – Jurassic. J.G. Ogg, G.M. Ogg, F.M. Gradstein (Eds.), A Concise Geologic Time Scale, Elsevier, Australia, pp. 151-166, http://doi.org/10.1016/B978-0-444-59467-9.00012-1.
A.V. Oppenheim, A.S. Willsky, S.H. Nawab, 2013. Translation by Liu Shutang. Signals and Systems. (second ed.), Electronic Industry Press, Beijing (2013)0–605 pp (in Chinese).
S. Rodionov, 2006. Use of prewhitening in climate regime shift detection. Geophysical Research Letters, 33 (12), Article L12707, http://doi.org/10.1029/2006GL025904.
L.Y. Shao, P.F. Zhang, J. Hilton, R. Gayer, Y.B. Wang, C.Y. Zhao, Z. Luo, 2003. Paleoenvironments and paleogeography of the Lower and lower Middle Jurassic coal measures in the Turpan-Hami oil-prone coal basin, northwestern China. AAPG Bulletin, 87 (2), pp. 335-355, http://doi.org/10.1306/09160200936.
L.Y. Shao, H. Wang, D.J. Large, 2011. Net primary productivity and its control of the Late Permian peatlands in Southwestern China. Journal of Palaeogeography, 13 (5), pp. 473-480(in Chinese with English abstract).
L.Y. Shao, X.T. Wang, D.D. Wang, M.P. Li, S. Wang, Y.J. Li, K. Shao, C. Zhang, C.X. Gao, D.X. Dong, A.G. Cheng, J. Lu, C.W. Ji, D. Gao, 2020. Sequence stratigraphy, paleogeography, and coal accumulation regularity of major coal-accumulating periods in China. International Journal of Coal Science & Technology, 7 (2), pp. 240-262, http://doi.org/10.1007/s40789-020-00341-0.
L.Y. Shao, X.Y. Dang, X.Y. Gao, D.D. Wang, H. Wen, X.T. Wang, D. Gao, J. Lu, 2022a. Genetic mechanism of thick coal seams: Astronomical-forcing superimposed multi-staged swamp model. Coal Science and Technology, 50 (1), pp. 186-195(in Chinese with English abstract).
L.Y. Shao, H. Wen, X.Y. Gao, B. Spiro, X.T. Wang, Z.M. Yan, D.J. Large, 2022b. Identification of Milankovitch cycles and calculation of net primary productivity of paleo-peatlands using geophysical logs of coal seams. Acta Geologica Sinica - English Edition, 96 (6), pp. 1830-1841, http://doi.org/10.1111/1755-6724.14966.
D. Waltham, 2015. Milankovitch period uncertainties and their impact on cyclostratigraphy. Journal of Sedimentary Research, 85 (8), pp. 990-998https://doi.org/2015082419092513000.
S.X. Wang, 2013. Geological and tectonic evolution factures and coal accumulating and forming rule in the southern margin of Turpan-Hami Basin, Xinjiang. The Doctoral’s Dissertation of Jilin University (2013)0–108 (in Chinese with English abstract).
G.M. Woodwell, R.H. Whittaker, W.A. Reiners, G.E. Likens, C.C. Delwiche, D.B. Botkin, 1978. The biota and the world carbon budget. Science, 199 (4325), pp. 141-146, http://doi.org/10.1126/science.199.4325.141.
H.C. Wu, S.H. Zhang, Q.L. Feng, N.Q. Fang, T.S. Yang, H.Y. Li, 2011. Theoretical basis, research advancement and prospects of cyclostratigraphy. Earth Science - Journal of China University of Geosciences, 36 (3), pp. 409-428(in Chinese with English abstract).
Z.M. Yan, L.Y. Shao, S. Wang, D.J. Large, H. Wang, Q.P. Sun, 2016. Net primary productivity and its control factors of Early Cretaceous peatlands: Evidence from No.6 coal in the Jiegalangtu sag of the Erlian Basin. Acta Sedimentologica Sinca, 34 (6), pp. 1068-1076, http://doi.org/10.14027/j.cnki.cjxb.2016.06.006(in Chinese with English abstract).
Q. Yang, D.X. Han, 1979. Coalfield Geology in China: Previous. Coal Industry Press, Beijing (1979)0–261 pp (in Chinese).
H. Zhang, Z.T. Guo, Y. Zhao, 2023. Peatland carbon cycling and its contribution to carbon peak and carbon neutrality. Quaternary Sciences, 43 (2), pp. 324-335(in Chinese with English abstract).
P.F. Zhang, K.L. Jin, T. Wu, C.G. Wang, 1997. Study on Sedimentology and Oil Source from Jurassic Coal-Bearing Series in Tuha Basin, Northwestern China. Coal Industry. Press, Beijing (1997)0–269 pp (in Chinese).
R. Zhang, Z.J. Jin, M. Gillman, Q.Y. Liu, R. Wei, P. Li, Z.H. Zhang, 2023. Long-term cycles of the Solar System concealed in the Mesozoic sedimentary basin record. Science China Earth Sciences, 66 (2), pp. 358-376, http://doi.org/10.1007/s11430-021-9994-y(in Chinese with English abstract).
Y.F. Zhang, 2021. Sedimentologic Analysis and Application of Logging Data. Petroleum Industry Press, Beijing (2021)0-128 pp (in Chinese). |
|
|
|