Algeo T.J., Marenco P.J., Saltzman M.R., 2016. Co-evolution of oceans, climate, and the biosphere during the ‘Ordovician Revolution’: A review.Palaeogeography, Palaeoclimatology, Palaeoecology, 458, 1-11.
Anderson R.Y., Dean W.E., 1988. Lacustrine varve formation through time.Palaeogeography, Palaeontology, Palaeoecology, 62(1-4), 215-235.
Armstrong H.A., Turner B.R., Makhlouf I.M., Weedon G.P., Weedon G.P., Williams M., Al Smadi A., Salah A.A., 2005. Origin, sequence stratigraphy and depositional environment of an upper Ordovician (Hirnantian) deglacial black shale, Jordan.Palaeogeography, Palaeoclimatology, Palaeoecology, 220(3-4), 273-289.
Armstrong H.A., Abbott G.D., Turner B.R., Makhlouf I.M., Muhammad A.B., Pedentchouk N., Peters H., 2009. Black shale deposition in an Upper Ordovician-Silurian permanently stratified, peri-glacial basin, southern Jordan.Palaeogeography, Palaeoclimatology, Palaeoecology, 273, 368-377.
Bennett M.R., Doyle P., Mather A.E., 1996. Dropstones: their origin and significance.Palaeogeography, Palaeoclimatology, Palaeoecology, 121(3-4), 331-339.
Berner R.A.,1991. A model for atmospheric CO2 over Phanerozoic time. American Journal of Science, 291, 339-376.
Blumenberg M., Wiese F., 2012. Imbalanced nutrients as triggers for black shale formation in a shallow shelf setting during the OAE2 (Wunstorf, Germany).Biogeosciences, 9, 4139-4153.
Bolton C.T., Lawrence K.T., Gibbs S.J., Wilson P.A., Cleaveland L.C., Herbert T.D., 2010. Glacial-interglacial productivity changes recorded by alkenones and microfossils in late Pliocene eastern equatorial Pacific and Atlantic upwelling zones.Earth and Planetary Science Letters, 295, 401-411.
Bond D.P., Grasby S.E., 2020. Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation.Geology, 48, 777-781.
Boulesteix K., Poyatos-Moré M., Hodgson D.M., Flint S., Taylor K.G., 2020. Fringe or background: Characterizing deep-water mudstones beyond the basin-floor fan sandstone pinchout.Journal of Sedimentary Research, 90(12), 1678-1705.
Bouma A.H.,1962. Sedimentology of some flysch deposits: A graphic approach to facies interpretation. Elsevier, Amsterdam/New York, 168.
Brenchley P.J., Marshall J.D., Carden G.A.F., Robertson D.B.R., Long D.G.F., Meidla T., Hints L., Anderson T.F., 1994. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period.Geology, 22, 295-298.
Brenchley P.J., Storch P., 1989. Environmental changes in the Hirnantian (upper Ordovician) of the Praue Basin, Czechoslovakia.Geological Journal, 24, 165-181.
Buggisch W., Joachimski M.M., Lehnert O., Bergstrom S.M., Repetski J.E., Webers G.F., 2010. Did intense volcanism trigger the first Late Ordovician icehouse?.Geolgoy, 38(4): 327-330.
Chen X., Rong J.Y., Li Y., Boucot A.J., 2004. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition.Palaeogeography, Palaeoclimatology, Palaeoecology, 204, 353-372.
Chen X., Zhang Y., Fan J., Tang L., Sun H., 2012. Onset of the Kwangsian Orogeny as evidenced by biofacies and lithofacies.Science China Earth Sciences, 55, 1592-1600.
Chen X., Fan J., Chen Q., Tang L., Hou X., 2014. Toward a stepwise Kwangsian Orogeny.Science China Earth Sciences, 57, 379-387.
Chen X., Fan J.X., Zhang Y.D., Liang F., Guo W., Zhao Q., Nie H.K., Wen Z.D., Sun Z.Y., 2015. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze Platform.Journal of Stratigraphy, 39(4), 351-358.
Cocks L.R.M., Torsvik T.H., 2021. Ordovician palaeogeography and climate change. Gondwana Research, 100, 53-72.
Collinson J., Mountney N., 2019. Sedimentary structures (Fourth Edition). Liverpool University Press, London.
Dahl T.W., Hammarlund E.U., Rasmussen C.M.Ø., Bond D.P.G., Canfield D.E., 2021. Sulfidic anoxia in the oceans during the Late Ordovician mass extinctions - insights from molybdenum and uranium isotopic global redox proxies.Earth-Science Reviews, 220, 103748.
Delabroye A., Vecoli M., 2010. The end-Ordovician glaciation and the Hirnantian stage: a global review and questions about Late Ordovician event stratigraphy.Earth-Science Reviews, 98(3-4), 269-282.
Faugères J.C., Stow D.A.V., 1993. Bottom-current-controlled sedimentation: A synthesis of the contourite problem.Sedimentary Geology, 82, 287-297.
Finnegan S., Bergmann K., Eiler J.M., Jones D.S., Fike D.A., Eisenman I., Hughes N.C., Tripati A.K., Fischer W.W., 2011. The magnitude and duration of Late Ordovician Early Silurian glaciation.Science, 331, 903-906.
Fortey R.A., Cocks L.R.M., 2005. Late Ordovician global warming-the Boda event. Geology 33, 405-408.
Ge X., Mou C., Yu Q., Liu W., Men X., He J., 2019. The geochemistry of the sedimentary rocks from the Huadi No. 1 well in the Wufeng-Longmaxi formations (Upper Ordovician-Lower Silurian), South China, with implications for paleoweathering, provenance, tectonic setting and paleoclimate.Marine and Petroleum Geology, 103, 646-660.
Haq B.U., Schutter S.R., 2008. A chronology of Paleozoic sea-level changes.Science, 322(5898), 64-68.
Harper D.A.T., Hammarlund E.U., Rasmussen C.M. Ø., 2014. End Ordovician extinctions: A coincidence of causes.Gondwana Research, 25, 1294-1307.
Huang H.Y., He D.F., Li D., Li Y.Q., Zhang W.K., Chen J.J., 2020. Geochemical characteristics of organic-rich shale, Upper Yangtze Basin: Implications for the Later Ordovician-Early Silurian orogeny in South China.Palaeogeography, Palaeoclimatology, Palaeoecology, 554(15), 109822.
Jenkyns H.C.,2010. Geochemistry of oceanic anoxic events.Geochemistry, Geophysics, Geosystems 11(3), 1-30.
Jeong S.W., Locat J., Leroueil S., Malet J.P., 2010. Rheological properties of fine-grained sediment: The roles of texture and mineralogy.Canadian Geotechnical Journal, 47(10), 1085-1100.
Johnson M.E.,2006. Relationship of Silurian sea-level fluctuations to oceanic episodes and events.GFF, 128, 115-121.
Jones K., Mccave I.N., Weaver P., 1992. Textural and dispersal patterns of thick mud turbidites from the Madeira Abyssal plain.Marine Geology, 107(3), 149-173.
Kaljo D., Hints L., Hints O., Männik P., Martma T., Nõlvak J., 2011. Katian prelude to the Hirnantian (Late Ordovician) mass extinction: a Baltic perspective.Geological Journal, 46, 464-477.
Komar P.D.,1991. The hydraulic interpretation of turbidites from their grain sizes and sedimentary structures.Deep-Water Turbidite Systems, 41-53.
Kump L.R., Arthur M.A., 1999. Interpreting carbon-isotope excursions: carbonates and organic matter.Chemical Geology, 161, 181-198.
Laporte D.F., Holmden C., Patterson W.P., Loxton J.D., Melchin M.J., Mitchell C.E., Finney S.C., Sheets H.D., 2009. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation.Palaeogeography, Palaeoclimatology, Palaeoecology, 276, 182-195.
Lefebvre V., Servais T., Francois L., Averbuch O., 2010. Did a Katian large igneous province trigger the Late Ordovician glaciation/ A hypothesis tested with a carbon cycle model.Palaeogeography, Palaeoclimatology, Palaeoecology, 296, 310-319.
Li Z.Y.,2021. Facies characteristics and depositional processes of shelf mudstones: Examples from the Late Cretaceous western interior seaway of North America.Acta Sedimentologica Sinica, 39(1), 168-180 (in Chinese with English abstract).
Liu Y., Li C., Algeo T.J., Fan J., Peng P.A., 2016. Global and regional controls on marine redox changes across the Ordovician-Silurian boundary in South China.Palaeogeography, Palaeoclimatology, Palaeoecology, 463, 180-191.
Lowe D.R.,1982. Sediment gravity flows; II, Depositional models with special reference to the deposits of high-density turbidity currents.Journal of Sedimentary Research, 52(1), 343-361.
Lowe D.R.,1988. Suspended-load fallout rate as an independent variable in the analysis of current structures.Sedimentology, 35, 765-776.
Macquaker J.H.S., Bentley S.J., Bohacs K.M., 2010a. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment Transport processes operating in ancient mudstone successions.Geology, 38(10), 947-950.
Macquaker J.H.S., Keller M.A., Davies S.J., 2010b. Algal blooms and "marine snow": Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments.Journal of Sedimentary Research, 80(11), 934-942.
McCave I.N., Jones K.P.N., 1988. Deposition of ungraded muds from high-density non-turbulent turbidity currents.Nature, 33(19), 250-252.
Melchin M.J., Mitchell C.E., Holmden C., Štorch P., 2013. Environmental changes in the Late Ordovician-early Silurian: Review and new insights from black shales and nitrogen isotopes.Geological Society of America Bulletin, 125(11/12), 1635-1670.
Metcalfe I.,2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys.Journal of Asian Earth Sciences, 66, 1-33.
Middleton G.V.,1967. Experiments on density and turbidity currents: III. deposition of sediment. CanadianJournal of Earth Sciences, 4(3), 475-505.
Moreau J.,2011. The late Ordovician deglaciation sequence of the SW Murzuq Basin (Libya).Basin Research, 23, 449-477.
Munnecke A., Calner M., Harper D.A., Servais T., 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: a synopsis.Palaeogeography, Palaeoclimatology, Palaeoecology, 296, 389-413.
Normark W.R., Piper D.J.W., Posamentier H., Pirmez C., Migeon S., 2002. Variability in form and growth of sediment waves on turbidite channel levees.Marine Geology, 192(1-3), 23-58.
Ozaki K., Tajima S., Tajika E., 2011. Conditions required for oceanic anoxia/euxinia: Constraints from a one-dimensional ocean biogeochemical cycle model.Earth and Planetary Science Letters, 304, 270-279.
Piper D.J.W.,1972. Turbidite origin of some thin-layered mudstones.Geological Magazine, 109(02), 115-126.
Pohl A., Austermann J., 2018. A sea-level fingerprint of the Late Ordovician ice-sheet collapse.Geology, 46(7), 595-598.
Qiu Z., Li Y.F., Xiong W., Fan T.L., Zhao Q., Zhang Q., Wang Y.M., Liu W., Liang F., Zhang J.Q., Lash G., 2023. Revisiting paleoenvironmental changes on the Upper Yangtze Block during the Ordovician-Silurian transition: New insights from elemental geochemistry.Sedimentary Geology, 450, 106377.
Rebesco M., Hernandez-Molina F.J., Rooij D.V., Wáhlin A., 2014. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations.Marine Geology, 352(3), 111-154.
Rong J.Y., Chen X., Harper D.A.T., 2002. The latest Ordovician Hirnantia Fauna (Brachiopoda) in time and space.Lethaia, 33, 231-249.
Schieber J., Southard J., Thaisen K., 2007. Accretion of mudstone beds from migrating floccule ripples.Science, 318(5857), 1760-1763.
Schieber J., Southard J., 2009. Bedload Transport of mud by floccule ripples-Direct observation of ripple migration processes and their implications.Geology, 37(6), 483-486.
Schieber J.,2016. Mud re-distribution in epicontinental basins-Exploring likely processes.Marine and Petroleum Geology, 71, 119-133.
Schimmelmann A., Lange C.B., Schieber J., Francus P., Ojala A.E.K., Zolitschka B., 2016. Varves in marine sediments: A review.Earth-Science Reviews, 159, 215-246.
Shi Z.S., Dong D.Z., Wang H.Y., Sun S.S., Wu J., 2020. Reservoir characteristics and genetic mechanisms of gas shales with different laminae and laminae combinations: A case study of Member 1 of the Lower Silurian Longmaxi shale in Sichuan Basin, SW China.Petroleum Exploration and Development, 47(4), 829-840.
Shi Z.S., Wang, H.Y. Y, Sun, S.S., Guo C.M., 2021. Graptolite zone calibrated stratigraphy and topography of the late Ordovician-early Silurian Wufeng-Lungmachi shale in Upper Yangtze area, South China.Arabian Journal of Geosciences, 14(3), 213.
Shi Z.S., Zhou T.Q., Wang H.Y., Sun S.S., 2022b. Depositional structures and their reservoir characteristics in the Wufeng-Longmaxi shale in southern Sichuan Basin, China.Energies, 15(5), 1618.
Shi Z., Zhao S., Zhou T., Ding L., Sun S., Cheng F., 2022a. Mineralogy and Geochemistry of the Upper Ordovician and Lower Silurian Wufeng-Longmaxi Shale on the Yangtze Platform, South China: Implications for provenance analysis and shale gas sweet-spot interval.Minerals, 12(10), 1190.
Shi Z.S., Yuan Y., Zhao Q., Sun S.S., Zhou T.Q., Cheng F., 2023a. Paleogeomorphology and shale distribution of Late Ordovician-Early Silurian Yangtze platform, South China: Implication for shale mineralogy and TOC content.Journal of Natural Gas Geosciences, 8, 245-262.
Shi Z.S., Zhou T.Q., Wang H.Y., Zhao Q., Yuan Y., Qi L., Sun S.S., Chen F., 2023b. Shallow-water fine-grained sediments evolution and control of marine black shale in the Late Ordovician-Early Silurian: Case study of the Wufeng Formation in southern Sichuan Basin, China.Natural Gas Geoscience, 34(9), 1565-1580 (in Chinese with English abstract).
Sperling E.A., Knoll A.H., Girguis P.R., 2015. The ecological physiology of Earth’s second oxygen revolution.Annual Review of Ecology, Evolution, and Systematics, 46, 215-235.
Stockey R.G., Cole D.B., Planavsky N.J., Loydell D.K., Fryda J., Sperling E.A., 2020. Persistent global marine euxinia in the early Silurian.Nature Communications, 11, 1804.
Stow D.A.V., Bowen A.J., 1978. Origin of lamination in deep sea, fine-grained sediments.Nature, 274(5669), 324-328.
Stow D.A.V., Lovell J., 1979. Contourites: Their recognition in modern and ancient sediments.Earth-Science Reviews, 14(3), 251-291.
Stow D.A.V., Bowen A.J., 1980. A physical model for the transport and sorting of fine-grained sediment by turbidity current.Sedimentology, 27(1), 31-46.
Stow D.A.V., Shanmugam G., 1980. Sequence of structures in fine-grained turbidites: Comparison of recent abyssal and ancient flysch sediments.Sedimentary Geology, 25(1), 23-42.
Stow D.A.V.,1985. Fine-grained sediments in deep water: An overview of processes and facies models.Geo-Marine Letters, 5, 17-23.
Stow D.A.V., Tabrez A.R., 1998. Hemipelagites: processes, facies and model.Geological Society, London, Special Publications, 129(1), 317-337.
Stow D.A.V., Huc, A.Y, Bertrand P., 2001. Depositional processes of black shales in deep water.Marine and Petroleum Geology, 18(4), 491-498.
Stow D.A.V., Faugères J.C., Howe J.A., Pudsey C.J., Viana A.R., 2002. Bottom currents, contourites and abyssal sediment drifts: Current state-of-the-art.Geological Society, London, Memoirs, 22(1), 7-20.
Stow D.A.V., Faugères J., 2008. Contourite facies and the facies model.Developments in Sedimentology, 60, 223-256.
Stow D.A.V., 2010. Sedimentary rocks in the field: A colour guide. Australia: CSIRO Publishing, 1-320.
Stow D.A.V., Smillie Z., 2020. Distinguishing between deep-water sediment facies: Turbidites, contourites and hemipelagites.Geosciences, 10(2), 68.
Sumner E.J., Talling P.J., Amy L.A., Wynn R.B., Stevenson C.J., Frenz M., 2012. Facies architecture of individual basin-plain turbidites: Comparison with existing models and implications for flow processes.Sedimentology, 59(6), 1850-1887.
Su W.B., Huff W.D., Ettensohn F.R., Liu X.M., Zhang J.E., Li Z.M., 2009. K-bentonite, black-shale and flysch successions at the Ordovician-Silurian transition, South China: Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana.Gondwana Research, 15, 111-130.
Talling P.J., Masson D.G., Sumner E.J., Malgesini G., 2012. Subaqueous sediment density flows: Depositional processes and deposit types.Sedimentology, 59(7), 1937-2003.
Talling P.J.,2013. Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models.Geosphere, 9(3), 460-488.
Tang X., Jiang Z., Huang H., Jiang S., Yang L., Xiong F., Chen L., Feng J., 2016. Lithofacies characteristics and its effect on gas storage of the Silurian Longmaxi marine shale in the southeast Sichuan Basin, China.Journal of Natural Gas Science and Engineering, 28, 338-346.
Torsvik T.H., Cocks L.R., 2013. Gondwana from top to base in space and time.Gondwana Research, 24, 999-1030.
Turgeon S.C., Creaser R.A., 2008. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode.Nature, 454, 323-326.
Ulloa O., Canfield D.E., Delong E.F., Letelier R.M., Stewart F.J., 2012. Microbial oceanography of anoxic oxygen minimum zones.Proceedings of the National Academy of Sciences, 109, 15996-16003.
Wang Y.J., Zhang A.M., Fan W.M., Zhao G.C., Zhang G.W., Zhang Y.Z., Zhang F.F., LI S.Z., 2011. Kwangsian crustal anatexis within the eastern South China Block: geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains.Lithos, 127, 239-260.
Wang, H.Y, Shi, Z.S, Sun, S.S., Zhao Q., Zhou T.Q., Cheng F., Bai W.H., 2023. Microfacies types and distribution of epicontinental shale: A case study of the Wufeng-Longmaxi shale in southern Sichuan Basin, China.Petroleum Exploration and Development, 50(1), 51-64.
Weissert H., Erba E., 2004. Volcanism, CO2 and palaeoclimate: A Late Jurassic-Early Cretaceous carbon and oxygen isotope record.Journal of the Geological Society, London, 161, 695-702.
Wu X.J., Luo H., Zhang J.P., Chen Q., Fang X., Wang W.H., Li W.J., Shi Z.S., Zhang Y.D., 2023. Volcanism-driven marine eutrophication in the end-Ordovician: Evidence from radiolarians and trace elements of black shale in South China.Journal of Asian Earth Sciences, 253, 105687.
Yan D.T., Li S.J., Fu H.J., Jasper D.M., Zhou S.D., Yang X.R., Zhang B., Mangi H.N., 2021. Mineralogy and geochemistry of Lower Silurian black shales from the Yangtze platform, South China.International Journal of Coal Geology, 237, 103706.
Yang S., Hu W., Wang X., Jiang B., Yao S., Sun F., Huang Z., Zhu F., 2019. Duration, evolution, and implications of volcanic activity across the Ordovician-Silurian transition in the Lower Yangtze region, South China.Earth and Planetary Science Letters, 518, 13-25.
Yawar Z., Schieber J., 2017. On the origin of silt laminae in thin-layered shales. Sedimentary Geology, 360, 22-34.
Young S.A., Saltzman M.R., Foland K.A., Linder J.S., Kump L.R., 2009. A major drop in seawater 87Sr86/Sr during the Middle Ordovician (Darriwilian): Links to volcanism and climate?.Geology, 37(10): 951-954.
Yu J.H., O’Reilly S.Y., Wang L.J., Griffin W.L., Zhang M., Wang R.C., Jiang S.Y., Shu L.S., 2008. Where was South China in the Rodinia supercontinent?Precambrian Research, 164, 1-15.
Zhang T., Shen Y., Algeo T.J., 2010. High-resolution carbon isotopic records from the Ordovician of South China: Links to climatic cooling and the Great Ordovician Biodiversification Event (GOBE).Palaeogeography, Palaeoclimatology, Palaeoecology, 289, 102-112.
Zhao J.H., Jin Z.K., Jin Z.J., Xin W., Geng Y.K., 2017. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for pore evolution.Journal of Natural Gas Science and Engineering, 38, 21-38.
Zhou L., Kang Z.H., Wang Z.X., Peng Y.Y., Xiao H.F., 2017. Sedimentary geochemical investigation for paleoenvironment of the Lower Cambrian Niutitang Formation shales in the Yangtze Platform.Journal of Petroleum Science and Engineering, 159, 376-386.
Zolischka B., Francus P., Ojala A.E., Schimmelmann A., 2015. Varves in lake sediments-a review.Quaternary Science Reviews, 117, 1-41.
Zou C., Qiu, Z, Poulton S.W., Dong D., Wang H., Chen D., Lu B., Shi Z., TAO H., 2018. Ocean euxinia and climate change “double whammy” drove the Late Ordovician mass extinction.Geology, 46(6), 535-538. |